首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhenium and other trace element data were obtained in situ by laser ablation ICP-MS analysis of submarine-erupted volcanic glasses and olivine-hosted melt inclusions from the Valu Fa Ridge, the south tip of the Lau Basin, in the southwestern Pacific Ocean. The chemistry of the Lau Basin basaltic glasses changes systematically from compositions similar to MORB in the Lau Spreading Centers, to more arc-like compositions in the Valu Fa Ridge, providing geochemical profiles both along the Lau Spreading Centers (ridges) and across the Valu Fa Ridge. The east seamount samples of the Valu Fa Ridge have diagnostic trace element ratios (Ba/Nb, Nb/U, Ce/Pb) close to global arc averages, with high Ba/La, indicating addition of considerable amounts of subduction-released fluids. In contrast, samples from the west seamount and the Lau Spreading Centers show a smaller influence from subduction fluids. The variable degrees of subduction influences apparent in the chemistry of these suites provide an ideal means to explore the mechanisms of Re enrichment in undegassed arc magmas. All of the analyzed arc melts have significantly higher Re concentrations than previously published, largely subaerially erupted samples, confirming that high Re is a characteristic of undegassed arc magmas. The east seamount samples are characterized by higher Re and lower Yb/Re than the more MORB-like Lau Spreading Center lavas. The lack of correlation between Yb/Re and Fo of host olivine suggests that low Yb/Re is not due to magmatic differentiation. When the Lau Basin sample suite is plotted together with MORB data, Yb/Re is positively correlated with Ce/Pb and Nb/U, and negatively correlated with Ba/Nb, indicating that Re is much more mobile than Yb during dehydration of subducted slabs. Thus, Re enrichment in arc magmas is likely due to addition of Re via fluids released from subducted slabs; the recognition of high Re in arcs favors arguments for a slab origin of radiogenic 187Os/188Os components in arc rocks.  相似文献   

2.
Noble gas concentrations and isotopic compositions have been determined for four submarine volcanic glasses from the Valu Fa Ridge (VFR) in the southern Lau Basin. The samples are the least differentiated ones from this area, and they display enrichments in fluid-mobile elements similar to the nearby island arc. 3He/4He ratios are slightly below average MORB (6.8–7.8 times atmospheric), whereas Ne, Ar, Kr, and Xe have isotopic compositions very similar to air. Together with previously published data from the Valu Fa Ridge and other spreading segments in the Lau Basin, our data show a systematic latitudinal variation of increasing Ne, Ar, Kr, and Xe abundances from north to south as well as Ne and Ar isotopic compositions changing from MORB-like to atmosphere-like in the same direction. Moreover, isotopic compositions and noble gas abundances of the lavas correlate strongly with Ba/Nb ratios and H2O concentrations. Based on these observations and mass balance arguments, we propose that the atmospheric noble gases come from the subducting oceanic crust and are not due to shallow contamination with air dissolved in seawater or assimilation of old crust. Our data suggest that the noble gases released from the subducting slab are atmospheric and thus contain little or no solar He and Ne. In addition to the fact that ratios of He to heavy noble gases are small in aged ocean crust, He has possibly fractionated from the other noble gases due to its higher diffusivity, and thus He transport from the subducting slab into the mantle wedge is probably insignificant. We propose that the 3He/4He ratios lower than MORB observed in the VFR lavas result from radiogenic ingrowth of He in a highly depleted, and hence degassed, mantle wedge after the enrichment of U and Th released from the downgoing slab.  相似文献   

3.
New major and trace element and Sr–Nd isotope data are presented for basaltic glasses from active spreading centers (Central Lau Spreading Center (CLSC), Relay Zone (RZ) and Eastern Lau Spreading Center (ELSC)) in the Central Lau Basin, SW Pacific. Basaltic lavas from the Central Lau Basin are mainly tholeiitic and are broadly similar in composition to mid-ocean ridge basalts (MORB). Their generally high 87Sr/86Sr ratios, combined with relatively low 143Nd/144Nd ratios are more akin to MORB from the Indian rather than Pacific Ocean. In detail, the CLSC, RZ and ELSC lavas are generally more enriched in large ion lithophile elements (Rb, Ba, Sr, and K) than average normal-MORB, which suggests that the mantle beneath the Central Lau Basin was modified by subducted slab-derived components. Fluid mobile/immobile trace element and Sr – Nd isotope ratios suggest that the subduction components were essentially transferred into the mantle via hydrous fluids derived from the subducted oceanic crust; contributions coming from the subducted sediments are minor. Compared to CLSC lavas, ELSC and RZ lavas show greater enrichment in fluid mobile elements and depletion in high field strength elements, especially Nb. Thus, with increasing distance away from the arc, the influence of subduction components in the mantle source of Lau Basin lavas diminishes. The amount of hydrous fluids also influences the degree of partial melting of the mantle beneath the Central Lau Basin, and hence the degree of melting also decreases with increasing distance from the arc.  相似文献   

4.
Source depletion and extent of melting in the Tongan sub-arc mantle   总被引:3,自引:0,他引:3  
The fluid immobile High Field Strength Elements (HFSE) Nb and Ta can be used to distinguish between the effects of variable extents of melting and prior source depletion of the Tongan sub-arc mantle. Melting of spinel lherzolite beneath the Lau Basin back-arc spreading centres has the ability to fractionate Nb from Ta due to the greater compatibility of the latter in clinopyroxene. The identified spatial variation in plate velocities and separation of melt extraction zones, combined with extremely depleted lavas make Tonga an ideal setting in which to test models for arc melt generation and the role of back-arc magmatism.We present new data acquired by laser ablation-ICPMS of fused sample glasses produced without the use of a melt fluxing agent. The results show an arc trend towards strongly sub-chondritic Nb/Ta (< 17) with values as low as 7.2. Melting models show that large degree melts of depleted MORB mantle fail to reproduce the observed Nb/Ta. Alternatively, incorporation of residual back-arc mantle that has undergone less than 1% melting into the sub-arc melting regime reproduces arc values. However, the extent of partial melting required to produce the composition of the Lau Basin back-arc basalts averages 7%. This apparent discrepancy can be explained if only the lowermost 4 km of the residua from the mantle melt column beneath the back-arc is added to the source of arc magmas. We have identified that the degree of arc/back-arc coupling displayed in the rock record provides an index of the depth of hydrous melting beneath the arc. In this case, this would imply a depth of ~ 75 km for generation of arc magmas, indicating that hydrous melting in the mantle wedge is triggered by the breakdown of hydrous phases in the subducting slab.  相似文献   

5.
Samples dredged from 2 localities near the crest of the Valu Fa ridge, an active back-arc basin spreading centre in the Lau Basin, consist of highly vesicular lava fragments of andesitic composition. The samples are characterized by rare, euhedral An85 plagioclase phenocrysts in a hypocrystalline groundmass of An60 plagioclase laths, brown glass and rare subhedral clinopyroxene. Samples from within and, to a lesser extent, between the dredge hauls show remarkable isotopic and chemical homogeneity, with: 87Sr/86Sr − 0.70330 ± 2; 143Nd/144Nd − 0.51303 ± 2; 206Pb/204Pb − 18.65 ± 2; 207Pb/204Pb − 15.55 ± 1; 208Pb/204Pb − 38.34 ± 4; Sr − 165 ppm; Rb − 7 ppm; Cs − 0.17 ppm; K − 3300 to 4200 ppm; Ba − 96 ppm; and REE — LREE depleted with 12–18 × chondritic abundances. On Sr-Nd, Pb-Pb and Sr-Pb plots the volcanics lie just within or on the edge of the MORB fields, overlapping with island-arc volcanics from the Marianas and Tonga. Compared with MORB and ocean-island basalts, the samples show alkali-element enrichment relative to REE and higher Cs relative to Rb. The isotopic and geochemical characteristics of the Valu Fa Ridge volcanics clearly indicate a minor, but significant, slab-derived component in the back-arc basin mantle source.  相似文献   

6.
The major and trace element geochemistry of lavas erupted from four volcanic front (VF) stratovolcanoes in southeastern Guatemala show differences in the relative importance of flux and decompression melting in a continental arc setting. The VF stratovolcanoes exhibit a wide compositional range from basalt to dacite, although modern Pacaya erupts basaltic lavas. The VF basalts have relatively low MgO contents and plot outside the field of primary arc magmas defined by melting experiments on hydrous peridotite. After subtracting the effects of the fractionation, assimilation, and alteration of some VF lavas, separate partial melting and mixing trends were identified for Agua–Pacaya and Tecuamburro–Moyuta.The distinct chemical signatures of the hemipelagic and carbonate sediments subducted off Guatemala provide constraints on material transfer processes that occurred between the slab and mantle wedge. Model fluids and melts from the subducted slab were calculated using recently published mineral–aqueous fluid partition coefficients. Wide separation of the model fluid and melt compositions on a U/La versus Ba/Th diagram creates diagnostic mixing curves with an enriched mid-ocean ridge basalt source. Fluid from mature ocean crust has high U/La, fluid from carbonate sediment has high Ba/Th, and fluid and melt from hemipelagic sediments have both high U/La and Ba/Th. In a simple single-stage model, a mantle metasomatized by fluid originating largely from the oceanic crust with only minor sediment fluid contributions best explains the overall large ion lithophile element composition of the VF lavas. (Th/Rb)N ratios of ∼1 in the VF lavas from southeastern Guatemala require a component of sediment melting. Therefore, a more realistic two-stage model to describe the Guatemalan arc data involves an initial hemipelagic sediment melt input to the wedge followed by minor fluid additions from the oceanic crust or sediments. Correlation between measures of slab input and extent of melting in the older VF lavas from Tecuamburro and Moyuta favors flux-dominated melting near the base of the mantle wedge. In sharp contrast, the lack of a relationship between slab additions and melting in younger lavas from Agua and Pacaya volcanoes implies a significant role for decompression melting closer to the top of the wedge. In this melting scenario, the rate of crustal extension determines the extent of melting.  相似文献   

7.
Back-arc basin basalt systematics   总被引:7,自引:0,他引:7  
The Mariana, east Scotia, Lau, and Manus back-arc basins (BABs) have spreading rates that vary from slow (<50 mm/yr) to fast (>100 mm/yr) and extension axes located from 10 to 400 km behind their island arcs. Axial lava compositions from these BABs indicate melting of mid-ocean ridge basalt (MORB)-like sources in proportion to the amount added of previously depleted, water-rich, arc-like components. The arc-like end-members are characterized by low Na, Ti and Fe, and by high H2O and Ba/La; the MORB-like end-members have the opposite traits. Comparisons between basins show that the least hydrous compositions follow global MORB systematics and an inverse correlation between Na8 and Fe8. This is interpreted as a positive correlation between the average degree and pressure of mantle melting that reflects regional variations in mantle potential temperatures (Lau/Manus hotter than Mariana/Scotia). This interpretation accords with numerical model predictions that faster subduction-induced advection will maintain a hotter mantle wedge. The primary compositional trends within each BAB (a positive correlation between Fe8, Na8 and Ti8, and their inverse correlation with H2O(8) and Ba/La) are controlled by variations in water content, melt extraction, and enrichments imposed by slab and mantle wedge processes. Systematic axial depth (as a proxy for crustal production) variations with distance from the island arc indicate that compositional controls on melting dominate over spreading rate. Hydrous fluxing enhances decompression melting, allowing depleted mantle sources just behind the island arc to melt extensively, producing shallow spreading axes. Flow of enriched mantle components around the ends of slabs may augment this process in transform-bounded back-arcs such as the east Scotia Basin. The re-circulation (by mantle wedge corner flow) to the spreading axes of mantle previously depleted by both arc and spreading melt extraction can explain the greater depths and thinner crust of the East Lau Spreading Center, Manus Southern Rifts, and Mariana Trough and the very depleted lavas of east Scotia segments E8/E9. The crust becomes mid-ocean ridge (MOR)-like where the spreading axes, further away from the island arc and subducted slab, entrain dominantly fertile mantle.  相似文献   

8.
The volatile content of glassy pillow rims from East Scotia Sea back-arc basin (BAB) lavas are unlike those of mid-ocean ridge (MOR) pillow-rim glasses, although non-volatile compositions of the two rock groups overlap. The East Scotia Sea samples have three to ten times greater water contents and nearly twice the average CO2 and Cl contents of MOR samples; F contents are similar. S contents are only one-third those from MOR samples. H2O and CO2 contents of glassy pillow rims from Mariana island arc andesites are similar to those in the BAB lavas studied. Nevertheless, volatiles in the East Scotia Sea BAB magmas are probably not directly derived from the subducted slab, because there is no seismic evidence that the slab extends within 200 km of the spreading axis of the East Scotia Sea. Available data do not preclude the possibility that the magmas were contaminated by seawater prior to eruption or that the mantle under the East Scotia Sea spreading center is volatile-rich. The volatiles may have been added to the mantle during an earlier period of subduction, perhaps during the initial formation of the East Scotia Sea basin.  相似文献   

9.
Lower Carboniferous lavas from the Midland Valley and adjacent regions of Scotland are mildly alkaline and intraplate in nature. The sequence is dominated by basalt and hawaiite, although mugearite, benmoreite, trachyte and rhyolite are also present. Basic volcanic rocks display the LIL element and LREE enrichment typical of intraplate alkali basalt terrains. Low initial87Sr/86Sr (0.7029–0.7046), high εNd (−0.4 to +5.6) and moderately radiogenic206Pb/204Pb (17.77–18.89) ratios are also comparable with alkali basalts from other continental rifts and oceanic islands.When the Carboniferous lavas are compared with subduction-related lavas of Old Red Sandstone age, erupted in and around the Midland Valley ca. 50 Ma earlier (at 410 Ma) remarkable similarities are apparent. Significant overlap occurs in Nd and Pb isotopic compositions. Sr isotopic compositions are, however, more radiogenic in the older subduction-related lavas. This, combined with high K and Rb concentrations in ORS lavas may be explained by the incorporation of a sediment component derived from the subducted slab, which by Lower Carboniferous times had been lost from the mantle source region by convection. A pronounced negative Nb anomaly in the ORS subduction-related lavas may be explained by the retention of a Nb-bearing phase in the mantle during hydrous melting of the mantle wedge above the subduction zone.Allowing for the effects of the added component from the subducted slab, there appears to be no necessity to invoke separate mantle source regions for the two suites of lavas: both may have been derived from chemically similar portions of mantle. If volcanic arc lavas are derived from the mantle wedge, the implication is that such a source lies at relatively shallow depth within the upper mantle: the same may therefore apply to the Carboniferous continental rift basalts. This evidence, combined with the fact that there is no evident hot-spot trail across the Midland Valley despite a long period of within-plate volcanism and rapid plate movements during the Carboniferous, suggests that the alkali basalt magmatism is not the product of a deep-seated mantle plume. Rather, the volcanism appears to owe more to passive rifting and to diapiric upwelling from a source region within the uppermost mantle.  相似文献   

10.
The composition of basalts erupted at the earliest stages in the evolution of a back-arc basin permit unique insights into the composition and structure of the sub-arc mantle. We report major and trace element chemical data and O-, Sr-, Nd-, and Pb- isotopic analyses for basalts recovered from four dredge hauls and one ALVIN dive in the northern Mariana Trough near 22°N. The petrography and major element chemistry of these basalts (MTB-22) are similar to tholeiites from the widest part of the Trough, near 18°N (MTB-18), except that MTB-22 have slightly more K2O and slightly less TiO2. The trace element data exhibit a very strong arc signature in MTB-22, including elevated K, Rb, Sr, Ba, and LREE contents; relatively lowK/Ba and highBa/La andSr/Nd. The Sr- and Nd- isotopic data plot in a field displaced from that of MTB-18 towards Mariana arc lavas, and the Pb-isotopic composition of MTB-22 is indistinguishable from Mariana arc lavas and much more homogeneous than MTB-18. Mixing of 50–90% Mariana arc component with a MORB component is hypothesized. We cannot determine whether this resulted from physical mixing of arc mantle and MORB mantle, or whether the arc component is introduced by metasomatism of MORB-like mantle by fluids released from the subducted lithosphere. The strong arc signature in back-arc melts from the Mariana Trough at 22°N, where the back-arc basin is narrow, supports general models for back-arc basin evolution whereby early back-arc basin basalts have a strong arc component which diminishes in importance relative to MORB as the back-arc basin widens.  相似文献   

11.
Primitive lava and hyaloclastite with unusual, highly refractory compositions, form part of the Early Ordovician Balcreuchan Group within the ophiolitic Ballantrae Complex, southwestern Scotland. They are identified as likely high-Ca boninites on the basis of new XRF and INAA results and are the first unambiguous boninites to be discovered in the British Isles. The boninites are interbedded with low-Ti tholeiitic lavas with which they share some distinctive geochemical characteristics suggestive of a close petrogenetic relationship. The low-Ti tholeiite lavas have been interpreted as island-arc tholeiites but they also resemble back-arc basin basalts. The newly discovered boninites confirm an intra-oceanic environment of eruption; their distinctive features include relatively high SiO2, MgO, Cr and Ni but low Al2O3 and HFSE abundances, U-shaped REE patterns, low Ti/Zr and high Zr/Hf ratios. Bulk geochemical trends are indicative of low-temperature, seawater-dominated alteration of the lavas but these alteration conditions apparently had little effect on the distribution of critical diagnostic elements such as Zr, Ti, Sc, Ta and the mid-heavy rare earths. We suggest that the Ballantrae boninites and low-Ti tholeiites represent different batch melts derived from a common, depleted mantle source region variably modified compositionally (i.e., made “streaky”) by fluids and/or melts during slab interaction (subduction metasomatism). A contribution from slab-derived pelagic sediments and/or a carbonatite melt is necessary to account for the fractionated, non-chondritic Zr/Hf ratios in the boninites. In view of the close compositional similarity of the Ballantrae lavas to Cenozoic boninite suites, we believe that these interpretations may have wider application to the petrogenesis of boninites in general.  相似文献   

12.
In central Japan, the Pacific plate subducts westward beneath the Eurasian plate and the Philippine Sea plate subducts northwestward into the mantle wedge between the Eurasian plate and the subducted Pacific slab. There, the Northeast Japan arc is joined to the Izu-Ogasawara arc. We determined 87Sr/86Sr ratios and Rb and Sr contents for 47 volcanic rock samples from 15 Quaternary volcanoes in central Japan and summarized the geographical distribution of the ratios. The general trend of slowly increasing 87Sr/86Sr ratio from the back-arc side toward the volcanic front in the Northeast Japan arc is broken by a marked high ratio (above 0.7060) centered around Akagi volcano located at the southernmost region of the arc. Elsewhere, the ratio along the volcanic front in this arc varies within the range 0.7038 to 0.7045. The marked high 87Sr/86Sr ratio is considered to be due to the addition of slab-derived components transported by the Philippine Sea plate to the magma-generating region in the mantle wedge beneath central Japan. Therefore, the geographical distribution of the high ratio may correspond to that of the Philippine Sea slab-derived components in the mantle wedge and we may draw the underground outline of the Philippine Sea plate. This outline implies that an aseismic portion of the Philippine Sea plate continues a few tens km ahead of the seismic one. A belt of low 87Sr/86Sr ratios from the Izu Peninsula northwestward along the northern end of the Izu-Ogasawara arc coincides with the zone where the subducting Philippine Sea plate is not observed seismologically, while it is detected seismologically on both sides of the belt.  相似文献   

13.
Niobium–tantalum systematics of slab-derived melts are powerful tracers that discriminate residual high-pressure rutile-bearing eclogite from low-pressure garnet-bearing amphibolite in subducting plates. Previously reported low Nb–Ta ratios in modern slab melts suggested a predominance of shallow melting in the presence of residual amphibole and that deep melting of rutile-bearing eclogitic slabs, devoid of residual amphibole, is volumetrically insignificant. This study evaluates Nb/Ta in combination with other trace element systematics of modern intra-oceanic and slab melt-related arc lavas from the south-western volcanic chain of the Solomon Islands that cover over 1000 km of the SW Pacific plate border. After a change of subduction polarity, an old subducted Pacific slab and a recently subducting Indian–Australian slab are both present beneath the arc. Solomon arc lavas show sub- to superchondritic Nb–Ta ratios (ca. 10 to 27) which is the largest range ever reported in modern island arc lavas. The large range of Nb/Ta likely results from enrichment of the depleted sub-arc mantle by two distinct slab-derived melts in addition to fluids. One minor slab melt component is derived from the shallow and recent subducting Indian–Australian plate where amphibole is still a significant residual phase. The second slab melt component is predominant in Solomon arc lavas and can be attributed to deep rutile–eclogite-controlled melting of old subducted Jurassic Pacific oceanic crust where residual amphibole is entirely absent or insignificant. The deep Pacific slab melt component is the most likely origin of the extremely high and superchondritic Nb/Ta signatures that produce the upper half of the observed range of Nb/Ta in Solomon arc lavas. The slab melt component that enriched the sub-arc mantle with an unusually high Nb/Ta signature is derived from an initially intact Pacific plate that was probably subject to a slab break-off event and subsequent melting at depths exceeding 100 km. The geochemical evidence presented here shows that old and cold subducted oceanic crust, which is initially not torn, may resist shallow melting but can melt at greater depths instead. The resulting slab melts are generated in the presence of residual rutile-bearing eclogite and significantly fractionate Nb–Ta ratios which may be of relevance at a global scale.  相似文献   

14.
Fluids supplied in alpine-type mantle peridotites and trapped as fluid inclusions in olivines have been fixed by low-temperature reactions, and theirCO2/H2O ratios can be deduced from the minerals in the inclusions. Relic fluid inclusions were commonly observed by the optical microscope in olivines from almost all examined solid intrusive ultramafic complexes (Papua, Oman, Troodos and eleven alpine-type complexes of Japan). Such complexes were emplaced into the crust in a solid state. Electron microscopic studies of olivines from three complexes, Higashiakaishi, Horoman and Iwanai-dake, showed that relic fluid inclusions in these olivines have distinctive mineral parageneses: serpentine + magnesite + talc, serpentine + magnesite + brucite, and serpentine + brucite, respectively, depending on theCO2/(H2O+CO2) ratio of the trapped fluid.It is deduced that the fluids had been supplied to peridotites, at least partly, but almost wholly in some case, when the peridotites were still hot, probably at the upper mantle for the following reasons: (1) the curved surfaces along which the inclusions are distributed are cut by post-emplacement serpentine veins; (2) for the Higashiakaishi dunite, the relic fluid inclusions are exclusively found in porphyroclast olivines and are totally absent in matrix olivines recrystallized during the Sanbagawa metamorphism.Recent models on the derivation of ophiolitic or some alpine-type peridotites favor the island-arc or fore-arc settings. Dehydration of the descending oceanic slab may supply H2OCO2 vapor to the overlying mantle wedge. Fluid inclusions trapped in such mantle wedge may abound in H2O component. H2O-bearing fluid inclusions may, therefore, be important H2O containers in the upper mantle, especially near the edge of the mantle wedge above downgoing oceanic slabs.  相似文献   

15.
Middle Miocene to Quaternary lavas on Kunashir Island in the southern zone of the Kurile Arc were examined for major, trace, and Sr–Nd–Pb isotope compositions. The lavas range from basalt through to rhyolite and the mafic lavas show typical oceanic island arc signatures without significant crustal or sub-continental lithosphere contamination. The lavas exhibit across-arc variation, with increasingly greater fluid-immobile incompatible element contents from the volcanic front to the rear-arc; this pattern, however, does not apply to some other incompatible elements such as B, Sb, and halogens. All Sr–Nd–Pb isotope compositions reflect a depleted source with Indian Ocean mantle domain characteristics. The Nd and Pb isotope ratios are radiogenic in the volcanic front, whereas Sr isotope ratios are less radiogenic. These Nd isotope ratios covary with incompatible element ratios such as Th/Nd and Nb/Zr, indicating involvement of a slab-derived sediment component by addition of melt or supercritical fluid capable of mobilizing these high field-strength elements and rare earth elements from the slab. Fluid mobile elements, such as Ba, are also elevated in all basalt suites, suggesting involvement of slab fluid derived from altered oceanic crust. The Kurile Arc lavas are thus affected both by slab sediment and altered basaltic crust components. This magma plumbing system has been continuously active from the Middle Miocene to the present.  相似文献   

16.
The Lau Basin is a marginal sea, located between the Tonga and Lau Ridges, in the southwestern Pacific. The basin is on the “inner” or concave side of the Tonga Trench-Arc system and is situated above the deep seismic zone dipping westward from the Tonga Trench. The Tonga Trench-Arc system is undoubtedly located above a zone of crustal shortening as evidenced by the deep seismicity and vulcanism. However, the geological and geophysical data give strong support to the contention that the Lau Basin has formed by crustal dilation.Rocks dredged from ridges and seamounts in the basin are sub-alkaline basalt. The average major element composition of least altered samples is: SiO2 48.8%, TiO2 1.2%, K2O 0.18%, P2O5 0.08%, H2O+ 0.30%, FeIII/FeII = 0.26,CaO/Al2O3 = 0.77. The data for Lau Basin basalt (LBB) show close similarity to data of typical oceanic ridge basalt (ORB). Trace element abundances (ppm): Ni 160, Cr 390, Sr 100, Ba < 31, Rb < 1 also resemble ORB values. K/Rb in a least altered and unfractionated sample is 860, Ba/Sr is 0.1, Ba/Rb is 8. Strontium isotope data show the only marked variance from ORB chemistry with LBB values ranging from 87Sr/86Sr=0.7020 to 0.7051. The low Sr abundances in the samples suggest the possibility of crustal Sr contamination to explain the radiogenic Sr enrichment. An alternate possibility is that the mantle source rocks were enriched in 87Sr. Variation within dredge hauls and between dredge sites may be explained by low-pressure fractional crystallization of magmas separated from the mantle at about 50 km depth.The basin probably began to open in middle to late Miocene time either by the disruption of a single andesitic island arc by splitting along its axis or by dilation of the area between two closely spaced concentric arcs. Mantle counterflow in the asthenosphere above the downgoing oceanic lithosphere slab is the probable driving force for dilation and has provided a continuous supply of parent material for the basalt of the basin floor.  相似文献   

17.
In order to understand the role of the subducted lithosphere in producing the geochemical characteristics of arc magmas, major- and trace-element along with Sr- and Nd-isotope compositions have been determined for Quaternary volcanic rocks from the Izu-Bonin intra-oceanic arc. 87Sr/86Sr and 143Nd/144Nd ratios decrease away from the volcanic front of this arc and lie on mixing lines between the assumed isotopic compositions of fluid phases mainly derived from the basalt layer of the subducted lithosphere and upper-mantle materials in the sub-arc wedge. This across-arc variation can be explained through a simple sequence of processes involving initial release of fluid phases from the subducted oceanic crust to produce hydrous peridotite at the base of the mantle wedge. This hydrous peridotite is dragged downward with the slab and releases a second-stage metasomatizing fluid beneath the volcanic arc. The higher concentrations of both Sr and Nd in the fluid beneath the volcanic front than those beneath the back-arc side may be a possible cause of the observed across-arc variation in Sr-Nd isotopic ratios. The difference in compositions of fluid phases is attributed to the different hydrous phases which decompose in the hydrous peridotite layer; amphibole beneath the volcanic front and phlogopite beneath the back-arc side of the volcanic arc. The mineralogically controlled fluid addition may also be responsible for the across-arc variation in Rb/K and Rb/Zr ratios, increasing away from the volcanic front.  相似文献   

18.
A bimodal volcanic suite with KAr ages of 0.05–1.40 Ma was collected from the Sumisu Rift using alvin. These rocks are contemporaneous with island arc tholeiite lavas of the Izu-Ogasawara arc 20 km to the east, and provide a present day example of volcanism associated with arc rifting and back-arc basin initiation. Major element geochemistry of the basalts is most similar to that of basalts found in other, more mature back-arc basins, which indicates that back-arc basins need not begin their magmatic evolution with lavas bearing strong arc signatures.Volatile concentrations distinguish Sumisu Rift basalts from island arc basalts and MORB. H2O contents, which are at least four times greater than in MORB, suppress plagioclase crystallization. This suppression results in a more mafic fractionating assemblage, which prevents Al2O3 depletion and delays the initiation of Fe2O3(tot) and TiO2 enrichment. However, unlike arc basalts,Fe3+/ΣFe ratios are only slightly higher than in MORB and are insufficient to cause magnetite saturation early enough to suppress Fe2O3(tot) and TiO2 enrichment. Thus, major element trends are more similar to those of MORB than arcs.H2O, CO2 and S are undersaturated relative to pure phase solubility curves, indicating exsolution of an H2O-rich mixed gas phase. HighH2O/S, highδD, and low (MORB-like)δ34S ratios are considered primary and distinctive of the back-arc basin setting.  相似文献   

19.
Geochemical and isotopic analyses (Sr–Nd–Pb) of late Miocene to Quaternary plateau lavas from the Pali Aike and Morro Chico areas (52°S) were undertaken to constrain the melting processes and mantle sources that contributed to magma generation and the geodynamic evolution of southernmost Patagonia, South America. The Pali Aike and Morro Chico lavas are alkaline (Pali Aike, 45–49 wt.% SiO2; 4.3–5.9 wt.% Na2O+K2O) and subalkaline (Morro Chico, 50.5–50.8 wt.% SiO2; 4.0–4.4 wt.% Na2O+K2O), relatively primitive (Pali Aike, 9.5–13.7 wt.% MgO; Morro Chico, 7.6–8.8 wt.% MgO) mafic volcanic rocks that have typical intraplate ocean island basalt‐like signatures. Incompatible trace element ratios and isotopic ratios of the Pali Aike and Morro Chico lavas differ from those of the majority of Neogene southern Patagonian slab window lavas in showing more enriched characteristics and are similar to high‐μ (HIMU)‐like basalts. The rare earth element (REE) modeling to constrain mantle melting percentages suggests that these lavas were produced by low degrees of partial melting (1.0–2.0% for Pali Aike lavas and about 2.6–2.7% for Morro Chico lavas) of a garnet lherzolite mantle source. The major systematic variations of Sr–Nd–Pb isotopes in southern Patagonian lavas are related to geographic location. The Pali Aike and Morro Chico lavas from the southernmost part of Patagonia have lower 87Sr/86Sr and higher 143Nd/144Nd and 206Pb/204Pb ratios, relative to most of the southern Patagonian lavas erupted north of 49.5°S, pointing to a HIMU‐like signature. An isotopically depleted and HIMU‐like asthenospheric domain may have been the main source of magmas in the southernmost part of Patagonia (e.g. Pali Aike, Morro Chico, and Camusu Aike volcanic field), suggesting the presence of a major discontinuity in the isotopic composition of the asthenosphere in southern Patagonia. On the basis of geochemical and isotope data and the available geological and geotectonic reconstructions, a link between the HIMU asthenospheric mantle domain beneath southernmost Patagonia and the HIMU mega‐province of the southwestern Pacific Ocean is proposed.  相似文献   

20.
Abstract   Abundant peridotite xenoliths have been found in pyroclasitics of Avacha (Avachinsky) volcano, the south Kamchatka arc, Russia. They are mostly refractory harzburgite with or without clinopyroxene: the Fo of olivine and Cr/(Cr + Al) atomic ratio of spinel range from 91 to 92 and from 0.5 to 0.7, respectively. They are metasomatized to various extents, and the metasomatic orthopyroxene has been formed at the expense of olivine. The metasomatic orthopyroxene, free of deformation and exsolution, is characterized by low contents of CaO and Cr2O3. The complicated way of replacement possibly indicates low viscosity of the metasomatic agent, namely hydrous fluids released from the relatively cool slab beneath the south Kamchatka arc. This is a good contrast to the north Kamchatka arc, where the slab has been hot enough to provide slab-derived melts. High content of total orthopyroxene, 40 vol% on average, in metasomatized harzburgite from Avacha suggests silica enrichment of the mantle wedge, and is equivalent to some subcratonic harzburgite. Some subcratonic harzburgites therefore could have been formed by transportation of subarc metasomatized peridotites to a deeper part of the upper mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号