首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Beach fetch distance and aeolian sediment transport   总被引:3,自引:0,他引:3  
Jackson  & Cooper 《Sedimentology》1999,46(3):517-522
An experiment was conducted to examine the influence of fetch distance on aeolian sediment transport on a natural sand beach at Benone Strand, County Londonderry, Northern Ireland. The site consisted of a wide dissipative beach, approximately 150 m wide at low tide and 80 m wide during high tide. Surface moisture levels (and hence dry fetch distance) were dictated by both local groundwater, from a stream outlet across the beach, as well as local tidal levels. An abundant dry sediment supply was available during the experiment. High-resolution (1 Hz) measurements were made of wind speed and direction along with sediment flux. Wind velocity ranged from 2·1 to 8·1 m s–1 during the study. Second-order polynomial sand transport equations were derived from the wind speed and trap results with r 2 values of better than 0·93 for all data. When the data were sorted into velocity bins of 1 m s–1, there was no discernible relationship between fetch distance and sand transport, with a measured fetch distance range of 10–58 m available during the experiment. Results show that fetch distance is unimportant when an adequate sand supply is available. However, it is suggested that fetch may restrict the development of steady-state transport under sediment-limited conditions. Sediment availability is thus identified as a key variable in aeolian transport studies on natural beaches.  相似文献   

3.
Stromboli is a 3000 m high island volcano, rising to 900 m above sea-level. It is the most active volcano of the Aeolian Archipelago in the Tyrrhenian Sea (Italy). Major, large volume (1 km3) sector collapses, four occurring in the last 13 kyr, have played an important role in shaping the north-western flank (Sciara del Fuoco) of the volcano, potentially generating a high-risk tsunami hazard for the Aeolian Islands and the Italian coast. However, smaller volume, partial collapses of the Sciara del Fuoco have been shown to be more frequent tsunami-generating events. One such event occurred on 30 December 2002, when a partial collapse of the north-western flank of the island took place. The resulting landslide generated 10 m high tsunami waves that impacted the island. Multibeam bathymetry, side-scan sonar imaging and visual observations reveal that the landslide deposited 25 to 30 × 106 m3 of sediment on the submerged slope offshore from the Sciara del Fuoco. Two contiguous main deposit facies are recognized: (i) a chaotic, coarse-grained (metre-sized to centimetre-sized clasts) deposit; and (ii) a sand deposit containing a lower, cross-bedded sand layer and an upper structureless pebbly sand bed capped by sea floor ripple bedforms. The sand facies develops adjacent to and partially overlying the coarse deposits. Characteristics of the deposits suggest that they were derived from cohesionless, sandy matrix density flows. Flow rheology and dynamics led to the segregation of the density flow into sand-rich and clast-rich regions. A range of density flow transitions, both in space and in time, caused principally by particle concentration and grain-size partitioning within cohesionless parent flows was identified in the deposits of this relatively small-scale submarine landslide event.  相似文献   

4.
ABSTRACT Sand transport measurements of bedload and suspended load in the Sizewell-Dunwich Banks area, East Anglia have shown that the suspended mode is dominant. The depth-integrated spring tidal residual is 5.66 g cm−1 sec−1, although the neap rate is only one-fifth of this. The calculated bedload transport rates also vary, from 0.012 to 0.040 g cm−1 sec−1, correlating with changing meteorological conditions.
In order to predict the bedload sediment circulation pattern from midwater current meter measurements, five sediment transport equations were calibrated, using fluorescent dyed sand. Yalin's relationship gave the best estimates. The bed shear stress was determined by extrapolating the velocity profile as a power law relationship, with an exponent equal to 0.1, from midwater down to 2 m and as a lognormal profile from 2 m to the sea-bed. Roughness length values appropriate to the substrate were used.
Although bedload transport residuals are mainly to the south, the banks trend northwards from the coast and have also elongated in this direction. This is thought to be in response to the dominance of the suspended sediment transport. It is suggested that a tidal residual eddy mechanism is responsible for the banks'maintenance, similar to the process operating in Start Bay, Devon. The well-documented westward movement of the banks is likely to be related to wave processes.  相似文献   

5.
Shoreface architecture, evolution (mid-Holocene to present) and depths of transgressive ravinement were examined from Sabine Pass, at the Texas–Louisiana border, to South Padre Island, near the Texas–Mexico border, using 30 shoreface transects. Shoreface transects extend out to 16-m water depth, each created from an echo-sounding profile and, on average, seven sediment cores. The shoreface is composed of three broad sedimentological facies: the upper shoreface, composed almost entirely of sand; the proximal lower shoreface, composed of sand with thickly to medium-bedded (50–10 cm) mud; and the distal lower shoreface, composed dominantly of mud with medium- to thinly bedded (20–3 cm) sand. Shoreface architecture and evolution is extremely variable along the Texas coast. Shoreface gradients increase from 2·25 m km–1 in east Texas to 3·50 m km–1 in south Texas. Shoreface sands coarsen towards south Texas. East and south Texas shoreface deposits are thin and retrograding whereas central Texas shoreface deposits are thicker and prograding. Central Texas is characterized by stacked shoreface successions, whereas in east Texas, lower shoreface sands are preserved only in offshore banks. Preservation of shoreface deposits is low in south Texas. Although eustatic fluctuations and accommodation space have a strong impact on overall mid-Holocene to present shoreface evolution and preservation potential, along-strike variations in sediment supply and wave energy are the main factors controlling shoreface architecture. The transgressive ravinement surface varies from –6 to –15 m along the Texas coast.  相似文献   

6.
CHIME (chemical Th–U-total Pb isochron method) monazite ages were determined for gneisses and granitoids from the eastern and western parts of the Ryoke belt separated by about 500 km. The monazite ages for the gneisses are concentrated between 102 and 98  Ma, and are interpreted as the time of monazite formation under lower amphibolite facies conditions. The peak metamorphism seems to be contemporaneous with the emplacement of the geologically oldest plutons that are dated at c . 95  Ma in both the eastern and western parts. In the eastern part plutonism continued from c . 95  Ma to c . 68  Ma at intervals of 2–10  Ma, whereas in the western part it ceased at c . 85  Ma. The CHIME monazite ages agree well with the relative age of granitoids derived from intrusive relationships of granitoids in both parts. These lines of evidence are incompatible with a current view that the plutonometamorphism in the Ryoke belt becomes younger towards the east. The CHIME monazite ages, coupled with available data on the depth at which the Ryoke metamorphism took place and the emplacement of individual plutons, show that the western part was eroded more rapidly (about 1.5  mm year−1) than the eastern part (about 0.8  mm year−1) over the time span from 91 to 85  Ma. The denudation rates agree well with those in active orogenic belts like the Alps and Himalayas.  相似文献   

7.
Timing constraints on shear zones can provide an insight into the kinematic and exhumation evolution of metamorphic belts. In the Musgrave Block, central Australia, granulite facies gneisses have been affected, to varying degrees, by mylonitic deformation, some of which attained eclogite facies. The Davenport Shear Zone is a dominant strike-slip system that formed at eclogite facies conditions ( T  ≈650  °C and P ≈12.0  kbar). Sm–Nd mineral isochrons obtained from equilibrated high-pressure assemblages, as well as 40Ar–39Ar data, show that the eclogite and greenschist facies high-strain overprints were coeval, at c .  550  Ma. Mylonitic processes do not appear to have reset the U–Pb system in zircon, but may have partially disturbed it. The thermal gradient in the Musgrave Block crust at c .  550  Ma was c .  16  °C  km−1 and at c .  535  Ma was c .  18  °C  km−1, based on P – T  estimates of eclogite and greenschist facies shear zones, respectively. These estimates are similar to present-day geothermal gradients in many stable continental shield areas, suggesting that the region did not undergo a significant transient perturbation of the geotherm. Therefore, in the Musgrave Block, cooling subsequent to eclogite facies metamorphism appears to have been controlled by exhumation, rather than by the removal of a heat source. Estimated exhumation rates in the range 0.2 to ≥1.5  mm year−1 are comparable with other orogenic belts, rather than cratonic areas elsewhere.  相似文献   

8.
Particle size and geochemical data have been used to investigate the development of a large cliff-top dune at Rubjerg Knude, located on the western coast of Jutland, Denmark. Textural parameters and geochemical ratios provided useful indicators of the dune sediment provenance and mode of evolution of the dune. The dune sediments themselves showed no significant spatial particle size trends and reflect a number of processes, including grainfall, wind-ripple migration and avalanching (grainflow), which formed a high proportion of the deposits on both the stoss and lee sides of the present dune. Fine grainfall sediments, which have accumulated to form a sandplain in the lee of the dune, show fining and improved sorting with distance, and extend more than 2 km downwind of the dune crest. Comparison of the textural and geochemical data from Rubjerg Knude and other locations on the Jutland coast indicates that, although there is a contribution of sand to the dune from local marine sources, the main source of sand to the cliff-top dune and sand plain sediments has been provided by the wind erosion of the underlying cliffs, which are composed of Weichselian age sandy glaciofluvial and glaciolacustrine deposits. Optically stimulated luminescence dating indicated an apparent age for the sand at the base of 274 ± 14 years. If this date is reliable, it suggests that accumulation of the aeolian sand in this area began within approximately the last 300 years. Map and photographic evidence indicate that the modern high dune only began to form after 1885, apparently associated with an acceleration in the rate of coastal cliff retreat.  相似文献   

9.
Sand transport model of barchan dune equilibrium   总被引:9,自引:0,他引:9  
Erosion and deposition over a barchan dune near the Salton Sea, California, is modelled by book-keeping the quantity of sand in saltation following streamlines of transport. Field observations of near-surface wind velocity and direction plus supplemental measurements of the velocity distribution over a scale model of the dune are combined as input to Bagnold-type sand-transport formulae corrected for slope effects. A unidirectional wind is assumed. The resulting patterns of erosion and deposition compare closely with those observed in the field and those predicted by the assumption of equilibrium (downwind translation of the dune without change in size or geometry). Discrepancies between the simulated results and the observed or predicted erosional patterns appear to be largely due to natural fluctuation in the wind direction. Although the model includes a provision for a lag in response of the transport rate to downwind changes in applied shear stress, the best results are obtained when no delay is assumed. The shape of barchan dunes is a function of grain size, velocity, degree of saturation of the oncoming flow, and the variability in the direction of the oncoming wind. Smaller grain size or higher wind speed produce a steeper and more blunt stoss-side. Low saturation of the inter-dune sandflow produces open crescent-moon-shaped dunes, whereas high saturation produces a whaleback form with a small slip face. Dunes subject to winds of variable direction are blunter than those under unidirectional winds. The size of barchans could be proportional to natural atmospheric scales, to the age of the dune, or to the upwind roughness. The upwind roughness can be controlled by fixed elements or by the sand is saltation. In the latter case, dune scale may be proportional to wind velocity and inversely proportional to grain size. However, because the effective velocity for transport increases with grain size, dune scale may increase with grain size as observed by Wilson (1972).  相似文献   

10.
The south-east Reynolds Range, central Australia, is cut by steep north-west-trending Alice Springs age ( c. 334  Ma) shear zones that are up to hundreds of metres wide and several kilometres long with reverse senses of movement. Amphibolite facies (550–600  °C, 500–600  MPa) shear zones cut metapelites, while greenschist facies shear zones (420–535  °C, 400–650  MPa) cut metagranites. The sheared rocks commonly underwent metasomatism implying that the shear zones were the pathways of significant fluid flow. Altered granites within greenschist facies shear zones have gained Si and K but lost Ca and Na relative to their unsheared counterparts, suggesting that the fluid flowed down-temperature (and hence probably upward) through the shear zones. Time-integrated fluid fluxes calculated from silica addition are up to 2.1×1010 mol  m−2 ( c. 4.2×105  m3  m−2). Similar time-integrated fluid fluxes are also estimated from changes in K and Na. The sheared granitic rocks locally have δ18O values as low as 0 which is much lower than the δ18O values of the adjacent unsheared granites (7 to 9), implying that the fluid which flowed through these shear zones was derived from the surface. For the estimated time-integrated fluid fluxes, the fluids would be able to retain their isotopic signature for many tens to hundreds of kilometres. The flow of surface-derived fluids into the ductile middle crust, with subsequent expulsion upwards through the shear zones, may have been driven by seismic activity accompanying the Alice Springs deformation.  相似文献   

11.
The radial-growth patterns of white spruce were studied on a number of trees growing in subarctic dunes along the eastern coast of Hudson Bay to calculate the rates of accumulation, erosion, and migration of cold-climate sand dunes. The average rate of sand accumulation in sheltered dunes (forest sites) was 2.5 to 3.3 cm/yr, which is two to three times lower than in highly exposed dunes with a rate of sedimentation of 7.65 cm/yr. The average erosion rate was 1.4–1.7 cm/yr, about two times lower than the accumulation rate. The migration rate of sheltered dunes was 18 to 30 cm/yr, three to five times lower than for an exposed dune which advanced at a speed of 74 cm/yr. This migration rate established for highly exposed dunes in the Subarctic with tree-ring methods is about 10 times lower than that established for a barchan in the Sahara with other methods.  相似文献   

12.
Optical dating of two dune profiles developed in linear dunes in Ras Al Khaimah, United Arab Emirates, has been used to establish the timing and rate of dune accretion. One section at Awafi was over 17 m high, while that at Idhn was over 40 m high. The Awafi dune appears to have accumulated very rapidly ≈10 000 years ago, with a vertical accumulation rate of about 3·3 m ka−1. The Idhn dune appears to have accumulated over the past 1000 years, with 20 m of sediment accumulating in a time period of about 270 years. The Awafi dune may have accumulated in response to the transgression of the Persian Gulf by rising sea levels in late Pleistocene and Holocene times. The Idhn dune may have accumulated rapidly because of intensified human activity, a short-lived climatic event, or because it may periodically be reactivated after erosion by fluvial action at its base.  相似文献   

13.
Within the 2500 km stretch of the Himalayas, a narrow window between longitudes 88.185°E and 88.936°E in the frontal Himalayas in North Bengal, crisscrossed by several active fault traces, presents an interesting region for crustal deformation study. We have estimated velocities of 8 GPS stations located in this area and the accumulating strain rate by two different methods. A total shortening of 11.1 ±1.5 mm yr−1 is occurring across a set of four E–W running faults: Gorubathan, Matiali, Chalsa and Baradighi. The strain rate becomes higher in the NE part of the network, reaching −(0.25 ± 0.12) μstrain yr−1 with azimuth 21°. A statistically significant extension of 10.9 ± 1.6 mm yr−1 is estimated across the Gish transverse fault with a maximum strain rate of 0.36 ± 0.08 μstrain yr−1 with azimuth 103°. The accumulating strain will be probably released through future earthquakes.  相似文献   

14.
Dune plants both modify the wind field around them and are impacted by various stress factors, among them sand erosion and sand deposition. As coastal dunes are being either stabilized or remobilized, in response to the changes in the rates of sand and dune movement, the vegetation cover and composition are expected to vary reflecting the differences in the sedimentary conditions. In this field study 315 quadrats of 100 m2, in which the perennial plant species were sampled, were analysed with respect to annual rates of sand erosion and deposition that were measured using erosion pins. A visual exploratory data analysis was introduced, based on selective filtering of samples according to their vegetation cover. This method, combined with established statistical tools, enabled the authors to uncover the inclination and indicative power of nine perennial dune plants to either a stabilized or a mobile environment, and to establish whether they are more prevalent in places undergoing sand erosion or sand burial. Two species were found to be clear indicators of a stabilized environment, Stipagrostis lanata , and Retama raetam . Of the species indicating a mobile environment, only one may be stated as a clear indicator of sand erosion: Silene succulenta , with Cyperus macrorrhizus coming close to being an indicator of a less mobile erosive environment. The best indicator species for sand burial was found to be, as expected, Ammophila arenaria , with Artemisia monosperma also indicating high rates of sand mobility especially when its relative cover is higher than 80%. Such information can be used to monitor natural processes of dune stabilization or reactivation, or to assess the success of a management plan that aims at stabilizing a dune, or at remobilizing it by removing vegetation.  相似文献   

15.
Oxygen bulk diffusion rates were experimentally determined in a natural ultramylonite sample ( c . 5   μ m grain size; 15–20% biotite, 20% quartz, 60–65% feldspars, and minor Fe-oxides) from the Gerrish Island shear zone, SE Maine, USA. The diffusion experiments were performed at 250–550  °C and 100  MPa water pressure. Oxygen bulk diffusion rates were determined both parallel and perpendicular to the strong foliation of the sample. The Arrhenius parameters for transport parallel to the foliation are: D bulk0=2.0×10−11 m2 s−1 and Q =30±6 kJ mol−1. The bulk diffusivity perpendicular to the foliation is about a factor of 3.5 less than that parallel to the foliation with the same activation energy. The values of bulk diffusivity and activation energy obtained are consistent with ionic diffusion through a static aqueous fluid, suggesting that an interconnected fluid exists in the ultramylonite even under hydrostatic conditions. The microstructure of the ultramylonite was characterized using transmission electron microscopy (TEM). The nature and distribution of the interconnected fluid cannot be completely resolved from the TEM analysis; however, the low percentage of three-grain channels and open grain/interphase boundaries suggests that the fluid resides as a thin film on the grain surfaces. The results of this study have direct applications in many important geological settings and provide valuable insights into the observed rapid diffusion rates, strong lithological control and pervasive nature of fluid transport in mica-bearing rocks.  相似文献   

16.
Coastal sediment-filled depressions (pans) are one of the few areas that contain Quaternary records of sea-level and palaeoenvironmental change along the western margin of southern Africa. Anichab is a 128 km2 salt-encrusted pan on the hyper-arid southern coast of Namibia with an emergent, well-preserved and in-place mid-Holocene mollusc assemblage. The molluscs are typical of subtidal sands on the sheltered side of offshore islands but include several warm-water species no longer found living along this coast. The Holocene evolution of the pan was largely influenced by changes in sea level and supply of sand along the coast. Calibrated radiocarbon ages of mollusc shells indicate a maximum Holocene sea level of ca 2 m above mean sea level (msl) from 7·0 to 6·3 ka and a return to near present-day sea level by 5·3 ka. The pan surface is 2 m below msl and has been emergent since 4·9 ka from the build up of sandy beaches and coastal dunes. A thin (1–4 cm) halite crust occurs over much of the pan surface but a layer of halite-cemented sand up to 40 cm thick is restricted to the central pan. Gypsum occurs near the subsurface brine interface and is limited by calcium to the edges of the pan. Nodules of calcite-cemented sand are forming in brackish, relatively high alkalinity subsurface waters in the south-east corner of the pan and nodules of aragonite-cemented sand are forming in brines 1 m below the central pan surface. Although modern dolomite has been reported from coastal lagoons of Brazil and Australia, carbonate cements are a minor feature of Anichab Pan and dolomite was restricted to a single reworked nodule most likely of Late Pleistocene age. Therefore, Anichab Pan does not appear to be a modern analogue to extensive, mixed-water dolomite cements found in Upper Pleistocene sediment-filled depressions on the Namibian shelf.  相似文献   

17.
Diffusion modelling is applied to layered garnet–pyroxene–quartz coronas, formed by a pressure-induced reaction between plagioclase and primary pyroxene in a metabasic granulite. The reconstructed reaction involves some change in composition of reactant minerals. The distribution of minerals between layers is satisfactorily explained by diffusion-controlled reaction with local equilibrium, in which the diffusion coefficient for Al was smaller than those for Fe, Mg and Ca by a factor of approximately four. Diffusion of Mg towards plagioclase implies a chemical-potential gradient for MgO component in a direction opposite to the changing Mg content of garnet; this is explained by the influence of Al2O3 on the chemical potential of the pyrope end-member. Grain-boundary diffusion is suggested to have operated, possibly with composition gradients different from those in the bulk minerals. Chemical-potential differences across the corona are estimated from the variation in garnet composition, enabling affinity (the free energy change driving the reaction) to be estimated as 6.9±1.8  kJ per 24-oxygen mole of garnet produced. This implies that the pressure for equilibrium among the minerals was overstepped by 1.4±0.4  kbar. The probable P–T conditions of reaction were in the range 650–790  °C, 8–10  kbar. Assuming a timescale of reaction between 106 and 108 years, estimated diffusion coefficients for Fe, Mg and Ca are in the range 9×10−23 to 5×10−20 m2 s−1. These are consistent with experimental values in the literature for solid-state diffusion, including grain-boundary diffusion.  相似文献   

18.
In this paper, the probability of the collision behaviors of barchans in aeolian dune fields and the processes of three collision types, i.e., coalescence, breeding and solitary-wave like behavior, are analyzed by the scale-coupled model of dune fields. Moreover, the influence of wind speed, sand diameter, sand supply, the height ratio between two barchans, and the angle between the dune trend and wind direction, as well as the distance between the centerlines of two barchans on the collision results of barchans is demonstrated.  相似文献   

19.
New 40Ar/39Ar ages are presented from the giant Sulu ultrahigh-pressure (UHP) terrane and surrounding areas. Combined with U-Pb ages, Sm-Nd ages, Rb-Sr ages, inclusion relationships, and geological relationships, they help define the orogenic events before, during and after the Triassic collision between the Sino–Korean and Yangtze Cratons. In the Qinling microcontinent, tectonism occurred between 2.0 and 1.4 Ga. The UHP metamorphism occurred in the Yangtze Craton between 240 and 222 Ma; its thermal effect on the Qinling microcontinent was limited to partial resetting of K-feldspar 40Ar/39Ar ages. Subsequent unroofing at rates of 5–25 km Myr−1 brought the UHP terrane to crustal levels where it underwent a relatively short amphibolite facies metamorphism. The end of that metamorphism is marked by 40Ar/39Ar ages in the 219–210 Ma range, implying cooling at crustal depths at rates of 50–200 °C Myr−1. Ages in the 210–170 Ma range may reflect protracted cooling or partial resetting by Jurassic or Cretaceous magmatism. Jurassic 166–149 Ma plutonism was followed by cooling at rates of c. 15 °C Myr−1, suggesting relatively deep crustal conditions, whereas Cretaceous 129–118 Ma plutonism was succeeded by cooling at rates of c. 50 C Myr−1, suggesting relatively shallow crustal depths.  相似文献   

20.
The strongly peraluminous and P-rich, protolithionite and zinnwaldite leucogranites from Podlesí, western Krušné Hory Mts., Czech Republic, contain accessory zircon with extraordinary enrichment of several elements, which constitute trace elements in common zircon. Elements showing a not yet reported anomalous enrichment include P (up to 20.2 wt.% P2O5; equivalent to 0.60 apfu, formula calculated on the basis of 4 oxygen atoms), Bi (up to 9.0 wt.% Bi2O3; 0.086 apfu), Nb (up to 6.7 wt.% Nb2O5, 0.12 apfu), Sc (up to 3.45 wt.% Sc2O3; 0.10 apfu), U (up to 14.8 wt.% UO2; 0.12 apfu) and F (up to 3.81 wt.% F; 0.42 apfu). Strong enrichment of P preferentially involved the berlinite-type substitution (2 Si4+  P5+ + Al3+) implying that significant Al may enter the Si position in zircon. Incorporation of other exotic elements is primarily governed by the xenotime (Si4+ + Zr4+  P5+ + Y3+), pretulite (Sc3+ + P5+  Zr4+ + Si4+), brabantite-type (Ca2+ + (U, Th)4+ + 2P5+  2Zr4+ + 2Si4+), and ximengite-type (Bi3+ + P5+  Zr4+ + Si4+) substitution reactions. One part of the anomalous zircons formed late-magmatically, from a strongly peraluminous, P–F–U-rich hydrous residual melt that gave rise to the zinnwaldite granite. Interaction with aggressive residual fluids and metamictization have further aided in element enrichment or depletion, particularly in altered parts of zircon contained in the protolithionite granite. Most of the zircon from F-rich greisens have a composition close to endmember ZrSiO4 and are chemically distinct from zircon in its granite parent. This discrepancy implies that at Podlesí, granitic zircon became unstable and completely dissolved during greisenization. Part of the mobilized elements was reprecipitated in newly grown, hydrothermal zircon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号