首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Abstract. Talnakhite occurs in an andradite skarn forming adjacent to a leucocratic quartz monzonite dike intruded into limestone at Fuka. The mineral densely contains exsolution lamellae of chalcopyrite, and the talnakhite-chalcopyrite inter-growth is intimately associated with bornite that contains chalcopyrite as a lattice-form exsolution. The chemical composition of the talnakhite acquired on an electron probe microanalyzer corresponds to Cu9.00Fe8.08S15.92, very close to the ideal chemical formula Cu9Fe8S16. Nickel is not detected. The X-ray powder diffraction lines are well indexed on a body-centered cubic cell with a = 10.589 Å. The characteristic (110) reflection of talnakhite is clearly observed at 7.49 Å. The present talnakhite retains the chalcopyrite-like colored polished surface without tarnish in air more than a month.
Talnakhite at Fuka is likely to be derived from breakdown of Cu-rich intermediate solid solution ( iss ), which was in equilibrium with Fe-rich bornite at elevated temperatures. Talnakhite thus formed has survived the subsequent cooling processes, probably because the ƒs2 was maintained in suitable levels preventing its decomposition into bornite and chalcopyrite.  相似文献   

2.
Abstract: Djerfisherite occurs intimately intergrown with troilite and pentlandite in gehlenite-spurrite skarn at Kushiro, mainly as inclusions in gehlenite and andradite grains. The mode of occurrence indicates that the djerfisherite formed in the culminated stage of the contact metamorphic-metasomatic process. The chemical compositions of the mineral are approximately represented by a formula of K6Na(Fe, Ni, Cu)24S26Cl with Ni up to 4. 85. It is likely that high temperature condition corresponding to the formation of gehlenite-spurrite skarn as well as low fO2 and fS2 conditions are responsible for the formation of djerfisherite in the potassium-rich chemical environments.  相似文献   

3.
A sulfide chimney ore sampled from the flank of the active Tiger vent area in the Yonaguni Knoll IV hydrothermal field, south Okinawa trough, consists of anhydrite, pyrite, sphalerite, galena, chalcopyrite and bismuthinite. Electron microprobe analysis indicates that the chalcopyrite contains up to 2.4 wt% Sn, whereas bismuthinite contains up to 1.7 wt% Pt, 0.8 wt% Cu and 0.5 wt% Fe. The Sn‐rich chalcopyrite and Pt–Cu–Fe‐bearing bismuthinite are the first reported occurrence of such minerals in an active submarine hydrothermal system. The results confirm that Sn enters the chalcopyrite as a solid solution towards stannite by the coupled substitution of Sn4+Fe2+ for Fe3+Fe3+, whereas Pt, Cu and Fe enter the bismuthinite structure as a solid solution during rapid nucleation. The fluid inclusions homogenization temperatures in anhydrite (220–310°C) and measured end‐member temperature of the vent fluids on‐site (325°C) indicate that Sn‐bearing chalcopyrite and Pt–Cu–Fe‐bearing bismuthinite express the original composition of the minerals that precipitated as metastable phases at a temperature above 300°C. The result observed in this study implies that sulfides in ancient volcanogenic massive sulfide deposits have similar trace element distribution during nucleation but it is remobilised during diagenesis, metamorphism or supergene enrichment processes.  相似文献   

4.
In order to better identify the mineral phase which controls the rheology of the transition zone (between 410 and 660 km depth) transmission electron microscopy observations were made on several coexisting spinel-garnet assemblies: alkremite xenolith; pyrope-rich – MgO:1.1Al2O3 spinel assembly deformed at 1173K, 800 MPa in a Griggs apparatus; (Mg,Fe)3(Al,Mg,Si)2Si3O12 majorite – (Mg,Fe)2SiO4 spinel assembly synthesized in a laser heated diamond anvil cell. It was found that garnet crystals systematically remain undeformed while spinel crystals are plastically deformed. These results are in accord with the assumption that the rheology of majorite is stronger than the rheology of spinel, in the conditions of the transition zone.  相似文献   

5.
Magnesian metapelites of probable Archaean age from Forefinger Point, SW Enderby Land, East Antarctica, contain very-high-temperature granulite facies mineral assemblages, which include orthopyroxene (8–9.5 wt% Al2O3)–sillimanite ± garnet ± quartz ± K-feldspar, that formed at 10 ± 1.5 kbar and 950 ± 50°C. These assemblages are overprinted by symplectite and corona reaction textures involving sapphirine, orthopyroxene (6–7 wt% Al2O3), cordierite and sometimes spinel at the expense of porphyroblastic garnet or earlier orthopyroxene–sillimanite. These textures mainly pre-date the development of coarse biotite at the expense of initial mesoperthite, and the subsequent formation of orthopyroxene (4–6 wt% Al2O3)–cordierite–plagioclase rinds on late biotite.
The early reaction textures indicate a period of near-isothermal decompression at temperatures above 900°C. Decompression from 10 ± 1.5 kbar to 7–8 kbar was succeeded by biotite formation at significantly lower temperatures (800–850°C) and further decompression to 4.5 ± 1 kbar at 700–800°C.
The later parts of this P–T evolution can be ascribed to the overprinting and reworking of the Forefinger Point granulites by the Late-Proterozoic ( c . 1000 Ma) Rayner Complex metamorphism, but the age and timing of the early high-temperature decompression is not known. It is speculated that this initial decompression is of Archaean age and therefore records thinning of the crust of the Napier Complex following crustal thickening by tectonic or magmatic mechanisms and preceding the generally wellpreserved post-deformational near-isobaric cooling history of this terrain.  相似文献   

6.
Abstract: Ilmenite, hematite, garnet, monazite, zircon, rutile, magnetite, sillimanite, pyroxene and amphibole from the beach sands of Ekakula, Gahiramatha coast, Orissa, India are reported here for the first time. Their total concentration varies from 26. 4 to 100%. Ilmenite, monazite and zircon are between 100 and 300 um in size and are well rounded in shape. Ilmenite-hematite intergrowth is common. Ilmenite has 50. 02–54. 73% TiO2, 42. 42–46. 90% FeO (total Fe) and small amounts of Al, Mn, Mg, Ca, Ba, Si, V, Cr, and Zn. The bulk samples contain 10. 63–41. 42 % TiO2, 6. 15–26. 07 % FeO, 5. 86–16. 75 % Fe2O3, 7. 41–61. 74 % SiO2, 1. 39–12. 83% A12O3, 0. 32–4. 97% CaO, 0. 53–4. 24% P2O5, 0. 17–3. 27% MgO, 0. 15–2. 97% Na2O, 0. 07–2. 34% K2O, and 0. 05–0. 71% V2O5 together with appreciable amounts of La, Ce, Pr, Nd, Sm, Eu, Y, U, Th, Zr, and trace amounts of Pb, Zn, Cu, Ni, Co, and Cr. Khondalite, charnockite, calc-silicate granulite, leptynite, migmatite, gneiss, basic granulite and pegmatite of the Eastern Ghats appear to be the major source for the above heavy mineral assemblages. The samples are amenable to gravity and magnetic methods of beneficiation.  相似文献   

7.
In low-temperature aqueous solutions (< 100°C, pH 2–4.5), chalcopyrite (CuFeS2) does not form through direct precipitation from solution. The pathway is exclusively via precursor iron sulphides and dissolved Cu salts. The reaction of dissolved Cu (II) salts with natural hexagonal pyrrhotite (Fe0.9S) is diffusion controlled. The initial stage has an apparent activation energy of 11.4 ± 1.8 kJ mol−1 and the rate (in units of mol dm−3s−1 cm−2) is independent of the solid reactant surface area. The reaction proceeds through a series of metastable Cu-Fe-sulphide intermediaries. These phases form a series of ephemeral layers penetrating into the pyrrhotite surface. The first phase formed has the stoichiometry Cu0.1Fe0.9S. No Fe is released into the solution during its formation and this, together with the extremely low apparent activation energy and the stoichiometry, suggest that it is formed by stuffing of electron holes in the pyrrhotite structure with Cu ions. The transformation from the hexagonal close-packed arrangement of the pyrrhotite structure to the essentially cubic packing in chalcopyrite proceeds through a series of intermediaries, approximating in composition to members of the cubanite group. The rate of formation of these phases is controlled by the coupled diffusion of Fe (II), Fe (III), Cu (I) and Cu (II) species through the surface reaction zone, although the process as a whole can be approximated by steady-state diffusion of total Cu into a semi-infinite medium. Experiments with metastable precursor iron monosulphide phases, including amorphous FeS and synthetic mackinawite indicate similar reaction pathways.

The results suggest that chalcopyrite formation in low-temperature natural systems may be significantly constrained by kinetic factors. Chalcopyrite is, at least, a diagenetic mineral since its formation requires the prior formation of iron sulphides. However, at ambient temperatures its formation is probably limited to very early diagenesis.  相似文献   


8.
M.J. Bickle 《地学学报》1996,8(3):270-276
The seawater 87Sr/86Sr curve implies a 50–100 Myr episodicity in weathering rate which requires a corresponding variation in CO2 degassing from the solid earth to the atmosphere. It is proposed that this is caused by orogenesis, which both produces CO2 as a result of metamorphic decarbonation reactions, and consumes extra CO2 as a consequence of erosion-enhanced weathering. Global climate on the geological time-scale is therefore contTolled by the difference between the relatively large and variable orogenic-moderated degassing and weathering CO2 fluxes.  相似文献   

9.
Two new geochemical reference materials, copper ore JCu-1 and zinc ore JZn-1 have been prepared by the Geological Survey of Japan (GSJ) for the determination of major and minor elements and isotopic compositions. JCu-1 is a sample of Cu-bearing sulfide ore typical of the Kamaishi mine in Iwate Prefecture, Japan, and is composed mainly of hedenbergite, chalcopyrite, quartz and calcite. Pyrrhotite, magnetite and actinolitic amphibole were also commonly found. The Zn-rich ore, JZn-1 is a crude ore from the Kamioka Pb-Zn mine in Gifu Prefecture, Japan. The sample consists of hedenbergite, quartz, calcite, sphalerite and epidote as main crystalline phase. Homogeneity test results showed that all studied constituents including ore elements such as Cu, Pb and Zn can be considered to be homogeneously distributed. Provisional collaborative analyses were carried out in ten laboratories, and the data were evaluated using a robust statistical method using z-scores. Recommended values for a number of major elements including TiO2, Al2O3, MnO, MgO, CaO, Na2O, K2O, Fe (total), Zn, Cu and Pb were established. In addition, information values for eighteen major, minor and trace elements are presented to support future collaborative analyses.  相似文献   

10.
On the Occurrence of Silician Magnetites   总被引:2,自引:0,他引:2  
Abstract: About 120 specimens of magnetite from various localities are examined by an electron microprobe analyzer. Magnetites containing more than one weight percent of silica but lack of any other components than ferrous and ferric iron, called silician magnetites in the present paper, are recognized in 23 skarn, one vein and one thermally metamorphosed massive sulfide deposits. Thus it is confirmed that this mineral occurs in nature much more frequently than so far expected. Besides silician magnetites, magnetites with appreciable amounts of Al2O3, CaO, MgO and other components along with silica, are also recognized in some skarn deposits. Magnetites with such unusual compositions are found only in hydrothermal environments, and it is suggested that precipitation mechanisms seem to be responsible for their formation.
In silician magnetites, excess electric charge brought by the replacement of ferric iron in tetrahedral site by silicon, could be compensated by the replacement of ferric iron in octahedral site by ferrous iron, known as γ–Fe2SiO4 component. The natural occurrence of silician magnetites, however, gives no positive support to the existence of this component at crustal pressures. Instead a preliminary Mössbauer experiment demonstrates that one silician magnetite has a maghemite –like structure by the omission of ferrous iron from octahedral site.  相似文献   

11.
Typical magmatic sulfides are dominated by pyrrhotite and pentlandite with minor chalcopyrite, and the bulk atomic Cu/Fe ratio of these sulfides is typically less than unity. However, there are rare magmatic sulfide occurrences that are dominated by Cu-rich sulfides (e.g., bornite, digenite, and chalcopyrite, sometimes coexisting with metallic Cu) with atomic Cu/Fe as high as 5. Typically, these types of sulfide assemblages occur in the upper parts of moderately to highly fractionated layered mafic–ultramafic intrusions, a well-known example being the Pd/Au reef in the Upper Middle Zone of the Skaergaard intrusion. Processes proposed to explain why these sulfides are so unusually rich in Cu include fractional crystallization of Fe/(Ni) monosulfide and infiltration of postmagmatic Cu-rich fluids. In this contribution, we explore and experimentally evaluate a third possibility: that Cu-rich magmatic sulfides may be the result of magmatic oxidation. FeS-dominated Ni/Cu-bearing sulfides were equilibrated at variable oxygen fugacities in both open and closed system. Our results show that the Cu/Fe ratio of the sulfide melt increases as a function of oxygen fugacity due to the preferential conversion of FeS into FeO and FeO1.5, and the resistance of Cu2S to being converted into an oxide component even at oxygen fugacities characteristic of the sulfide/sulfate transition (above FMQ?+?1). This phenomenon will lead to an increase in the metal/S ratio of a sulfide liquid and will also depress its liquidus temperature. As such, any modeling of the sulfide liquid line of descent in magmatic sulfide complexes needs to address this issue.  相似文献   

12.
Abstract. This study examined the effect of CO2 on NaCl solubility in hydrothermal fluid, with the synthetic fluid inclusion technique. Fluid inclusions of 30–40 wt% NaCl and 5 mol % CO2 were synthesized, and their halite dissolution temperatures, Tm(halite), were measured. The solubilities of NaCl in CO2-bearing aqueous fluid were obtained at 160–320C under vapor-saturated pressures. The Tm(halite) value in aqueous fluid with 5 mol % CO2 obtained in this study agrees with that of Schmidt et al. (1995), showing that 5 mol % CO2 reduces the solubility of NaCl by about 1 wt%.
Calculation of magnetite solubility suggests that 5–10 mol % CO2 decreases magnetite solubility by 4.5–8.9 % relative to the magnetite solubility in CO2-free solution. Therefore, an increase of CO2 content in ore-forming solutions may cause deposition of iron minerals and produce ore deposits.  相似文献   

13.
Abstract: Polymetallic mineralization at the Nakakoshi deposits, Kamikawa town, central Hokkaido, occur as fracture-filling veins in Cretaceous slate of the Hidaka Supergroup. Ten veins have been recognized in NE-SW and E-W directions. Sericite in altered slate which is the host of the deposits, was dated at 31. 1 Ma, Oligocene in age.
No. 9 vein consists of massive chalcopyrite ore with various kinds of minerals such as pyrite, pyrrhotite, arsenopyrite, sphalerite, tetrahedrite, Ag-minerals and Cu–Zn–Fe–In–Sn–S minerals, quartz and sericite. Chalcopyrite and pyrite contain sphalerite star and sphalerite with chalcopyrite emulsions. Maximum indium contents of sphalerite and the Cu–Zn–Fe–In–Sn–S minerals are 1. 8 and 16. 3 wt%, respectively. The sulfur isotopic ratios, δ34S of ore minerals, range from –12. 9 to –9. 6%. Formation temperatures of the sulfide minerals are estimated as 300–500°C, based on the paragenesis and chemical compositions of the minerals.  相似文献   

14.
Abstract. The Batu Hijau porphyry Cu‐Au deposit, Sumbawa Island, Indonesia, is associated with a tonalitic intrusive complex. The temperature‐pressure condition of mineralization at the Batu Hijau deposit is discussed on the basis of fluid inclusion microthermometry. Then, the initial Cu‐Fe sulfide mineral assemblage is discussed. Bornite and chalcopyrite are major copper ore minerals associated with quartz veinlets. The quartz veinlets have been classified into ‘A’ veinlets associated with bornite, digenite, chalcocite and chalcopyrite, ‘B’ veinlets having chalcopyrite bornite along vuggy center‐line, rare ‘C’ chalcopyrite‐quartz veinlets, and late ‘D’ veinlets consisting of massive pyrite and quartz (Clode et al., 1999). Copper and gold mineralization is associated with abundant ‘A’ quartz veinlets. Abundant fluid inclusions are found in veinlet quartz consisting mainly of gas‐rich inclusions and polyphase inclusions throughout the veinlet types. The hydrothermal activity occurred in temperature‐pressure conditions of aqueous fluid immiscibility into hypersaline brine and dilute vapor. The halite dissolution (Tm[halite]) and liquid‐vapor homogenization (Th) temperatures of the polyphase inclusions in veinlet quartz range from 270 to 472d?C and from 280 to 454d?C, respectively. The estimated salinity ranges from 36 to 47 wt% (NaCl equiv.). The apparent pressures lower than 300 bars are estimated to have been along the liquid‐vapor‐halite curve for the fluid inclusions having the Th lower than the Tm that trapped the brine saturated with halite, or at slightly higher pressure relative to liquid‐vapor‐halite curve for the fluid inclusions having the Th higher than the Tm that trapped the brine unsaturated with halite. The actual temperature and pressure during the hydrothermal activity at the Batu Hijau deposit are estimated to have been around 300d?C and 50 bars. At such temperature‐pressure conditions, the principal and initial Cu‐Fe sulfide mineral assemblages are thought to be chalcopyrite + bornite solid solution (bnss) for the chalcopyrite‐bearing assemblage, and chalcocite‐digenite solid solution and bnss for the chalcopyrite‐free assemblage.  相似文献   

15.
雷蕴芬  林月英等 《矿物学报》1991,11(1):78-82,T002
未定名硫化物矿物是一个稀少矿物,它发现于内蒙古铅锌矿的钛卡岩矿床中。共生太物有黄铜矿、闪锌矿、方铅矿。它呈黑色,金属光泽,不透明,硬度为165-214kg/mm^2。反射铯为灰色微带蓝色,弱非均质性,深蓝--黄褐色。化学成分(wt%):S32.32、Cu6.46、Fe6.56、Zn54.29、Pb0.31、Cd0.2c、CO0.03(平均),分子式(Zn0.84Fe0.11Cu0.09)1.04S。X射线分析数据与闪锌矿相同,d值和晶胸参数比闪锌矿(含铁)的小,晶胞参数比人工合成闪锌矿的大。粉晶主要强线为3.108(100)、1.906(50)、1.628(30)、1.240(20)、1.103(20)。  相似文献   

16.
New investigations are carried out on the mineralogy and mineral chemistry of sulfide assemblages obtained in samples from one core in the hydrothermally active, southwest basin of the Atlantis II deep, Red Sea. The most abundant sulfide phases are the exsolved intermediate solid solution (ISS) and chalcopyrite. Sphalerite, pyrrhotite, marcasite, mackinawite, and presumably wurtzite are also observed. Two distinct groups of paragenesis were encountered: (a) Intermediate solid solution with sphalerite incrustations and intergrowths, and (b) intermediate solid solution barren of sphalerite intergrowths. The first group is confined to the upper part of the Co zone and the SOAN zone (Bäcker and Richter 1973), and the second is present in the entire core 100-3-7. An optically isotropic chalcopyrite is found for the first time as a natural mineral in Atlantis II, Red Sea. Yet its existence as a novel phase needs x-ray confirmation. It exhibits a lower reflectivity than normal chalcopyrite and is isotropic. Chalcopyrite occurs either as a single phase or in association with tetragonal chalcopyrite. Our investigations indicate that the formation of Atlantis II deposits is a result of complex processes. These processes are characterized by compositional changes in the ore-bearing fluids and the change in sulfur fugacity (especially with depth). The presence of exsolved chalcopyrite lamellae in ISS indicates slow cooling below 450°C. However, it is difficult to understand why the cubic chalcopyrite is not converted to the tetragonal form even though the temperature of transformation lies above 450°C (470° – 500°C, Cabri 1973). The Cu/Fe ratio changes in the exsolved chalcopyrite lamellae from core to rim of the composite grains. The ratio is higher in the rims. This suggests that primary inhomogenous ISS grains formed from solutions with a continuous increase in the Cu/Fe ratio. Slow cooling is also required to account for the exsolution of chalcopyrite lamellae in ISS. The low sulfur content in isotropic chalcopyrite is also suggestive of low fs2. The low S content in the chalcopyrite may be the controlling factor for the sluggish conversion from cubic to tetragonal chalcopyrite. Mackinawite lamellae show the same orientation in ISS and exsolved isotropic chalcopyrite indicating that mackinawite exsolved before the breakdown of ISS. This strongly suggests that mackinawite is stable above 300°C (contrary to experimental results by Zoka et al. 1973). Pyrrhotite was probably formed by the sulfurization of ilvaite. The pyrrhotite grains with several complex successive zones show the sequence of the sulfurization episodes.Metalliferous sediments related to hot brines were discovered in the Red Sea in 1964 (Miller et al. 1966). Since then, several papers have been published on this subject (Degens and Ross 1969, Bäcker and Schoell 1972, Bäcker and Richter 1973, Bignell et al. 1976, Shanks and Bishoff 1977, Weber-Diefenbach 1977, Nöltner 1979, Pottorf 1980, Pottorf and Barnes 1983, Oudin et al. 1984).Complex sulfide phases including intermediate solid solution (ISS), chalcopyrite, and a chalcopyritelike mineral (which exhibits a lower reflectivity than normal chalcopyrite and appears to be isotropic occur in the metalliferous sediments. These phases were found in association with several minerals in different parageneses. In an attempt to understand the origin of the formation of the sulfide-bearing sediments in the Atlantis II deep of the Red Sea, a detailed study of the phase relations of the Cu-Fe sulfide ores of this locality was carried out.  相似文献   

17.
Different modalities and thermodynamic conditions of magma mixing are compared: heterogeneity and chemistry, temperature and water pressure, volatile (= water) content and water solubility, density and viscosity. Such data are somewhat scarce in the literature.
Two case studies have been studied in detail to highlight this review. (1) St Vincent Soufrière (West Indies ). Magma mixing may have been a major process in triggering the 1979 explosive phase. All products (whole rock analyses) are basaltic andesite (52.3–56.2 wt% SiO2) but dacitic (60–64 wt% SiO2) glass occurs as micropumice or inclusions in crystals. (2) Cerro Chiquito (Guatemala). A Quaternary extinct dome consisting of dacite (62.5–67.1 wt% SiO2) enclosing 20–30% in volume of basaltic andesitic (54.9–55.3 wt% SiO2) enclaves.
The nearly thorough mixing process of case 1 strongly differs from the commingling process of case 2. The main phases may be mafic (case 1) or acidic (case 2). Thermodynamic parameters are calculated using classical geothermometers and formulae. The range of values and errors are estimated (60–80°C in case of temperature). In addition, other processes, such as crystallization of mineralo-gical phases and fluid vesiculation, may modify thermodynamical conditions. Difference of magma temperature ranges from about 60°C (case 1) up to about 130°C (case 2). Water concentrations of 2.5 wt% in mafic magmas and 4 wt% in acidic magmas, are always lower than the upper limit of water solubility at depths where contrasting magmas were mixed. The difference between the viscosities of the two magmas varies from one order of magnitude up to five.
Various mixing scenarios may occur, each of them being linked to different petrological processes including effusive or explosive volcanism as well as plutonism.  相似文献   

18.
High-density CO2-rich fluid inclusions from a sapphirine-bearing granulite (Hakurutale, Sri Lanka) have been studied by microthermometry, Raman spectrometry and SEM analysis. Based on textural evidence, two groups of inclusions can be identified: primary, negative crystal shaped inclusions (group I) and pseudo-secondary inclusions, which experienced a local, limited post-trapping modification (group II). Both groups contain magnesite as a daughter mineral, occurring in a relatively constant fluid/solid inclusion volume ratio (volsolid =0.15 total volume). CO2 densities for group I and II differ only slightly. Both groups contain a fluid, which was initially trapped at peak metamorphic conditions as a homogeneous (CO2+MgCO3) mixture. Thermodynamic calculations suggest that such a fluid (CO2+15 vol% MgCO3) is stable under granulite facies conditions. After trapping, magnesite separated upon cooling, while the remaining CO2 density suffered minor re-adjustments. A model isochore based on the integration of the magnesite molar volume in the CO2 fluid passes about 1.5–2 kbar below peak metamorphic conditions. This remaining discrepancy can be explained by the possible role of a small quantity of additional water.  相似文献   

19.
磁黄铁矿是铜陵冬瓜山矿床中最重要的矿石矿物之一,其标型特征不仅反映其自身形成环境,对矿床成因也具有指示意义。本文选取矿床中不同层位的磁黄铁矿矿石样品,利用矿相学、X射线衍射、电子探针和同位素分析等手段对磁黄铁矿标型形态、成分、结构以及物质来源进行了分析。研究表明:磁黄铁矿主要分布在矿体的中部,根据磁黄铁矿与其共生矿物之间的交代关系,认为金属矿物的生成顺序是黄铁矿→磁黄铁矿→黄铜矿→磁铁矿。X射线衍射显示磁黄铁矿以六方和单斜相为主,近岩体处主要是六方晶系;远岩体处则以单斜晶系为主。且见单斜沿六方磁黄铁矿的边部有交代现象,显示出热液交代作用的特征。电子探针测试显示磁黄铁矿的Fe元素含量为58.435%~60.978%,平均值为59.737%;S元素含量为38.297%~39.891%,平均值为38.696%,分子式为Fe4S5~Fe9S10,也显示磁黄铁矿有六方和单斜两个相,单颗粒成分剖面显示其核部为六方相,边部为单斜相。磁黄铁矿的δ34S组成均为-0.7‰~+13.5‰之间,δ57Fe的总体分布范围为0.49‰~0.52‰,Fe同位素和S同位素显示它们均来源于岩浆及其热液。说明磁黄铁矿具有岩浆成因和热液交代成因。支持冬瓜山矿床是与燕山期岩浆活动有关的矽卡岩型矿床观点。  相似文献   

20.
我国一些铜镍硫化物矿床主要金属矿物的特征   总被引:7,自引:0,他引:7  
镍、铜共生的铜镍硫化物矿床是镍矿也是铜矿的重要矿床类型。磁黄铁矿,镍黄铁矿、黄铜矿是这类矿床的主要金属矿物。它们的某些矿物学特征,特别是微量元素Co/Ni比值,与其他铜矿类型明显不同,这三种矿物组成不同于任何其他铜矿类型的典型矿物共生组合, 形成特殊的海绵损铁状、球滴状构造。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号