首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Terrestrial ecosystems are an important part of Earth systems, and they are undergoing remarkable changes in response to global warming. This study investigates the response of the terrestrial vegetation distribution and carbon fluxes to global warming by using the new dynamic global vegetation model in the second version of the Chinese Academy of Sciences (CAS) Earth System Model (CAS-ESM2). We conducted two sets of simulations, a present-day simulation and a future simulation, which were forced by the present-day climate during 1981–2000 and the future climate during 2081–2100, respectively, as derived from RCP8.5 outputs in CMIP5. CO2 concentration is kept constant in all simulations to isolate CO2-fertilization effects. The results show an overall increase in vegetation coverage in response to global warming, which is the net result of the greening in the mid-high latitudes and the browning in the tropics. The results also show an enhancement in carbon fluxes in response to global warming, including gross primary productivity, net primary productivity, and autotrophic respiration. We found that the changes in vegetation coverage were significantly correlated with changes in surface air temperature, reflecting the dominant role of temperature, while the changes in carbon fluxes were caused by the combined effects of leaf area index, temperature, and precipitation. This study applies the CAS-ESM2 to investigate the response of terrestrial ecosystems to climate warming. Even though the interpretation of the results is limited by isolating CO2-fertilization effects, this application is still beneficial for adding to our understanding of vegetation processes and to further improve upon model parameterizations.  相似文献   

2.
We use a georeferenced model of ecosystem carbon dynamics to explore the sensitivity of global terrestrial carbon storage to changes in atmospheric CO2 and climate. We model changes in ecosystem carbon density, but we do not model shifts in vegetation type. A model of annual NPP is coupled with a model of carbon allocation in vegetation and a model of decomposition and soil carbon dynamics. NPP is a function of climate and atmospheric CO2 concentration. The CO2 response is derived from a biochemical model of photosynthesis. With no change in climate, a doubling of atmospheric CO2 from 280 ppm to 560 ppm enhances equilibrium global NPP by 16.9%; equilibrium global terrestrial ecosystem carbon (TEC) increases by 14.9%. Simulations with no change in atmospheric CO2 concentration but changes in climate from five atmospheric general circulation models yield increases in global NPP of 10.0–14.8%. The changes in NPP are very nearly balanced by changes in decomposition, and the resulting changes in TEC range from an increase of 1.1% to a decrease of 1.1%. These results are similar to those from analyses using bioclimatic biome models that simulate shifts in ecosystem distribution but do not model changes in carbon density within vegetation types. With changes in both climate and a doubling of atmospheric CO2, our model generates increases in NPP of 30.2–36.5%. The increases in NPP and litter inputs to the soil more than compensate for any climate stimulation of decomposition and lead to increases in global TEC of 15.4–18.2%.  相似文献   

3.
Summary A suite of simulations with the HadCM3LC coupled climate-carbon cycle model is used to examine the various forcings and feedbacks involved in the simulated precipitation decrease and forest dieback. Rising atmospheric CO2 is found to contribute 20% to the precipitation reduction through the physiological forcing of stomatal closure, with 80% of the reduction being seen when stomatal closure was excluded and only radiative forcing by CO2 was included. The forest dieback exerts two positive feedbacks on the precipitation reduction; a biogeophysical feedback through reduced forest cover suppressing local evaporative water recycling, and a biogeochemical feedback through the release of CO2 contributing to an accelerated global warming. The precipitation reduction is enhanced by 20% by the biogeophysical feedback, and 5% by the carbon cycle feedback from the forest dieback. This analysis helps to explain why the Amazonian precipitation reduction simulated by HadCM3LC is more extreme than that simulated in other GCMs; in the fully-coupled, climate-carbon cycle simulation, approximately half of the precipitation reduction in Amazonia is attributable to a combination of physiological forcing and biogeophysical and global carbon cycle feedbacks, which are generally not included in other GCM simulations of future climate change. The analysis also demonstrates the potential contribution of regional-scale climate and ecosystem change to uncertainties in global CO2 and climate change projections. Moreover, the importance of feedbacks suggests that a human-induced increase in forest vulnerability to climate change may have implications for regional and global scale climate sensitivity.  相似文献   

4.
There is considerable uncertainty as to whether interannual variability in climate and terrestrial ecosystem production is sufficient to explain observed variation in atmospheric carbon content over the past 20–30 years. In this paper, we investigated the response of net CO2 exchange in terrestrial ecosystems to interannual climate variability (1983 to 1988) using global satellite observations as drivers for the NASA-CASA (Carnegie-Ames-Stanford Approach) simulation model. This computer model of net ecosystem production (NEP) is calibrated for interannual simulations driven by monthly satellite vegetation index data (NDVI) from the NOAA Advanced Very High Resolution Radiometer (AVHRR) at 1 degree spatial resolution. Major results from NASA-CASA simulations suggest that from 1985 to 1988, the northern middle-latitude zone (between 30 and 60°N) was the principal region driving progressive annual increases in global net primary production (NPP; i.e., the terrestrial biosphere sink for carbon). The average annual increase in NPP over this predominantly northern forest zone was on the order of +0.4 Pg (1015 g) C per year. This increase resulted mainly from notable expansion of the growing season for plant carbon fixation toward the zonal latitude extremes, a pattern uniquely demonstrated in our regional visualization results. A net biosphere source flux of CO2 in 1983–1984, coinciding with an El Niño event, was followed by a major recovery of global NEP in 1985 which lasted through 1987 as a net carbon sink of between 0.4 and 2.6 Pg C per year. Analysis of model controls on NPP and soil heterotrophic CO2 fluxes (Rh) suggests that regional warming in northern forests can enhance ecosystem production significantly. In seasonally dry tropical zones, periodic drought and temperature drying effects may carry over with at least a two-year lag time to adversely impact ecosystem production. These yearly patterns in our model-predicted NEP are consistent in magnitude with the estimated exchange of CO2 by the terrestrial biosphere with the atmosphere, as determined by previous isotopic (13C) deconvolution analysis. Ecosystem simulation results can help further target locations where net carbon sink fluxes have occurred in the past or may be verified in subsequent field studies.  相似文献   

5.
Chinese temperate grasslands play an important role in the terrestrial carbon cycle. Based on the parameterization and validation of Terrestrial Ecosystem Model (TEM, Version 5.0), we analyzed the carbon budgets of Chinese temperate grasslands and their responses to historical atmospheric CO2 concentration and climate variability during 1951–2007. The results indicated that Chinese temperate grassland acted as a slight carbon sink with annual mean value of 7.3 T?g C, ranging from -80.5 to 79.6 T?g C yr-1. Our sensitivity experiments further revealed that precipitation variability was the primary factor for decreasing carbon storage. CO2 fertilization may increase the carbon storage (1.4 %) but cannot offset the proportion caused by climate variability (-15.3 %). Impacts of CO2 concentration, temperature and precipitation variability on Chinese temperate grassland cannot be simply explained by the sum of the individual effects. Interactions among them increased total carbon storage of 56.6 T?g C which 14.2 T?g C was stored in vegetation and 42.4 T?g C was stored in soil. Besides, different grassland types had different responses to climate change and CO2 concentration. NPP and RH of the desert and forest steppes were more sensitive to precipitation variability than temperature variability while the typical steppe responded to temperature variability more sensitively than the desert and forest steppes.  相似文献   

6.
The carbon cycle strongly interacts with the nitrogen cycle. Several observations show that the effects of global change on primary production and carbon storage in plant biomass and soils are partially controlled by N availability. Nevertheless, only a small number of terrestrial biosphere models represent explicitly the nitrogen cycle, despite its importance on the carbon cycle and on climate. These models are difficult to evaluate at large spatiotemporal scales because of the scarcity of data at the global scale over a long time period. In this study, we benchmark the capacity of the O–CN global terrestrial biosphere model to reproduce temporal changes in leaf area index (LAI) at the global scale observed by NOAA_AVHRR satellites over the period 1982–2002. Using a satellite LAI product based on the normalized difference vegetation index of global inventory monitoring and modelling studies dataset, we estimate the long-term trend of LAI and we compare it with the results from the terrestrial biosphere models, either with (O–CN) or without (O–C) a dynamic nitrogen cycle coupled to the carbon–water-energy cycles. In boreal and temperate regions, including a dynamic N cycle (O–CN) improved the fit between observed and modeled temporal changes in LAI. In contrast, in the tropics, simulated LAI from the model without the dynamic N cycle (O–C) better matched observed changes in LAI over time. Despite differential regional trends, the satellite estimate suggests an increase in the global average LAI during 1982–2002 by 0.0020 m2 m?2 y?1. Both versions of the model substantially overestimated the rate of change in LAI over time (0.0065 m2 m?2 y?1 for O–C and 0.0057 m2 m?2 y?1 for O–CN), suggesting that some additional limitation mechanisms are missing in the model. We also estimated the relative importance of climate, CO2 and N deposition as potential drivers of the temporal changes in LAI. We found that recent climate change better explained temporal changes in LAI when the dynamic N cycle was included in the model (higher ranked fit for O–CN vs. O–C). Using the O–C configuration to estimate the direct effect of climate on LAI, we quantified the importance of climate-N cycle feedbacks in explaining the LAI response. We found that the warming-induced release of N from soil organic matter decomposition explains 17.5 % of the global trend in LAI over time, however, reaching up to 40.9 % explained variance in the boreal zone, which is a more important contribution than increasing anthropogenic nitrogen deposition. Our analysis supports a strong connection between warming, N cycling, and vegetation productivity. These findings underscore the importance of including N cycling in global-scale models of vegetation response to environmental change.  相似文献   

7.
8.
The increase of atmospheric CO2 concentrations due to anthropogenic activities is substantially damped by the ocean, whose CO2 uptake is determined by the state of the ocean, which in turn is influenced by climate change. We investigate the mechanisms of the ocean’s carbon uptake within the feedback loop of atmospheric CO2 concentration, climate change and atmosphere/ocean CO2 flux. We evaluate two transient simulations from 1860 until 2100, performed with a version of the Max Planck Institute Earth System Model (MPI-ESM) with the carbon cycle included. In both experiments observed anthropogenic CO2 emissions were prescribed until 2000, followed by the emissions according to the IPCC Scenario A2. In one simulation the radiative forcing of changing atmospheric CO2 is taken into account (coupled), in the other it is suppressed (uncoupled). In both simulations, the oceanic carbon uptake increases from 1 GT C/year in 1960 to 4.5 GT C/year in 2070. Afterwards, this trend weakens in the coupled simulation, leading to a reduced uptake rate of 10% in 2100 compared to the uncoupled simulation. This includes a partial offset due to higher atmospheric CO2 concentrations in the coupled simulation owing to reduced carbon uptake by the terrestrial biosphere. The difference of the oceanic carbon uptake between both simulations is primarily due to partial pressure difference and secondary to solubility changes. These contributions are widely offset by changes of gas transfer velocity due to sea ice melting and wind changes. The major differences appear in the Southern Ocean (?45%) and in the North Atlantic (?30%), related to reduced vertical mixing and North Atlantic meridional overturning circulation, respectively. In the polar areas, sea ice melting induces additional CO2 uptake (+20%).  相似文献   

9.
A coupled climate–carbon cycle model composed of a process-based terrestrial carbon cycle model, Sim-CYCLE, and the CCSR/NIES/FRCGC atmospheric general circulation model was developed. We examined the multiple temporal scale functions of terrestrial ecosystem carbon dynamics induced by human activities and natural processes and evaluated their contribution to fluctuations in the global carbon budget during the twentieth century. Global annual net primary production (NPP) and heterotrophic respiration (HR) increased gradually by 6.7 and 4.7%, respectively, from the 1900s to the 1990s. The difference between NPP and HR was the net carbon uptake by natural ecosystems, which was 0.6 Pg C year?1 in the 1980s, whereas the carbon emission induced by human land-use changes was 0.5 Pg C year?1, largely offsetting the natural terrestrial carbon sequestration. Our results indicate that monthly to interannual variation in atmospheric CO2 growth rate anomalies show 2- and 6-month time lags behind anomalies in temperature and the NiNO3 index, respectively. The simulated anomaly amplitude in monthly net carbon flux from terrestrial ecosystems to the atmosphere was much larger than in the prescribed air-to-sea carbon flux. Fluctuations in the global atmospheric CO2 time series were dominated by the activity of terrestrial vegetation. These results suggest that terrestrial ecosystems have acted as a net neutral reservoir for atmospheric CO2 concentrations during the twentieth century on an interdecadal timescale, but as the dominant driver for atmospheric CO2 fluctuations on a monthly to interannual timescale.  相似文献   

10.
A terrestrial ecosystem model (Sim-CYCLE) was driven by multiple climate projections to investigate uncertainties in predicting the interactions between global environmental change and the terrestrial carbon cycle. Sim-CYCLE has a spatial resolution of 0.5°, and mechanistically evaluates photosynthetic and respiratory CO2 exchange. Six scenarios for atmospheric-CO2 concentrations in the twenty-first century, proposed by the Intergovernmental Panel on Climate Change, were considered. For each scenario, climate projections by a coupled atmosphere–ocean general circulation model (AOGCM) were used to assess the uncertainty due to socio-economic predictions. Under a single CO2 scenario, climate projections with seven AOGCMs were used to investigate the uncertainty stemming from uncertainty in the climate simulations. Increases in global photosynthesis and carbon storage differed considerably among scenarios, ranging from 23 to 37% and from 24 to 81 Pg C, respectively. Among the AOGCM projections, increases ranged from 26 to 33% and from 48 to 289 Pg C, respectively. There were regional heterogeneities in both climatic change and carbon budget response, and different carbon-cycle components often responded differently to a given environmental change. Photosynthetic CO2 fixation was more sensitive to atmospheric CO2, whereas soil carbon storage was more sensitive to temperature. Consequently, uncertainties in the CO2 scenarios and climatic projections may create additional uncertainties in projecting atmospheric-CO2 concentrations and climates through the interactive feedbacks between the atmosphere and the terrestrial ecosystem.  相似文献   

11.
Carbon sequestration is increasingly being promoted as a potential response to the risks of unrestrained emissions of CO2, either in place of or as a complement to reductions in the use of fossil fuels. However, the potential role of carbon sequestration as an (at-least partial) substitute for reductions in fossil fuel use can be properly evaluated only in the context of a long-term acceptable limit (or range of limits) to the increase in atmospheric CO2 concentration, taking into account the response of the entire carbon cycle to artificial sequestration. Under highly stringent emission-reduction scenarios for non-CO2 greenhouse gases, 450 ppmv CO2 is the equivalent, in terms of radiative forcing of climate,to a doubling of the pre-industrial concentration of CO2. It is argued in this paper that compliance with the United Nations Framework Convention on Climate Change (henceforth, the UNFCCC) implies that atmospheric CO2 concentration should be limited, or quickly returned to, a concentration somewhere below 450 ppmv. A quasi-one-dimensional coupled climate-carbon cycle model is used to assess the response of the carbon cycle to idealized carbon sequestration scenarios. The impact on atmospheric CO2 concentration of sequestering a given amount of CO2 that would otherwise be emitted to the atmosphere, either in deep geological formations or in the deep ocean, rapidly decreases over time. This occurs as a result of a reduction in the rate of absorption of atmospheric CO2 by the natural carbon sinks (the terrestrial biosphere and oceans) in response to the slower buildup of atmospheric CO2 resulting from carbon sequestration. For 100 years of continuous carbon sequestration, the sequestration fraction (defined as the reduction in atmospheric CO2 divided by the cumulative sequestration) decreases to 14% 1000 years after the beginning of sequestration in geological formations with no leakage, and to 6% 1000 years after the beginning of sequestration in the deep oceans. The difference (8% of cumulative sequestration) is due to an eflux from the ocean to the atmosphere of some of the carbon injected into the deep ocean.The coupled climate-carbon cycle model is also used to assess the amount of sequestration needed to limit or return the atmospheric CO2 concentration to 350–400 ppmv after phasing out all use of fossil fuels by no later than 2100. Under such circumstances, sequestration of 1–2 Gt C/yr by the latter part of this century could limit the peak CO2 concentration to 420–460 ppmv, depending on how rapidly use of fossilfuels is terminated and the strength of positive climate-carbon cycle feedbacks. To draw down the atmospheric CO2 concentration requires creating negative emissions through sequestration of CO2 released as a byproduct of the production of gaseous fuels from biomass primary energy. Even if fossil fuel emissions fall to zero by 2100, it will be difficult to create a large enough negative emission using biomass energy to return atmospheric CO2 to 350 ppmv within 100 years of its peak. However, building up soil carbon could help in returning CO2 to 350 ppmv within 100 years of its peak. In any case, a 100-year period of climate corresponding to the equivalent of a doubled-CO2 concentration would occur before temperatures decreased. Nevertheless, returning the atmospheric CO2concentration to 350 ppmv would reduce longterm sea level rise due to thermal expansion and might be sufficient to prevent the irreversible total melting of the Greenland ice sheet, collapse of the West Antarctic ice sheet, and abrupt changes in ocean circulation that might otherwise occur given a prolonged doubled-CO2 climate. Recovery of coral reef ecosystems, if not already driven to extinction, could begin.  相似文献   

12.
Vegetation is a major component of the climate system because of its controls on the energy and water balance over land. This functioning changes because of the physiological response of leaves to increased CO2. A climate model is used to compare these changes with the climate changes from radiative forcing by greenhouse gases. For this purpose, we use the Community Earth System Model coupled to a slab ocean. Ensemble integrations are done for current and doubled CO2. The consequent reduction of transpiration and net increase of surface radiative heating from reduction in cloudiness increases the temperature over land by a significant fraction of that directly from the radiative warming by CO2. Large-scale atmospheric circulation adjustments result. In particular, over the tropics, a low-level westerly wind anomaly develops associated with reduced geopotential height over land, enhancing moisture transport and convergence, and precipitation increases over the western Amazon, the Congo basin, South Africa, and Indonesia, while over mid-latitudes, land precipitation decreases from reduced evapotranspiration. On average, land precipitation is enhanced by 0.03 mm day?1 (about 19 % of the CO2 radiative forcing induced increase). This increase of land precipitation with decreased ET is an apparent negative feedback, i.e., less ET makes more precipitation. Global precipitation is slightly reduced. Runoff increases associated with both the increased land precipitation and reduced evapotranspiration. Examining the consistency of the variations among ensemble members shows that vegetation feedbacks on precipitation are more robust over the tropics and in mid to high latitudes than over the subtropics where vegetation is sparse and the internal climate variability has a larger influence.  相似文献   

13.
This study diagnoses the climate sensitivity, radiative forcing and climate feedback estimates from eleven general circulation models participating in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), and analyzes inter-model differences. This is done by taking into account the fact that the climate response to increased carbon dioxide (CO2) is not necessarily only mediated by surface temperature changes, but can also result from fast land warming and tropospheric adjustments to the CO2 radiative forcing. By considering tropospheric adjustments to CO2 as part of the forcing rather than as feedbacks, and by using the radiative kernels approach, we decompose climate sensitivity estimates in terms of feedbacks and adjustments associated with water vapor, temperature lapse rate, surface albedo and clouds. Cloud adjustment to CO2 is, with one exception, generally positive, and is associated with a reduced strength of the cloud feedback; the multi-model mean cloud feedback is about 33 % weaker. Non-cloud adjustments associated with temperature, water vapor and albedo seem, however, to be better understood as responses to land surface warming. Separating out the tropospheric adjustments does not significantly affect the spread in climate sensitivity estimates, which primarily results from differing climate feedbacks. About 70 % of the spread stems from the cloud feedback, which remains the major source of inter-model spread in climate sensitivity, with a large contribution from the tropics. Differences in tropical cloud feedbacks between low-sensitivity and high-sensitivity models occur over a large range of dynamical regimes, but primarily arise from the regimes associated with a predominance of shallow cumulus and stratocumulus clouds. The combined water vapor plus lapse rate feedback also contributes to the spread of climate sensitivity estimates, with inter-model differences arising primarily from the relative humidity responses throughout the troposphere. Finally, this study points to a substantial role of nonlinearities in the calculation of adjustments and feedbacks for the interpretation of inter-model spread in climate sensitivity estimates. We show that in climate model simulations with large forcing (e.g., 4 × CO2), nonlinearities cannot be assumed minor nor neglected. Having said that, most results presented here are consistent with a number of previous feedback studies, despite the very different nature of the methodologies and all the uncertainties associated with them.  相似文献   

14.
陆地生态系统碳汇显著降低大气CO2浓度上升和全球变暖的速率,受人类活动和气候变化的影响,陆地生态系统碳通量具有强烈的时空变化,其估算结果仍存在较大的不确定性,不同因子的贡献尚不清晰。为此,利用遥感驱动的陆地生态系统过程模型BEPS模拟分析了1981—2019年全球陆地生态系统碳通量的时空变化特征,评价了大气CO2浓度、叶面积指数(Leaf Area Index,LAI)、氮沉降、气候变化对全球陆地生态系统碳收支变化的贡献。1981—2019年全球陆地生态系统总初级生产力(Gross Primary Productivity,GPP)、净初级生产力(Net Primary Productivity,NPP)和净生态系统生产力(Net Ecosystem Productivity,NEP)的平均值分别为115.3、51.3和2.7 Pg·a-1(以碳质量计,下同),上升速率分别为0.47、0.21和0.06 Pg·a-1。全球大部分区域GPP和NPP显著增加,NEP显著上升(p<0.05)的区域明显少于GPP和NPP。1981—2019年,全球NEP累积为105.2 Pg,森林、稀树草原及灌木、农田和草地的贡献分别为76.4、15.8、9.4和3.6 Pg。CO2浓度、LAI、氮沉降和气候变化各自对NEP的累积贡献分别为58.4、20.6、0.7和-43.6 Pg,全部4个因子变化对NEP的累积贡献为39.8 Pg,其中CO2浓度上升是近40 a全球陆地生态系统NEP上升的主要贡献因子,其次为LAI。  相似文献   

15.
Jian Ni 《Climatic change》2001,49(3):339-358
The carbon storage of terrestrial ecosystems in China was estimated using acommon carbon density method for vegetation and soils relating to thevegetation types. Usingmedian density estimates, carbon storage of 35.23 Gt (1 Gt = 1015g) in biomass and119.76 Gt in soils with total of 154.99 Gt were calculated based on thebaseline distribution of37 vegetation types. Total carbon storage of the median estimates at differentspatial resolutionswas 153.43, 158.08 and 158.54 Gt, respectively, for the fine (10),median (20) and coarse (30)latitude × longitude grids. There were differences of –1.56, +3.09and +3.55 Gt carbon storagebetween baseline vegetation and those at different spatial resolutions. Changein mappingresolution would change area estimates and hence carbon storage estimates. Thefiner the spatialresolution in mapping vegetation, the closer the carbon storage to thebaseline estimation. Carbonstorage in vegetation and soils for baseline vegetation is quite similar tothat of biomes predictedby BIOME3 for the present climate and CO2 concentration of 340ppmv. Climate changealone as well as climate change with elevated CO2 concentrationwill produce an increasein carbon stored by vegetation and soils, especially a larger increase in thesoils. Total mediancarbon storage of terrestrial ecosystems in China will increase by 5.09 Gt and15.91 Gt for theclimate scenario at CO2 concentration of 340 ppmv and 500 ppmv,respectively. This ismainly due to changes in vegetation areas and the effects of changes inclimate and CO2concentration.  相似文献   

16.
Global warming caused by anthropogenic CO2 emissions is expected to reduce the capability of the ocean and the land biosphere to take up carbon. This will enlarge the fraction of the CO2 emissions remaining in the atmosphere, which in turn will reinforce future climate change. Recent model studies agree in the existence of such a positive climate–carbon cycle feedback, but the estimates of its amplitude differ by an order of magnitude, which considerably increases the uncertainty in future climate projections. Therefore we discuss, in how far a particular process or component of the carbon cycle can be identified, that potentially contributes most to the positive feedback. The discussion is based on simulations with a carbon cycle model, which is embedded in the atmosphere/ocean general circulation model ECHAM5/MPI-OM. Two simulations covering the period 1860–2100 are conducted to determine the impact of global warming on the carbon cycle. Forced by historical and future carbon dioxide emissions (following the scenario A2 of the Intergovernmental Panel on Climate Change), they reveal a noticeable positive climate–carbon cycle feedback, which is mainly driven by the tropical land biosphere. The oceans contribute much less to the positive feedback and the temperate/boreal terrestrial biosphere induces a minor negative feedback. The contrasting behavior of the tropical and temperate/boreal land biosphere is mostly attributed to opposite trends in their net primary productivity (NPP) under global warming conditions. As these findings depend on the model employed they are compared with results derived from other climate–carbon cycle models, which participated in the Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP).
T. J. RaddatzEmail:
  相似文献   

17.
Combining bioenergy and carbon dioxide (CO2) capture and storage (CCS) technologies (BECCS) has the potential to remove CO2 from the atmosphere while producing useful energy. BECCS has played a central role in scenarios that reduce climate forcing to low levels such as 2.6 Wm?2. In this paper we consider whether BECCS is essential to limiting radiative forcing (RF) to 2.6 Wm?2 by 2100 using the Global Change Assessment Model, a closely coupled model of biogeophysical and human Earth systems. We show that BECCS can potentially reduce the cost of limiting RF to 2.6 Wm?2 by 2100 but that a variety of technology combinations that do not include BECCS can also achieve this goal, under appropriate emissions mitigation policies. We note that with appropriate supporting land-use policies terrestrial sequestration could deliver carbon storage ranging from 200 to 700 PgCO2-equiavalent over the 21st century. We explore substantial delays in participation by some geopolitical regions. We find that the value of BECCS is substantially higher under delay and that delay results in higher transient RF and climate change. However, when major regions postponed mitigation indefinitely, it was impossible to return RF to 2.6 Wm?2 by 2100. Neither finite land resources nor finite potential geologic storage capacity represented a meaningful technical limit on the ability of BECCS to contribute to emissions mitigation in the numerical experiments reported in this paper.  相似文献   

18.
This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model(BCC-CSM) and its four component models(atmosphere,land surface,ocean,and sea ice).Two recent versions are described:BCC-CSM1.1 with coarse resolution(approximately 2.8125°×2.8125°) and BCC-CSM1.1(m) with moderate resolution(approximately 1.125°×1.125°).Both versions are fully coupled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation.Both models well simulate the concentration and temporal evolution of atmospheric CO_2 during the 20th century with anthropogenic CO2 emissions prescribed.Simulations using these two versions of the BCC-CSM model have been contributed to the Coupled Model Intercomparison Project phase five(CMIP5) in support of the Intergovernmental Panel on Climate Change(IPCC) Fifth Assessment Report(AR5).These simulations are available for use by both national and international communities for investigating global climate change and for future climate projections.Simulations of the 20th century climate using BCC-CSMl.l and BCC-CSMl.l(m) are presented and validated,with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales.Simulations of climate during the last millennium and projections of climate change during the next century are also presented and discussed.Both BCC-CSMl.l and BCC-CSMl.l(m) perform well when compared with other CMIP5 models.Preliminary analyses indicate that the higher resolution in BCC-CSM1.1(m) improves the simulation of mean climate relative to BCC-CSMl.l,particularly on regional scales.  相似文献   

19.
Tropical forests are responsible for a large proportion of the global terrestrial C flux annually for natural ecosystems. Increased atmospheric CO2 and changes in climate are likely to affect the distribution of C pools in the tropics and the rate of cycling through vegetation and soils. In this paper, I review the literature on the pools and fluxes of carbon in tropical forests, and the relationship of these to nutrient cycling and climate. Tropical moist and humid forests have the highest rates of annual net primary productivity and the greatest carbon flux from soil respiration globally. Tropical dry forests have lower rates of carbon circulation, but may have greater soil organic carbon storage, especially at depths below 1 meter. Data from tropical elevation gradients were used to examine the sensitivity of biogeochemical cycling to incremental changes in temperature and rainfall. These data show significant positive correlations of litterfall N concentrations with temperature and decomposition rates. Increased atmospheric CO2 and changes in climate are expected to alter carbon and nutrient allocation patterns and storage in tropical forest. Modeling and experimental studies suggest that even a small increase in temperature and CO2 concentrations results in more rapid decomposition rates, and a large initial CO2 efflux from moist tropical soils. Soil P limitation or reductions in C:N and C:P ratios of litterfall could eventually limit the size of this flux. Increased frequency of fires in dry forest and hurricanes in moist and humid forests are expected to reduce the ecosystem carbon storage capacity over longer time periods.  相似文献   

20.
Terrestrial biosphere carbon storage under alternative climate projections   总被引:2,自引:1,他引:2  
This study investigates commonalities and differences in projected land biosphere carbon storage among climate change projections derived from one emission scenario by five different general circulation models (GCMs). Carbon storage is studied using a global biogeochemical process model of vegetation and soil that includes dynamic treatment of changes in vegetation composition, a recently enhanced version of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). Uncertainty in future terrestrial carbon storage due to differences in the climate projections is large. Changes by the end of the century range from −106 to +201 PgC, thus, even the sign of the response whether source or sink, is uncertain. Three out of five climate projections produce a land carbon source by the year 2100, one is approximately neutral and one a sink. A regional breakdown shows some robust qualitative features. Large areas of the boreal forest are shown as a future CO2 source, while a sink appears in the arctic. The sign of the response in tropical and sub-tropical ecosystems differs among models, due to the large variations in simulated precipitation patterns. The largest uncertainty is in the response of tropical rainforests of South America and Central Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号