首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
With an increasing political focus on limiting global warming to less than 2 °C above pre-industrial levels it is vital to understand the consequences of these targets on key parts of the climate system. Here, we focus on changes in sea level and sea ice, comparing twenty-first century projections with increased greenhouse gas concentrations (using the mid-range IPCC A1B emissions scenario) with those under a mitigation scenario with large reductions in emissions (the E1 scenario). At the end of the twenty-first century, the global mean steric sea level rise is reduced by about a third in the mitigation scenario compared with the A1B scenario. Changes in surface air temperature are found to be poorly correlated with steric sea level changes. While the projected decreases in sea ice extent during the first half of the twenty-first century are independent of the season or scenario, especially in the Arctic, the seasonal cycle of sea ice extent is amplified. By the end of the century the Arctic becomes sea ice free in September in the A1B scenario in most models. In the mitigation scenario the ice does not disappear in the majority of models, but is reduced by 42 % of the present September extent. Results for Antarctic sea ice changes reveal large initial biases in the models and a significant correlation between projected changes and the initial extent. This latter result highlights the necessity for further refinements in Antarctic sea ice modelling for more reliable projections of future sea ice.  相似文献   

2.
The relation between sudden stratospheric warmings (SSWs) and blocking events is analyzed in a multi-centennial pre-industrial simulation of the Institut Pierre Simon Laplace coupled model (IPSL-CM5A), prepared for the fifth phase of the coupled model intercomparison project. The IPSL model captures a fairly realistic distribution of both SSWs and tropospheric blocking events, albeit with a tendency to overestimate the frequency of blocking in the western Pacific and underestimate it in the Euro-Atlantic sector. The 1000-year long simulation reveals statistically significant differences in blocking frequency and duration over the 40-day periods preceding and following the onset of SSWs. More specifically, there is an enhanced blocking frequency over Eurasia before SSWs, followed by an westward displacement of blocking anomalies over the Atlantic region as SSWs evolve and then decline. The frequency of blocking is reduced over the western Pacific sector during the life-cycle of SSWs, while the model simulates no significant relationship with eastern Pacific blocks. Finally, these changes in blocking frequency tend to be associated with a shift in the distribution of blocking lifetime toward longer-lasting blocking events before the onset of SSWs and shorter-lived blocks after the warmings. This study systematically verifies that the results are consistent with the two pictures that (1) blockings produce planetary scale anomalies that can force vertically propagating Rossby waves and then SSWs when the waves break and (2) SSWs affect blockings in return, for instance via the effect they have on the North Atlantic Oscillation.  相似文献   

3.
利用NCEP/NCAR第1套再分析资料,分析过去68 a(1948—2015年)平流层爆发性增温(Stratospheric Sudden Warming,SSW)频次、强度和环流特征的月际差异。统计结果表明:1948—2015年北半球共发生30次SSW,其集中发生在11—3月,而1—2月发生频次尤为集中,且SSW发生频次表现出显著的年代际变化特征。11—12月SSW比1—3月SSW的持续时间长。而3月SSW事件的强度最弱,持续时间最短。1月和3月SSW纬向平均信号下传得较深,而11月、12月和2月的环流信号仅能传到200 hPa。11—3月SSW爆发前1~2周500 hPa均观测到西太平洋遥相关型(Western Pacific,WP)的负位相;太平洋-北美遥相关型(Pacific-North America,PNA)的正位相仅仅出现在11月、12月和3月SSW爆发前。SSW爆发后1~2周,仅有11月、1月和3月的事件对应着负位相的北大西洋涛动(North Atlantic Oscillation,NAO)。  相似文献   

4.
Roy  R.  Kuttippurath  J.  Lefèvre  F.  Raj  S.  Kumar  P. 《Theoretical and Applied Climatology》2022,149(1-2):119-130
Theoretical and Applied Climatology - Sudden stratospheric warmings (SSWs) are associated with rapid rise in temperature in a short period of time in the polar vortex and reversal of the zonal...  相似文献   

5.
The main aim of this paper is to investigate and compare the possible connection between tropospheric blocking events and major stratospheric sudden warmings (SSWs) in the two periods of 1959−1988 and 1989−2018 to present a dynamical insight into the blocking formation and behaviors. After identifying and characterizing two types of SSWs including wavenumber-1 (W1) and wavenumber-2 (W2) in both the periods, the behaviors of blocking events coincided with major SSWs are examined and compared in the two periods. Then, the relationship between blockings and major SSWs is discussed applying the Empirical Orthogonal Function (EOF) method.In general, 18 and 16 major SSW events were identified in the first and second periods, respectively. The investigation of planetary wave activities indicates that the maximum anomalies of geopotential height amplitude and meridional eddy heat flux in the PRE-SSW phase of both types of SSWs, particularly major W2 warmings, in the second period occurred earlier than those in the first period. The peaks of blocking activities in the second period have also been moved eastward compared with the first period in both prior to and after the onset of SSWs. Moreover, the frequency of blocking event during the PRE-SSW phase of major W1 warmings in Euro-Atlantic and a large part of West Asia in the second period is less than that of the first period, while the occurrence of blocking during the PRE-SSW phase of major W2 warmings in Eastern Europe and West Asia has been increased in the second period. In the POST-SSW phase, blocking activity associated with major W2 warmings is enhanced in West Asia during the second period. In addition, the maximum blocking activities preceding major SSWs in the second period was occurred 5-days prior to the first period. The results of cross-correlation coefficients between blockings and SSWs show significant relationship between them with time lag of about 10-days prior to the onset of warmings in both the periods, especially in the recent years.  相似文献   

6.
Using a coupled climate?Ccarbon cycle model, fossil fuel carbon dioxide (CO2) emissions are derived through a reverse approach of prescribing atmospheric CO2 concentrations according to observations and future projections, respectively. In the second half of the twentieth century, the implied fossil fuel emissions, and also the carbon uptake by land and ocean, are within the range of observational estimates. Larger discrepancies exist in the earlier period (1860?C1960), with small fossil fuel emissions and uncertain emissions from anthropogenic land cover change. In the IPCC SRES A1B scenario, the simulated fossil fuel emissions more than double until 2050 (17 GtC/year) and then decrease to 12 GtC/year by 2100. In addition to A1B, an aggressive mitigation scenario was employed, developed within the European ENSEMBLES project, that peaks at 530 ppm CO2(equiv) around 2050 and then decreases to approach 450 ppm during the twenty-second century. Consistent with the prescribed pathway of atmospheric CO2 in E1, the implied fossil fuel emissions increase from currently 8 GtC/year to about 10 by 2015 and decrease thereafter. In the 2050s (2090s) the emissions decrease to 3.4 (0.5) GtC/year, respectively. As in previous studies, our model simulates a positive climate?Ccarbon cycle feedback which tends to reduce the implied emissions by roughly 1 GtC/year per degree global warming. Further, our results suggest that the 450 ppm stabilization scenario may not be sufficient to fulfill the European Union climate policy goal of limiting the global temperature increase to a maximum of 2°C compared to pre-industrial levels.  相似文献   

7.
Beobide-Arsuaga  Goratz  Bayr  Tobias  Reintges  Annika  Latif  Mojib 《Climate Dynamics》2021,56(11):3875-3888

There is a long-standing debate on how the El Niño/Southern Oscillation (ENSO) amplitude may change during the twenty-first century in response to global warming. Here we identify the sources of uncertainty in the ENSO amplitude projections in models participating in the Coupled Model Intercomparison Phase 5 (CMIP5) and Phase 6 (CMIP6), and quantify scenario uncertainty, model uncertainty and uncertainty due to internal variability. The model projections exhibit a large spread, ranging from increasing standard deviation of up to 0.6 °C to diminishing standard deviation of up to − 0.4 °C by the end of the twenty-first century. The ensemble-mean ENSO amplitude change is close to zero. Internal variability is the main contributor to the uncertainty during the first three decades; model uncertainty dominates thereafter, while scenario uncertainty is relatively small throughout the twenty-first century. The total uncertainty increases from CMIP5 to CMIP6: while model uncertainty is reduced, scenario uncertainty is considerably increased. The models with “realistic” ENSO dynamics have been analyzed separately and categorized into models with too small, moderate and too large ENSO amplitude in comparison to instrumental observations. The smallest uncertainties are observed in the sub-ensemble exhibiting realistic ENSO dynamics and moderate ENSO amplitude. However, the global warming signal in ENSO-amplitude change is undetectable in all sub-ensembles. The zonal wind-SST feedback is identified as an important factor determining ENSO amplitude change: global warming signal in ENSO amplitude and zonal wind-SST feedback strength are highly correlated across the CMIP5 and CMIP6 models.

  相似文献   

8.
Using the World Meteorological Organization definition and a threshold-based classification technique,simulations of vortex displacement and split sudden stratospheric warmings(SSWs)are evaluated for four Chinese models(BCC-CSM2-MR,FGOALS-f3-L,FGOALS-g3,and NESM3)from phase 6 of the Coupled Model Intercomparison Project(CMIP6)with the Japanese 55-year reanalysis(JRA-55)as a baseline.Compared with six or seven SSWs in a decade in JRA-55,three models underestimate the SSW frequency by~50%,while NESM3 doubles the SSW frequency.SSWs mainly appear in midwinter in JRA-55,but one-month climate drift is simulated in the models.The composite of splits is stronger than displacements in both the reanalysis and most models due to the longer pulse of positive eddy heat flux before onset of split SSWs.A wavenumber-1-like temperature anomaly pattern(cold Eurasia,warm North America)before onset of displacement SSWs is simulated,but cold anomalies are mainly confined to North America after displacement SSWs.Although the lower tropospheric temperature also displays a wavenumber-1-like pattern before split SSWs,most parts of Eurasia and North America are covered by cold anomalies after split SSWs in JRA-55.The models have different degrees of fidelity for the temperature anomaly pattern before split SSWs,but the wavenumber-2-like temperature anomaly pattern is well simulated after split SSWs.The center of the negative height anomalies in the Pacific sector before SSWs is sensitive to the SSW type in both JRA-55 and the models.A negative North Atlantic Oscillation is simulated after both types of SSWs in the models,although it is only observed for split SSWs.  相似文献   

9.
The process of stratospheric sudden warmings from development of planetary waves to the sudden cooling after reversal of mean zonal circulation will be studied with the primitive equations of heat and momentum balances. It will be explained that the sudden warmings may occur only in the polar regions of winter stratosphere where zonal mean temperature decreases poleward. The heating rate in the order of major warmings is produced by developed planetary waves in the stratospheric breaking layers. The particular perturbation structure characterized by large amplitude of wave 1 together with minimum of wave 2 discovered by Labitzke (1977) is crucial for initiation of major warmings. The cooling by the same mechanism can be produced in the regions with reversed mean temperature gradient.  相似文献   

10.
The impact of increased greenhouse gases (GHG) and aerosols concentrations upon the West African monsoon (WAM) is investigated for the late twenty-first century period using the Météo-France ARPEGE-IFS high-resolution atmospheric model. Perturbed (2070–2100) and current (1961–2000) climates are compared using the model in time-slice mode. The model is forced by global sea surface temperatures provided by two transient scenarios performed with low-resolution coupled models and by two GHG evolution scenarios, SRES-A2 and SRES-B2. Comparing to reanalysis and observed data sets, the model is able to reproduce a realistic seasonal cycle of WAM despite a clear underestimation of the African Easterly Jet (AEJ) during the boreal summer. Mean temperature change indicates a global warming over the continent (stronger over North and South Africa). Simulated precipitation change at the end of the twenty-first century shows an increase in precipitation over Sudan-Sahel linked to a strong positive feedback with surface evaporation. Along Guinea Gulf coast, rainfall regimes are driven by large-scale moisture advection. Moreover, results show a mean precipitation decrease (increase) in the most (less) enhanced GHG atmosphere over this region. Modification of the seasonal hydrological cycle consists in a rain increase during the monsoon onset. There is a significant increase in rainfall variance over the Sahel, which extends over the Guinea coast region in the moderate emission scenario. Enhanced precipitation over Sahel is linked to large-scale circulation changes, namely a weakening of the AEJ and an intensification of the Tropical Easterly Jet.  相似文献   

11.
The NCEP–NCAR reanalysis dataset and the Had ISST dataset(1959–2014) are used to analyze the impact of two types of El Nio events, i.e., eastern Pacific El Nio(EP-El Nio) and central Pacific El Nio(CP-El Nio) events, on the duration of major and minor sudden stratospheric warmings(SSWs) in Northern Hemisphere winter(November to February). Although the frequency of major and minor SSWs during different types of El Nio shows no distinct differences, the duration of both major and minor SSWs during CP-El Nio is shorter than that during EP-El Nio. The spatial distribution of geopotential height anomalies preceding major SSWs resembles the western Pacific(WP) teleconnection pattern, while the spatial distribution of geopotential height anomalies preceding minor SSWs bears similarity to the Pacific–North America(PNA)teleconnection pattern. An enhancement of the strength of both wavenumber 1 and wavenumber 2 is found before major SSWs. Before minor SSWs, wavenumber 1 is also strengthened, but wavenumber 2 is weakened. The analysis also reveals that EP-El Nio tends to induce positive phases of PNA and WP teleconnections, while CP-El Nio induces negative-phase WP teleconnection. As the positive phases of the PNA and WP teleconnections are related to the strengthening of wavenumber 1, EP-El Nio causes an enhancement of wavenumber 1 in the high-latitude upper troposphere and an enhancement of the upward wave flux in the high-latitude stratosphere, accompanied by a negative anomaly in Eliassen–Palm flux divergence in the subpolar stratosphere, which accounts for the longer SSW duration during EP-El Nio than during CP-El Nio.  相似文献   

12.
The ability of modern climate models to simulate ice season length in the Arctic, its recent changes and navigation season on Arctic marine routes along the Eurasian and the North American coastlines is evaluated using satellite ice cover observations for 1979–2007. Simulated mean sea ice season duration fits remarkably well to satellite observations and so do the simulated 20th century changes using historical forcing. This provides confidence to extend the analysis to projections for the twenty-first century. The navigation season for the Northern Sea Route (NSR) and Northwest Passage (NWP), alternative sea routes from the North Atlantic to Asia, will considerably increase during this century. The models predict prolongation of the season with a free passage from 3 to 6 months for the NSR and from 2 to 4 months for the NWP by the end of twenty-first century according to A1B scenario of the IPCC. This suggests that transit through the NSR from Western Europe to the Far East may be up to 15% more profitable in comparison to Suez Canal transit by the end of the twenty-first century.  相似文献   

13.
This study estimates MJO change under the A1B greenhouse gas emission scenario using the ECHAM5 AGCM whose coupled version (ECHAM5/MPI-OM) has simulated best MJO variance among fourteen CGCMs. The model has a horizontal resolution at T319 (about 40 km) and is forced by the monthly evolving SST derived from the ECHAM5/MPI-OM at a lower resolution of T63 (about 200 km). Two runs are carried out covering the last 21 years of the twentieth and twenty-first centuries. The NCEP/NCAR Reanalysis products and observed precipitation are used to validate the simulated MJO during the twentieth century, based on which the twenty-first century MJO change is compared and predicted. The validation indicates that the previously reported MJO variances in the T63 coupled version are reproduced by the 40-km ECHAM5. More aspects of MJO, such as the eastward propagation, structure, and dominant frequency and zonal wavenumber in power spectrum, are simulated reasonably well. The magnitude in power, however, is still low so that the signal is marginally detectable and embedded in the over-reddened background. Under the A1B scenario, the T63 ECHAM5/MPI-OM projected an over 3 K warmer tropical sea surface that forces the 40-km ECHAM to produce wetter tropics. The enhanced precipitation variance shows more spectral enhancement in background than in most wavebands. The zonal winds associated with MJO, however, are strengthened in the lower troposphere but weakened in the upper. On the one hand, the 850-hPa zonal wind has power nearly doubled in 30–60-days bands, demonstrating relatively clearer enhancement than the precipitation in MJO with the warming. A 1-tailed Student’s t test suggests that most of the MJO changes in variance and power spectra are statically significant. Subject to a 20–100-days band-pass filtering of that wind, an EOF analysis indicates that the two leading components in the twentieth-century run have a close structure to but smaller percentage of explained-to-total variance than those in observations; the A1B warming slightly increases the explained percentage and alters the structure. An MJO index formed by the two leading principal components discloses nearly doubling in the number of prominent MJO events with a peak phase occurring in February and March. A composite MJO life cycle of these events favors the frictional moisture convergence mechanism in maintaining the MJO and the nonlinear wind-induced surface heat exchange (WISHE) mechanism also appears in the A1B warming case. On the other hand, the Slingo index based on the 300-hPa zonal wind discloses that the upper-level MJO tends to be suppressed by the A1B warming, although the loose relationship with ENSO remains unchanged. Possible cause for the different change of MJO in the lower and upper troposphere is discussed.  相似文献   

14.
Recent global-scale analyses of the CMIP3 model projections for the twenty-first century indicate a strong, coherent decreased precipitation response over Central America and the Intra-America Seas region. We explore this regional response and examine the models’ skill in representing present-day climate over this region. For much of Central America, the annual cycle of precipitation is characterized by a rainy season that extends from May to October with a period of reduced precipitation in July and August called the mid-summer drought. A comparison of the climate of the twentieth century simulations (20c3m) with observations over the period 1961–1990 shows that nearly all models underestimate precipitation over Central America, due in part to an underestimation of sea surface temperatures over the tropical North Atlantic and an excessively smooth representation of regional topographical features. However, many of the models capture the mid-summer drought. Differences between the A1B scenario (2061–2090) and 20c3m (1961–1990) simulations show decreased precipitation in the future climate scenario, mostly in June and July, just before and during the onset of the mid-summer drought. We thus hypothesize that the simulated twenty-first century drying over Central America represents an early onset and intensification of the mid-summer drought. An analysis of circulation changes indicates that the westward expansion and intensification of the North Atlantic subtropical high associated with the mid-summer drought occurs earlier in the A1B simulations, along with stronger low-level easterlies. The eastern Pacific inter-tropical convergence zone is also located further southward in the scenario simulations. There are some indications that these changes could be forced by ENSO-like warming of the tropical eastern Pacific and increased land–ocean heating contrasts over the North American continent.  相似文献   

15.
Article 2 of the United Nations Framework Convention on Climate Change (UNFCCC) calls for stabilization of greenhouse gas (GHG) concentrations at levels that prevent dangerous anthropogenic interference (DAI) in the climate system. However, some of the recent policy literature has focused on dangerous climatic change (DCC) rather than on DAI. DAI is a set of increases in GHGs concentrations that has a non-negligible possibility of provoking changes in climate that in turn have a non-negligible possibility of causing unacceptable harm, including harm to one or more of ecosystems, food production systems, and sustainable socio-economic systems, whereas DCC is a change of climate that has actually occurred or is assumed to occur and that has a non-negligible possibility of causing unacceptable harm. If the goal of climate policy is to prevent DAI, then the determination of allowable GHG concentrations requires three inputs: the probability distribution function (pdf) for climate sensitivity, the pdf for the temperature change at which significant harm occurs, and the allowed probability (“risk”) of incurring harm previously deemed to be unacceptable. If the goal of climate policy is to prevent DCC, then one must know what the correct climate sensitivity is (along with the harm pdf and risk tolerance) in order to determine allowable GHG concentrations. DAI from elevated atmospheric CO2 also arises through its impact on ocean chemistry as the ocean absorbs CO2. The primary chemical impact is a reduction in the degree of supersaturation of ocean water with respect to calcium carbonate, the structural building material for coral and for calcareous phytoplankton at the base of the marine food chain. Here, the probability of significant harm (in particular, impacts violating the subsidiary conditions in Article 2 of the UNFCCC) is computed as a function of the ratio of total GHG radiative forcing to the radiative forcing for a CO2 doubling, using two alternative pdfs for climate sensitivity and three alternative pdfs for the harm temperature threshold. The allowable radiative forcing ratio depends on the probability of significant harm that is tolerated, and can be translated into allowable CO2 concentrations given some assumption concerning the future change in total non-CO2 GHG radiative forcing. If future non-CO2 GHG forcing is reduced to half of the present non-CO2 GHG forcing, then the allowable CO2 concentration is 290–430 ppmv for a 10% risk tolerance (depending on the chosen pdfs) and 300–500 ppmv for a 25% risk tolerance (assuming a pre-industrial CO2 concentration of 280 ppmv). For future non-CO2 GHG forcing frozen at the present value, and for a 10% risk threshold, the allowable CO2 concentration is 257–384 ppmv. The implications of these results are that (1) emissions of GHGs need to be reduced as quickly as possible, not in order to comply with the UNFCCC, but in order to minimize the extent and duration of non-compliance; (2) we do not have the luxury of trading off reductions in emissions of non-CO2 GHGs against smaller reductions in CO2 emissions, and (3) preparations should begin soon for the creation of negative CO2 emissions through the sequestration of biomass carbon.  相似文献   

16.
We present results from multiple comprehensive models used to simulate an aggressive mitigation scenario based on detailed results of an Integrated Assessment Model. The experiment employs ten global climate and Earth System models (GCMs and ESMs) and pioneers elements of the long-term experimental design for the forthcoming 5th Intergovernmental Panel on Climate Change assessment. Atmospheric carbon-dioxide concentrations pathways rather than carbon emissions are specified in all models, including five ESMs that contain interactive carbon cycles. Specified forcings also include minor greenhouse gas concentration pathways, ozone concentration, aerosols (via concentrations or precursor emissions) and land use change (in five models). The new aggressive mitigation scenario (E1), constructed using an integrated assessment model (IMAGE?2.4) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2?K, is studied alongside the medium-high non-mitigation scenario SRES A1B. Resulting twenty-first century global mean warming and precipitation changes for A1B are broadly consistent with previous studies. In E1 twenty-first century global warming remains below 2?K in most models, but global mean precipitation changes are higher than in A1B up to 2065 and consistently higher per degree of warming. The spread in global temperature and precipitation responses is partly attributable to inter-model variations in aerosol loading and representations of aerosol-related radiative forcing effects. Our study illustrates that the benefits of mitigation will not be realised in temperature terms until several decades after emissions reductions begin, and may vary considerably between regions. A subset of the models containing integrated carbon cycles agree that land and ocean sinks remove roughly half of present day anthropogenic carbon emissions from the atmosphere, and that anthropogenic carbon emissions must decrease by at least 50% by 2050 relative to 1990, with further large reductions needed beyond that to achieve the E1 concentrations pathway. Negative allowable anthropogenic carbon emissions at and beyond 2100 cannot be ruled out for the E1 scenario. There is self-consistency between the multi-model ensemble of allowable anthropogenic carbon emissions and the E1 scenario emissions from IMAGE?2.4.  相似文献   

17.
From multi-ensembles of climate simulations using the Community Climate System Model version 3, global climate changes have been investigated focusing on long-term responses to stabilized anthropogenic forcings. In addition to the standard forcing scenarios for the current international assessment, an overshoot scenario, where radiative forcings are decreased from one stabilized level to another, is also considered. The globally-averaged annual surface air temperature increases during the twenty-first century by 2.58 and 1.56°C for increased forcings under two future scenarios denoted by A1B and B1, respectively. These changes continue but at much slower rates in later centuries under forcings stabilized at year 2100. The overshoot scenario provides a different pathway to the lower B1 level by way of the greater A1B level. This scenario results in a surface climate similar to that in the B1 scenario within 100 years after the forcing reaches the B1 level. Contrasting to the surface changes, responses in the ocean are significantly delayed. It is estimated from the linear response theory that temperature changes under stabilized forcings to a final equilibrium state in the A1B (B1) scenario are factors of 0.3–0.4, 0.9, and 17 (0.3, 0.6, and 11) to changes during the twenty-first century, respectively, for three ocean layers of the surface to 100, 100–500, and 500 m to the bottom. Although responses in the lower ocean layers imply a nonlinear behavior, the ocean temperatures in the overshoot and B1 scenarios are likely to converge in their final equilibrium states.  相似文献   

18.
Probability density functions for daily precipitation data are used as a validation tool comparing station measurements to seven transient regional climate model runs, with a horizontal resolution of 25 km and driven by the SRES A1B scenario forcing, within the ENSEMBLES project. The validation is performed for the control period 1961–1990 for eight predefined European subregions, and a ninth region enclosing all eight subregions, with different climate characteristics. Models that best match the observations are then used for making climate change projections of precipitation distributions during the twenty-first century for each subregion separately. We find, compared to the control period, a distinct decrease in the contribution to the total precipitation for days with moderate precipitation and a distinct increase for days with more intense precipitation. This change in contribution to the total precipitation is found to amplify with time during all of the twenty-first century with an average rate of 1.1% K?1. Furthermore, the crossover point separating the decreasing from the increasing contributions does not show any significant change with time for any specific subregion. These results are a confirmation and a specification of the results from a previous study using the same station measurements but with a regional climate model ensemble within the PRUDENCE project.  相似文献   

19.
We used a calibrated coupled climate–hydrological model to simulate Meuse discharge over the late Holocene (4000–3000 BP and 1000–2000 AD). We then used this model to simulate discharge in the twenty-first century under SRES emission scenarios A2 and B1, with and without future land use change. Mean discharge and medium-sized high-flow (e.g. Q99) frequency are higher in 1000–2000 AD than in 4000–3000 BP; almost all of this increase can be attributed to the conversion of forest to agriculture. In the twentieth century, mean discharge and the frequency of medium-sized high-flow events are higher than in the nineteenth century; this increase can be attributed to increased (winter half-year) precipitation. Between the twentieth and twenty-first centuries, anthropogenic climate change causes a further increase in discharge and medium-sized high-flow frequency; this increase is of a similar order of magnitude to the changes over the last 4,000 years. The magnitude of extreme flood events (return period 1,250-years) is higher in the twenty-first century than in any preceding period of the time-slices studied. In contrast to the long-term influence of deforestation on mean discharge, changes in forest cover have had little effect on these extreme floods, even on the millennial timescale.  相似文献   

20.
This study aims to examine how future climate, temperature and precipitation specifically, are expected to change under the A2, A1B, and B1 emission scenarios over the six states that make up the Southern Climate Impacts Planning Program (SCIPP): Oklahoma, Texas, Arkansas, Louisiana, Tennessee, and Mississippi. SCIPP is a member of the National Oceanic and Atmospheric Administration-funded Regional Integrated Sciences and Assessments network, a program which aims to better connect climate-related scientific research with in-the-field decision-making processes. The results of the study found that the average temperature over the study area is anticipated to increase by 1.7°C to 2.4°C in the twenty-first century based on the different emission scenarios with a rate of change that is more pronounced during the second half of the century. Summer and fall seasons are projected to have more significant temperature increases, while the northwestern portions of the region are projected to experience more significant increases than the Gulf coast region. Precipitation projections, conversely, do not exhibit a discernible upward or downward trend. Late twenty-first century exhibits slightly more precipitation than the early century, based on the A1B and B1 scenario, and fall and winter are projected to become wetter than the late twentieth century as a whole. Climate changes on the city level show that greater warming will happened in inland cities such as Oklahoma City and El Paso, and heavier precipitation in Nashville. These changes have profound implications for local water resources management as well as broader regional decision making. These results represent an initial phase of a broader study that is being undertaken to assist SCIPP regional and local water planning efforts in an effort to more closely link climate modeling to longer-term water resources management and to continue assessing climate change impacts on regional hazards management in the South.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号