首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In this paper, we evaluate several timely, daily air-sea heat flux products (NCEP, NCEP2, ERA-Interim and OAFlux/ISCCP) against observations and present the newly developed TropFlux product. This new product uses bias-corrected ERA-interim and ISCCP data as input parameters to compute air-sea fluxes from the COARE v3.0 algorithm. Wind speed is corrected for mesoscale gustiness. Surface net shortwave radiation is based on corrected ISCCP data. We extend the shortwave radiation time series by using “near real-time” SWR estimated from outgoing longwave radiation. All products reproduce consistent intraseasonal surface net heat flux variations associated with the Madden-Julian Oscillation in the Indian Ocean, but display more disparate interannual heat flux variations associated with El Ni?o in the eastern Pacific. They also exhibit marked differences in mean values and seasonal cycle. Comparison with global tropical moored buoy array data, I-COADS and fully independent mooring data sets shows that the two NCEP products display lowest correlation to mooring turbulent fluxes and significant biases. ERA-interim data captures well temporal variability, but with significant biases. OAFlux and TropFlux perform best. All products have issues in reproducing observed longwave radiation. Shortwave flux is much better captured by ISCCP data than by any of the re-analyses. Our “near real-time” shortwave radiation performs better than most re-analyses, but tends to underestimate variability over the cold tongues of the Atlantic and Pacific. Compared to independent mooring data, NCEP and NCEP2 net heat fluxes display ~0.78 correlation and >65?W?m?2 rms-difference, ERA-I performs better (~0.86 correlation and ~48?W?m?2) while OAFlux and TropFlux perform best (~0.9 correlation and ~43?W?m?2). TropFlux hence provides a useful option for studying flux variability associated with ocean–atmosphere interactions, oceanic heat budgets and climate fluctuations in the tropics.  相似文献   

2.
In this study, we analysed decadal and long-term steric sea level variations over 1966–2007 period in the Indo-Pacific sector, using an ocean general circulation model forced by reanalysis winds. The simulated steric sea level compares favourably with sea level from satellite altimetry and tide gauges at interannual and decadal timescales. The amplitude of decadal sea level variability (up to ~5 cm standard deviation) is typically nearly half of the interannual variations (up to ~10 cm) and two to three times larger than long-term sea level variations (up to 2 cm). Zonal wind stress varies at decadal timescales in the western Pacific and in the southern Indian Ocean, with coherent signals in ERA-40 (from which the model forcing is derived), NCEP, twentieth century and WASWind products. Contrary to the variability at interannual timescale, for which there is a tendency of El Niño and Indian Ocean Dipole events to co-occur, decadal wind stress variations are relatively independent in the two basins. In the Pacific, those wind stress variations drive Ekman pumping on either side of the equator, and induce low frequency sea level variations in the western Pacific through planetary wave propagation. The equatorial signal from the western Pacific travels southward to the west Australian coast through equatorial and coastal wave guides. In the Indian Ocean, decadal zonal wind stress variations induce sea level fluctuations in the eastern equatorial Indian Ocean and the Bay of Bengal, through equatorial and coastal wave-guides. Wind stress curl in the southern Indian Ocean drives decadal variability in the south-western Indian Ocean through planetary waves. Decadal sea level variations in the south–western Indian Ocean, in the eastern equatorial Indian Ocean and in the Bay of Bengal are weakly correlated to variability in the Pacific Ocean. Even though the wind variability is coherent among various wind products at decadal timescales, they show a large contrast in long-term wind stress changes, suggesting that long-term sea level changes from forced ocean models need to be interpreted with caution.  相似文献   

3.
北太平洋风暴轴的三维空间结构   总被引:9,自引:1,他引:8  
傅刚  毕玮  郭敬天 《气象学报》2009,67(2):189-200
文中利用最新的0.5°×0.5°分辨率QuikSCAT(QuikBird Satellite Microwave Scatterometer Sea Winds Data)海面风场资料、NCEP(National Center for Environmental Prediction)的10 m高度风场资料和全球客观再分析资料,对1999-2005年冬季(1月)和夏季(7月)北太平洋风暴轴的三维空间结构进行了分析,发现冬季北太平洋风暴轴的强度较强,呈明显的纬向拉伸带状分布特征,位置偏南.夏季北太平洋风暴轴的强度较弱,位置偏北.根据不同高度上位势高度方差的水平分布特征,绘制了北太平洋风暴轴的三维结构示意图.利用高分辨率QuikSCAT资料对风暴轴特征的刻画更为细致,不但验证了Nakamu-ra在南大洋发现的双风暴轴现象,而且还发现在北太平洋和北大西洋下层分别存在"副热带风暴轴"和"副极地风暴轴"两个风暴轴.对1999-2005年冬季北太平洋气旋和反气旋的移动路径进行的统计分析,为北太平洋"双风暴轴"的存在提供了强有力的证据.  相似文献   

4.
This study presents an assessment of the TropFlux and the National Centers for Environmental Prediction (NCEP) reanalysis air-sea fluxes in simulating the surface and subsurface oceanic parameters over the Bay of Bengal (BoB) region during 2002–2014 using the Regional Ocean Modelling System (ROMS). The assessment has been made by comparing the simulated fields with in-situ and satellite observations. The simulated surface and subsurface temperatures in the TropFlux forced experiment (TropFlux-E) show better agreement with the Research Moored Array for African-Asian-Australian Monsoon Analysis (RAMA) and Argo observations than the NCEP forced experiment (NCEP-E). The BoB domain averaged sea surface temperature (SST) simulated in the NCEP-E is consistently cooler than the satellite SST, with a root mean square error (RMSE) of 0.79 °C. Moreover, NCEP-E shows a limitation in simulating the observed seasonal cycle of the SST due to substantial underestimation of the pre-monsoon SST peak. These limitations are mostly due to the lower values of the NCEP net heat flux. The seasonal and interannual variations of SST in the TropFlux-E are better comparable to the observations with correlations and skills more than 0.80 and 0.90 respectively. However, SST is overestimated during summer monsoon periods mainly due to higher net heat flux. The superiority of TropFlux forcing over the NCEP reanalysis can also be seen when simulating the interannual variabilities of the magnitude and vertical extent of Wyrtki jets at two equatorial RAMA buoy locations. The jet is weaker in the NCEP-E relative to the TropFlux-E and observations. The simulated sea surface height anomalies (SSHA) from both the experiments are able to capture the regions of positive and negative SSHA with respect to satellite-derived altimeter data with better performance in the TropFlux-E. The speed of the westward propagating Rossby wave along 18°N in the TropFlux-E is found to be about 4.7 cm/s, which is close to the theoretical phase speed of Rossby waves.  相似文献   

5.
TheWesterlyAnomaliesovertheTropicalPacificandTheirDynamicalEfectontheENSOCyclesduring1980-1994①HuangRonghui(黄荣辉),ZangXiaoyun(...  相似文献   

6.
In this paper, the zonal wind anomalies in the lower troposphere over the tropical Pacific during 1980–1994 are analyzed by using the observed data. The results show that during the formation of the 1982/83, 1986/87 and 1991 / 92 ENSO events, there were the larger westerly anomalies in the lower troposphere over the equatorial Pacific. Moreover, it is explained by using the correlation analyses that the westerly anomalies over the equatorial Pacific could cause the warm episodes of the equatorial central and eastern Pacific. A simple air-sea coupled model is used to discuss theoretically the dynamical effect of the observed westerly anomalies of wind stress near the sea surface of the equatorial Pacific on the ENSO cycle occurred in the period of 1981–1983. It is shown by using the theoretical calculations of the equatorial oceanic Kelvin wave and Rossby waves responding to the forcing of the observed anomalies of zonal wind stress near the sea surface of the equatorial Pacific that the westerly anomalies of wind stress near the sea surface of the equatorial Pacific make significant dynamical effect on the ENSO cycles occurred in the period of 1982–1983.  相似文献   

7.
赤道平流层QBO与我国7月雨型的关联   总被引:12,自引:2,他引:12       下载免费PDF全文
根据1953~1991年赤道平流层纬向风资料分析,得出我国东部地区7月份主要雨带位置与赤道平流层30~50 hPa平均纬向风准两年振荡(以下简称赤道平流层QBO)有较好的关联。在西风位相条件下,我国7月主要雨带位置较偏北;在东风位相条件下,我国7月主要雨带位置易偏南。它们之间的关系主要是通过对对流层环流的影响相联系的。利用赤道平流层纬向风的变化规律并结合冬季北太平洋对流层环流特征,对我国7月主要雨带类型的预报,有一定实用意义。  相似文献   

8.
A storm track is a region in which synoptic eddy activities are statistically most prevalent and intense. At daily weather charts, it roughly corresponds to the mean trajectories of cyclones and anticyclones. In this paper, the recent QuikSCAT (Quick Scatterometer) satellite sea winds data with a 0.5°×0.5° horizontal resolution, and the NCEP (National Centers for Environmental Prediction) 10-m height Gaussian grid wind data and pressure-level reanalysis data, are employed to document the spatial structure of the North Pacific storm track in winter (January) and summer (July) from 1999 to 2005. The results show that in winter the North Pacific storm track is stronger, and is located in lower latitudes with a distinct zonal distribution. In summer, it is weaker, and is located in higher latitudes. Based on the horizontal distributions of geopotential height variance at various levels, three-dimensional schematic diagrams of the North Pacific storm track in winter and summer are extracted and presented. Analyses of the QuikSCAT wind data indicate that this dataset can depict the low-level storm track features in detail. The double storm tracks over the Southern Oceans found by Nakamura and Shimpo are confirmed. More significantly, two new pairs of low-level storm tracks over the North Pacific and the North Atlantic are identified by using this high-resolution dataset. The pair over the North Pacific is focused in this paper, and is named as the "subtropical storm track" and the "subpolar storm track", respectively. Moreover, statistical analyses of cyclone and anticyclone trajectories in the winters of 1999 to 2005 reveal as well the existence of the low-level double storm tracks over the North Pacific.  相似文献   

9.
为了分析ElNio事件发生和消亡中热带太平洋纬向风应力的动力作用,建立一个类似于Zebiak的简单热带海洋数值模式,在观测到的风应力异常的强迫下,模拟赤道太平洋地区1971年1月至1998年8月海表温度异常的变化。结果表明,模式对观测的Nio3区海表温度异常(SSTA)有很好的模拟能力。模拟和观测Nio3区SSTA之间的相关系数可达0.90。模式对ElNio事件期间赤道太平洋海表温度异常随时间变化也有较好的模拟能力。为了分析ElNio期间SSTA的空间分布及其随时间变化的动力学机制,还对19861989年ENSO循环期间赤道太平洋地区观测的SSTA的传播特征及其形成机制进行了分析。模式较好地模拟出了观测到的赤道太平洋地区SSTA的传播特征,即从1986年底至1987年4月,SSTA具有向东传播的特征,从1987年6月至1988年2月具有向西传播的特征。动力学分析的结果表明,赤道中西太平洋地区的纬向风应力异常对ElNio事件的发生和消亡具有重要作用。赤道中西太平洋地区的西风异常可强迫出东传的Kelvin波,这个东传的Kelvin波对正SSTA的东传起主要作用,当这个东传的Kelvin波到达东边界,由于东边界的反射作用,在东边界产生西传的Rossby波,这个西传的Rossby波对赤道中东太平洋地区正SSTA的西传起主要作用。东传Kelvin波和反射的Rossby波对ElNio期间赤道东太平洋正SSTA二次峰值的形成具有重要作用。  相似文献   

10.
分析NCAR/NCEP40年再分析资料得出,赤道低平流层纬向风年际变率的平均周期约28.2个月,最大振幅在20hPa,西(东)风距平垂直下传平均速度1.21(1.04)km/月。用10hPa和70hPa月平均纬向风标准化距平之差可反映整层准两年变率的相位,低平流层两半球中纬气温有与之配合的振荡,西(东)风切变时,中纬气温偏低(高)。赤道纬向风准两年变率引起的经圈环流异常是联系低纬纬向风与中纬气温准两年变率的纽带。  相似文献   

11.
低平流层准两年变率研究   总被引:6,自引:2,他引:4  
分析NCAR/NCEP40年分析资料得出,赤道低平流层纬向风年际变率的平均周期约28.2个月,最大振幅的20hPa,西(东)风距平平垂直下传平均速度1.21(1.04)km/月。用10hPa和70hPa月平均纬向风标准化距平之差反映整层准两年变率的相位。低平流层两半球中纬气温有与之配合的振荡,西(东)风切变时,中纬气温偏低(高)。赤道纬向风准两年变率引起的经圈环流异常是联系低续续向风与中纬气温准年  相似文献   

12.
We propose a dynamical interpretation of the inverse relationship between the tropical eastern Pacific annual-cycle (AC) amplitude and the El Niño-Southern Oscillation (ENSO) amplitude, based on a pre-industrial simulation of Geophysical Fluid Dynamics Laboratory Couple climate model 2.0 with a fixed concentration of greenhouse gases spanning approximately 500 years. The slowly varying background conditions over more than a decade alternately provided favorable conditions for two opposite regimes, namely the ‘strong AC—weak ENSO regime’ and the ‘weak AC—strong ENSO regime’. For the weak AC—strong ENSO regime, the tropical eastern Pacific shows meridional-asymmetric surface warming with an emphasis on the southern part, leading to weakening of both the zonal trade wind and the cross equatorial southerly wind, as well as deepening of both the thermocline and mixed layer. The deeper mixed layer, weaker southerly wind, and reduced zonal gradient of the mean sea surface temperature due to tropical eastern Pacific warming all acts to reduce the AC. Conversely, the ENSO was intensified by the deeper mixed layer and deeper thermocline depth (thermocline feedback), but suppressed by the deeper thermocline depth (Ekman feedback) and the reduced zonal temperature gradient. We also computed the coupling strengths of the ENSO and AC, defined as the linear regression coefficients of the zonal and meridional wind stresses against the eastern Pacific SST, respectively. The coupling strengths of both the AC and ENSO are larger when they are intensified, and vice versa. All processes for the weak AC—strong ENSO regime operate in the opposite manner for the strong AC—weak ENSO regime.  相似文献   

13.
In this paper we seek to identify inter-annual sea surface temperature anomalies (SSTA) patterns outside the tropical Pacific that may influence El Niño/Southern Oscillation (ENSO) through atmospheric teleconnections. We assume that a linear ENSO hindcast based on tropical Pacific warm water volume and Niño3.4 SSTA indices captures tropical Pacific intrinsic predictability inherent to recharge oscillator dynamics. This simple hindcast model displays statistically significant skill at the 95 % confidence level at leads of up to seven seasons ahead of the ENSO peak. Our results reveal that ENSO-independent equatorial wind stress anomalies only significantly improve the skill of that linear hindcast at the 95 % level in boreal spring and summer before the ENSO peak and in boreal fall, five seasons ahead of the ENSO peak. At those seasons, the robust large-scale SST patterns that provide a statistically significant enhancement of ENSO predictability are related to the Atlantic meridional mode and south Pacific subtropical dipole mode in spring, the Indian Ocean Dipole and the south Atlantic subtropical dipole mode in fall. While the first two regions display significant simultaneous correlations with western equatorial Pacific wind stress in three reanalyses (ERA-I, NCEP and NCEP2), the Indian Ocean Dipole and south Atlantic subtropical dipole mode correlation with Pacific winds is less robust amongst re-analyses. We discuss our results in view of other studies that suggest a remote influence of various regions on ENSO. Although modest, the sensitivity of our results to the dataset and to details of the analysis method illustrates that finding regions that influence ENSO from the statistical analysis of observations is a difficult task.  相似文献   

14.
Signature of the Antarctic oscillation in the northern hemisphere   总被引:1,自引:0,他引:1  
Using the ECWMF daily reanalysis data, this paper investigates signatures of the Antarctic Oscillation (AAO) in the upper troposphere of the northern hemisphere. It is found that during boreal winter, a positive (negative) phase of the AAO is associated with anomalous easterlies (westerlies) in middle-low latitudes (~30–40°N) and anomalous westerlies (easterlies) in middle-high latitudes (~45–65°N) of the upper troposphere about 25–40 days later. While there is also a response in zonal wind in the tropics, namely over the central-eastern Pacific, to some extent, these tropical zonal wind anomalies can trigger a Pacific/North American teleconnection patterns (PNA)-like quasi-stationary Rossby waves that propagate into the Northern Hemisphere and gradually evolve into patterns which resemble North Atlantic teleconnection patterns. Furthermore, these quasi-stationary Rossby waves might give rise to anomalous eddy momentum flux convergence and divergence to accelerate anomalous zonal winds in the Northern Hemisphere.  相似文献   

15.
The air–sea fluxes of momentum, heat, freshwater and their components have been computed globally from 1948 at frequencies ranging from 6-hourly to monthly. All fluxes are computed over the 23 years from 1984 to 2006, but radiation prior to 1984 and precipitation before 1979 are given only as climatological mean annual cycles. The input data are based on NCEP reanalysis only for the near surface vector wind, temperature, specific humidity and density, and on a variety of satellite based radiation, sea surface temperature, sea-ice concentration and precipitation products. Some of these data are adjusted to agree in the mean with a variety of more reliable satellite and in situ measurements, that themselves are either too short a duration, or too regional in coverage. The major adjustments are a general increase in wind speed, decrease in humidity and reduction in tropical solar radiation. The climatological global mean air–sea heat and freshwater fluxes (1984–2006) then become 2 W/m2 and ?0.1 mg/m2 per second, respectively, down from 30 W/m2 and 3.4 mg/m2 per second for the unaltered data. However, decadal means vary from 7.3 W/m2 (1977–1986) to ?0.3 W/m2 (1997–2006). The spatial distributions of climatological fluxes display all the expected features. A comparison of zonally averaged wind stress components across ocean sub-basins reveals large differences between available products due both to winds and to the stress calculation. Regional comparisons of the heat and freshwater fluxes reveal an alarming range among alternatives; typically 40 W/m2 and 10 mg/m2 per second, respectively. The implied ocean heat transports are within the uncertainty of estimates from ocean observations in both the Atlantic and Indo-Pacific basins. They show about 2.4 PW of tropical heating, of which 80% is transported to the north, mostly in the Atlantic. There is similar good agreement in freshwater transport at many latitudes in both basins, but neither in the South Atlantic, nor at 35°N.  相似文献   

16.
月内尺度南半球环状模对应的大气环流异常传播特征   总被引:5,自引:3,他引:2  
李晓峰  李建平 《大气科学》2010,34(6):1099-1113
本文利用NCEP/NCAR逐日再分析资料, 分析了南半球环状模 (Southern Hemisphere Annular Mode, 简称SAM) 在月内时间尺度 (sub-monthly timescales, 5~30天)上相关环流的垂直和水平传播特征。结果表明, 月内SAM对应的纬向风异常和温度异常具有明显自南极地区向南半球中纬度地区水平传播特征; 在垂直方向上, 纬向风异常为明显上传特征, 温度异常则具有在极地和高纬度地区明显上升、低纬度地区下沉的特点。月内SAM对应的南半球中高纬度地区上传信号表明, 在较短的月内时间尺度上, 对流层信号可以突破对流层顶, 上传达到平流层; 而月内SAM对应的整层南传信号表明, 南极地区环流变化超前于中高纬度地区, 因此在1~3周的月内时间尺度上, 极区信号可能对中高纬地区信号具有指示意义。  相似文献   

17.
By analyzing the climatologically averaged wind stress during 2000-2007,it is found that the easterly wind stress in the northern tropical Pacific Ocean from Quick Scatterometer(QSCAT) data was stronger than those from Tropical Atmosphere Ocean(TAO) data and from National Centers for Environmental Prediction/National Center for Atmospheric Research(NCEP/NCAR) reanalysis I.As a result,the Intertropical Convergence Zone(ITCZ) in the Pacific Ocean is more southward in the QSCAT data than in the NCEP/NCAR data.Relative to the NCEP wind,the southern shift of the ITCZ in the QSCAT data led to negative anomaly of wind stress curl north of a latitude of 6 N.The negative anomaly results in downward Ekman pumping in the central Pacific.The excessive local strong easterly wind also contributes to the downward Ekman pumping.This downward Ekman pumping suppresses the thermocline ridge,reduces the meridional thermocline slope and weakens the North Equatorial Countercurrent(NECC).These effects were confirmed by numerical experiments using two independent ocean general circulation models(OGCMs).Furthermore,the excessive equatorial easterly wind stress was also found to contribute to the weaker NECC in the OGCMs.A comparison between the simulations and observation data indicates that the stronger zonal wind stress and its southern shift of QSCAT data in the ITCZ region yield the maximum strength of the simulated NECC only 33% of the magnitude derived from observation data and even led to a "missing" NECC in the western Pacific.  相似文献   

18.
In the summers of 2003 and 2007, eastern China suffered similar climate disasters with severe flooding in the Huaihe River valley and heat waves in the southern Yangtze River delta and South China. Using SST data and outgoing longwave radiation (OLR) data from NOAA along with reanalysis data from NCEP/NCAR, the 2002/03 and 2006/07 El Ni(n)o episodes in the central Pacific and their delayed impacts on the following early summertime climate anomalies of eastern China were analyzed. The possible physical progresses behaved as follows: Both of the moderate E1 Ni(n)o episodes matured in the central equatorial Pacific during the early winter. The zonal wind anomalies near the sea surface of the west-central equatorial Pacific excited equatorial Kelvin waves propagating eastward and affected the evolution of the E1 Ni(n)o episodes. From spring to early summer, the concurring anomalous easterly winds in the central equatorial Pacific and the end of upwelling Kelvin waves propagating eastward in the western equatorial Pacific, favored the equatorial warm water both of the SST and the subsurface temperature in the western Pacific. These conditions favored the warm state of the western equatorial Pacific in the early summer for both cases of 2003 and 2007. Due to the active convection in the western equatorial Pacific in the early summer and the weak warm SST anomalies in the tropical western Pacific from spring to early summer, the convective activities in the western Pacific warm pool showed the pattern in which the anomalous strong convection only appeared over the southern regions of the tropical western Pacific warm pool, which effects the meridional shift of the western Pacific subtropical high in the summer. The physical progress of the delayed impacts of the E1 Nifio episodes in the central equatorial Pacific and their decaying evolution on the climate anomalies in eastern China were interpreted through the key role of special pattern for the heat convection in the tropical western Pacific warm pool and the response of the western North Pacific anomalous anticyclone.  相似文献   

19.
赤道低平流层纬向风垂直切变与ENSO变率的关系   总被引:1,自引:0,他引:1  
利用NCEP/NCAR 40a再分析资料研究了赤道低平流层纬向风垂直切变与ENSO变率间的关系。结果得出,赤道低平流层纬向风的垂直切变呈现明显的准两年振荡,SOI和Nino3区SSTA的准两年周期成分与赤道低平流层纬向风垂直切变分别呈现反位相和同位相关系。赤道低平流层西(东)风切变位相时,OLR、1000hPa高度,2000hPa高度和温度、850hPa温度等要素的距平分布与其在El Nino(La Nina)时段的分布相似。  相似文献   

20.
The convective equatorial waves in the NCEP/NCAR reanalysis and intermediate complexity atmospheric model QTCM are studied on the base of double space-time spectral analysis. The frequency-wavenumber spectra of outgoing longwave radiation, precipitation, zonal wind stress and net heat flux are obtained. Further, the propagation characteristics, amplitude and seasonal variability of filtered waves are analyzed. It is shown that QTCM simulates a wide variety of equatorial waves that share many characteristics with the observations. It is suggested that convective scheme applied in the model allows for simulation of interaction at interannual-intraseasonal time scales. The role of interannual SST forcing and extratropical excitation is elucidated using the model’s experiments with specific boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号