首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental outputs of 11 Atmospheric Model Intercomparison Project (AMIP) models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed to assess the atmospheric circulation anomaly over Northern Hemisphere induced by the anomalous rainfall over tropical Pacific and Indian Ocean during boreal winter.The analysis shows that the main features of the interannual variation of tropical rainfall anomalies,especially over the Central Pacific (CP) (5°S-5°N,175°E-135°W) and Indo-western Pacific (IWP) (20°S-20°N,110°-150°E) are well captured in all the CMIP5/AMIP models.For the IWP and western Indian Ocean (WIO) (10°S-10°N,45°-75°E),the anomalous rainfall is weaker in the 11 CMIP5/AMIP models than in the observation.During El Ni(n)o/La Ni(n)a mature phases in boreal winter,consistent with observations,there are geopotential height anomalies known as the Pacific North American (PNA) pattern and Indo-western Pacific and East Asia (IWPEA) pattern in the upper troposphere,and the northwestern Pacific anticyclone (cyclone) (NWPA) in the lower troposphere in the models.Comparison between the models and observations shows that the ability to simulate the PNA and NWPA pattern depends on the ability to simulate the anomalous rainfall over the CP,while the ability to simulate the IWPEA pattern is related to the ability to simulate the rainfall anomaly in the IWP and WIO,as the SST anomaly is same in AMIP experiments.It is found that the tropical rainfall anomaly is important in modeling the impact of the tropical Indo-Pacific Ocean on the extratropical atmospheric circulation anomaly.  相似文献   

2.
The possible mechanism behind the variability in the dipole pattern of boreal winter precipitation over East Asia is analyzed in this study. The results show that the SST anomalies(SSTAs) over the South Pacific Ocean(SPO) in boreal autumn are closely related to the variability in the dipole pattern of boreal winter precipitation over East Asia. The physical link between the boreal autumn SPO SSTAs and the boreal winter East Asian precipitation dipole pattern is shown to mainly be the seasonal persistence of the SPO SSTAs themselves. The seasonal persistence of the SPO SSTAs can memorize and transport the signal of the boreal autumn SSTAs to the following winter, and then stimulates a meridional teleconnection pattern from the SH to the NH, resulting in a meridional dipole pattern of atmospheric circulation over East Asia in boreal winter. As a major influencing factor, this dipole pattern of the atmospheric circulation can finally lead to the anomalous precipitation dipole pattern over East Asia in boreal winter. These observed physical processes are further confirmed in this study through numerical simulation. The evidence from this study, showing the impact of the SPO SSTAs in boreal autumn,not only deepens our understanding of the variability in East Asian boreal winter precipitation, but also provides a potentially useful predictor for precipitation in the region.  相似文献   

3.
近百年东亚冬季气温及其大气环流变化型态   总被引:7,自引:2,他引:5  
范可  刘辉 《大气科学》2013,37(2):383-394
利用最新20世纪近百年再分析气象资料,研究近百年东亚冬季气温变化型及其相关的大气环流型态.结果表明近百年内东亚冬季气温主要有两种变化型:第一是东亚西南与东北相反气温变化型,表现在40°N以南及105°E以西地区(西南地区)气温变化与40°N以北及105°E以东地区(东北地区)变化相反;第二是40°N以南气温一致变化型.与第一种气温变化型耦合的大气模态是500hPa欧亚型遥相关、西伯利亚高压及北大西洋涛动.当欧亚型遥相关负位相,北大西洋涛动正位相及西伯利亚高压减弱时,有利于蒙古和我国105° E以东的区域增温而我国西南地区和青藏高原降温,反之亦然.第二种气温变化型耦合大气模态是500hPa西太平洋型遥相关,北太平洋涛动.当西太平洋型遥相关及北太平洋涛动处于正位相时(北太平洋北负南正),东亚40°N以南地区增温,东亚40°N以北地区降温.耦合的大气模态的型态差异,影响各阶段气温的年际变化.近一百年中,欧亚型遥相关和北大西洋涛动在1984~2010期间的型态最显著,是20世纪80年代东亚显著增暖的原因之一.研究还发现20世纪中期后东亚气温的年际变化与极地环流的变化联系紧密,表现在西伯利亚高压范围东扩并与极地环流联系,也是近百年气温趋势上升的一个原因.  相似文献   

4.
The interdecadal change in the relationship between the El Niño–Southern Oscillation (ENSO) and atmospheric circulation over the North Pacific is investigated using both observational data and an atmospheric general circulation model. There are two prominent modes of winter mid-latitude atmospheric variability in the North Pacific: the West Pacific (WP) teleconnection and the Aleutian Low (AL). The relationship between ENSO and the WP-AL patterns changed notably around the late 1970s. From 1957 to 1975, during the mature phase of ENSO, significant sea surface temperature anomalies (SSTAs) occurred, mainly in the equatorial eastern Pacific Ocean; the associated atmospheric circulation anomaly pattern resembles the negative phase of a WP teleconnection pattern. In contrast, for the 1978–2011 period, significant negative SSTAs were observed in the western and extratropical Pacific in both hemispheres, with some significant positive SSTAs appearing over the eastern Pacific. This is in agreement with the defined regions of a mega-ENSO, the associated atmospheric circulation anomaly pattern resembles the AL mode. Further analysis suggests that a negative–positive anomaly pattern in the 500?hPa geopotential height throughout the entire North Pacific, possibly enhanced by the SSTAs in the extratropical North Pacific associated with the mature phase of ENSO, is responsible for modulating the relationship between ENSO and the North Pacific atmospheric circulation.  相似文献   

5.
南极海冰首要模态呈现偶极子型异常,正负异常中心分别位于别林斯高晋海/阿蒙森海和威德尔海。过去研究表明冬春季节南极海冰涛动异常对后期南极涛动(Antarctic Oscillation,AAO)型大气环流有显著影响,而AAO可以通过经向遥相关等机制影响北半球大气环流和东亚气候。本文中我们利用观测分析发现南极海冰涛动从5~7月(May–July,MJJ)到8~10月(August–October, ASO)有很好的持续性,并进一步分析其对北半球夏季大气环流的可能影响及其物理过程。结果表明,MJJ南极海冰涛动首先通过冰气相互作用在南半球激发持续性的AAO型大气环流异常,使得南半球中纬度和极地及热带之间的气压梯度加大,在MJJ至JAS,纬向平均纬向风呈现显著的正负相间的从南极到北极的经向遥相关型分布。对流层中层位势高度场上,在澳大利亚北部到海洋性大陆区域,出现显著的负异常,在东亚沿岸从低纬到高纬呈现南北走向的“? + ?”太平洋—日本(Pacific–Japan,PJ)遥相关波列,其对应赤道中部太平洋及赤道印度洋存在显著的降水和海温负异常,西北太平洋至我国东部沿海地区存在显著降水正异常和温度负异常;低纬度北美洲到大西洋一带存在的负位势高度异常和北大西洋附近存在的正位势高度异常中心,构成一个类似于西大西洋型遥相关(Western Atlantic,WA)的结构,对应赤道南大西洋降水增加和南撒哈拉地区降水减少。从物理过程来看,南极海冰涛动首先通过局地效应影响Ferrel环流,进而通过经圈环流调整使得海洋性大陆区域和热带大西洋上方的Hadley环流上升支得到增强,海洋性大陆区域特别是菲律宾附近的热带对流活动偏强,激发类似于负位相的PJ波列,影响东亚北太平洋地区的大气环流,而热带大西洋对流增强和北传特征,则通过激发WA遥相关影响大西洋和欧洲地区的大气环流。以上两种通道将持续性MJJ至ASO南极海冰涛动强迫的大气环流信号从南半球中高纬度经热带地区传递到北半球中高纬地区,从而对热带和北半球夏季大气环流产生显著影响。  相似文献   

6.
利用45年的ECMWF再分析资料,使用SVD方法研究了冬季北太平洋地区表层海温(SST)异常与大气环流异常间的主要耦合模态,探讨了大尺度海-气耦合型与天气尺度瞬变扰动的相互关系。分析结果表明,中纬度北太平洋地区冬季存在两种主要的海-气耦合型,第1种耦合型反映了与ENSO紧密相关的中纬度北太平洋冬季海温异常分布型以及大气的PNA型,第2种耦合型SST异常集中在东亚沿海以及中纬度北太平洋海流区,相应的大气场则为暖(冷)SSTA上空东西向带状区域内位势高度偏高(低),明显独立于ENSO型。进一步的合成分析表明,在第1种耦合型SST正(负)异常年里,冬季阿留申低压主体位置偏西南(东北),从东北亚到北美西海岸的西北—东南向带状区域内是低层大气温度正(负)异常区和高层西风负(正)异常区,西风负(正)异常中心位于西风急流出口处的北太平洋中东部,而西风急流主体区的风速变化很小。在第2种耦合型东亚沿海至中纬度北太平洋海流区SST偏暖(冷)时,阿留申低压整体偏弱(强),SST暖(冷)异常上空的大气温度偏暖(冷),高层西风急流区西风偏弱(强)。两种耦合型均显示出在北太平洋中纬度地区大气和海洋的异常相关中心有很好的空间对应性。在两种耦合型下,中纬度北太平洋冬季的大气斜压性也发生截然不同的改变,引起中纬度天气尺度瞬变扰动活动异常。瞬变扰动异常的动力强迫作用对北太平洋西风异常的形成存在正反馈作用,而其热力作用则试图破坏与两种海-气耦合模态相关的大气温度异常型。  相似文献   

7.
刘毓赟  陈文 《大气科学》2012,36(2):423-432
利用NCEP/NCAR再分析资料和我国160站地表面气温和降水的观测资料, 首先采用旋转经验正交函数 (REOF) 方法定义了冬季欧亚遥相关型 (EU), 并计算了冬季的欧亚遥相关型指数 (EU指数), 在此基础上分析了欧亚遥相关型的时间和空间变化特征, 并进一步研究了与欧亚遥相关型异常相联系的东亚冬季风系统变化以及我国冬季气温和降水的异常。针对欧亚遥相关型的分析结果表明, 在欧亚大陆上空, 大气内部存在与EU相联系的波列从北大西洋传播到乌拉尔山以东的欧亚大陆地区。在时间变化上, 冬季EU以为年际变率为主, 年代际变化的分量不明显, 其显著周期表现为2~4年。当冬季EU处于正位相时, 与之相关联的东亚大气环流异常表现为: 东亚地区高空的急流增强、 东亚大槽加深, 导致东亚冬季风偏强, 东亚地区温度偏低, 从而使得我国东部降温、 降水减少; 反之, 当冬季EU处于负位相时, 我国东部增温、 降水增加。  相似文献   

8.
有关南半球大气环流与东亚气候的关系研究的若干新进展   总被引:14,自引:15,他引:14  
范可  王会军 《大气科学》2006,30(3):402-412
南半球大气环流是全球大气环流的重要组成部分,也是影响气候变化和亚洲季风系统的一个重要因素.中国气象学家很早就注意到南半球大气环流对东亚夏季风降水的影响.近年来,有关南半球气候变率的研究目前正受到世界气象学家越来越多的关注.南半球中高纬大气资料的丰富及南极涛动的确定,使得认识南半球高中纬环流的年际变动规律及其与东亚气候关系成为可能.本文主要介绍近年来有关南极涛动的年际变化与沙尘天气发生频次及东亚冬春季气候的关系,古气候资料揭示的南极涛动与华北降水的关系,以及南半球大气环流与长江中下游夏季降水的关系和南极涛动变率的可预测性等方面的研究进展.并对未来研究方向作了初步的展望.  相似文献   

9.
Signature of the Antarctic oscillation in the northern hemisphere   总被引:1,自引:0,他引:1  
Using the ECWMF daily reanalysis data, this paper investigates signatures of the Antarctic Oscillation (AAO) in the upper troposphere of the northern hemisphere. It is found that during boreal winter, a positive (negative) phase of the AAO is associated with anomalous easterlies (westerlies) in middle-low latitudes (~30–40°N) and anomalous westerlies (easterlies) in middle-high latitudes (~45–65°N) of the upper troposphere about 25–40 days later. While there is also a response in zonal wind in the tropics, namely over the central-eastern Pacific, to some extent, these tropical zonal wind anomalies can trigger a Pacific/North American teleconnection patterns (PNA)-like quasi-stationary Rossby waves that propagate into the Northern Hemisphere and gradually evolve into patterns which resemble North Atlantic teleconnection patterns. Furthermore, these quasi-stationary Rossby waves might give rise to anomalous eddy momentum flux convergence and divergence to accelerate anomalous zonal winds in the Northern Hemisphere.  相似文献   

10.
Previous studies have identified an Asian-Pacific Oscillation (APO) teleconnection pattern, which exhibits an out-of-phase relationship in the summer tropospheric temperature with warming over the Eurasia and cooling over the Northern Pacific and the Northern America, and vice versa. But the interannual variation of this teleconnection remains obscure. This study points out that interannual variation of the APO teleconnection is associated with the second empirical orthogonal function (EOF) mode of the northern-hemisphere upper tropospheric temperature during boreal summer, which accounts for 14% of the variance. A heat budget analysis is conducted for the Eurasian region and the North Pacific region respectively to reveal the cause of the zonal dipole mode temperature structure. For the Eurasia region, the warming is contributed by the adiabatic heating process due to downward vertical motion anomalies. For the Northern Pacific region, the temperature variation is mainly contributed by zonal advection associated with interannual zonal wind perturbation acting on the climatological temperature gradient. Composite analysis and numerical experiments with an atmospheric general circulation model (AGCM) shows the interannual zonal wind perturbation is related to the sea surface temperature anomalies over the equatorial eastern Pacific.  相似文献   

11.
This paper analyzes the possible influence of boreal winter Arctic Oscillation/North Atlantic Oscillation (AO/ NAO) on the Indian Ocean upper ocean heat content in summer as well as the summer monsoonal circulation. The strong interannual co-variation between winter 1000-hPa geopotential height in the Northern Hemisphere and summer ocean heat content in the uppermost 120 m over the tropical Indian Ocean was investigated by a singular decomposition analysis for the period 1979–2014. The second paired-modes explain 23.8% of the squared covariance, and reveal an AO/NAO pattern over the North Atlantic and a warming upper ocean in the western tropical Indian Ocean. The positive upper ocean heat content enhances evaporation and convection, and results in an anomalous meridional circulation with ascending motion over 5°S–5°N and descending over 15°–25°N. Correspondingly, in the lower troposphere, significantly anomalous northerly winds appear over the western Indian Ocean north of the equator, implying a weaker summer monsoon circulation. The off-equator oceanic Rossby wave plays a key role in linking the AO/NAO and the summer heat content anomalies. In boreal winter, a positive AO/NAO triggers a down-welling Rossby wave in the central tropical Indian Ocean through the atmospheric teleconnection. As the Rossby wave arrives in the western Indian Ocean in summer, it results in anomalous upper ocean heating near the equator mainly through the meridional advection. The AO/NAO-forced Rossby wave and the resultant upper ocean warming are well reproduced by an ocean circulation model. The winter AO/NAO could be a potential season-lead driver of the summer atmospheric circulation over the northwestern Indian Ocean.  相似文献   

12.
The Maritime Continent (MC) is under influences of both the tropical Pacific and the Indian Ocean. Anomalous convective activities over the MC have significant impacts on the East Asian summer monsoon (EASM) and climate in China. In the present study, the variation in convective activity over the MC in boreal summer and its relationship to EASM anomalies are investigated based on regression analysis of NCEP–NCAR reanalysis and CMAP [Climate Prediction Center (CPC) Merged Analysis of Precipitation] data, with a focus on the impacts of ENSO and the Indian Ocean Dipole (IOD). The most significant interannual variability of convective activity is found over 10°S–10°N, 95°–145°E, which can be roughly defined as the key area of the MC (hereafter, KMC). Outgoing longwave radiation anomaly (OLRA) exhibits 3- to 7-yr periodicities over the KMC, and around 70% of the OLRA variance can be explained by the ENSO signal. However, distinct convection and precipitation anomalies still exist over this region after the ENSO and IOD signals are removed. Abnormally low precipitation always corresponds to positive OLRA over the KMC when negative diabatic heating anomalies and anomalous cooling of the atmospheric column lead to abnormal descending motion over this region. Correspondingly, abnormal divergence occurs in the lower troposphere while convergence occurs in the upper troposphere, triggering an East Asia–Pacific/Pacific–Japan (EAP/PJ)-like anomalous wave train that propagates northeastward and leads to a significant positive precipitation anomaly from the Yangtze River valley in China to the islands of Japan. This EAP/PJ-like wave pattern becomes even clearer after the removal of the ENSO signal and the combined effects of ENSO and IOD, suggesting that convective anomalies over the KMC have an important impact on EASM anomalies. The above results provide important clues for the prediction of EASM anomalies and associated summer precipitation anomalies in China.  相似文献   

13.
北半球冬季大气环流遥相关型特征与我国区域气候   总被引:7,自引:2,他引:7  
林振敏  施能 《气象科技》2004,32(5):333-337342
计算了1951/1952~2002/2003年北半球冬季大气环流遥相关型的强度指数,研究了它们的长期变化和近期特征,指出近10年来WA型的负趋势,PNA型的正趋势还在持续并有所加强。它们的强度突变分别发生于20世纪80年代初(WA型1984年由强转弱)及70年代中(PNA型1976年由弱转强)。还指出,近10年来,亚洲(亚欧)地区的纬向环流强度继续在加强,经向环流强度继续在减弱,大气环流及遥相关型强度的这种变化是中国冬季气候变化的一个重要原因。  相似文献   

14.
The impact of the boreal summer intraseasonal oscillation (BSISO) on extreme hot and cool events was investigated, by analyzing the observed and reanalysis data for the period from 1983 to 2012. It is found that the frequency of the extreme events in middle and high latitudes is significantly modulated by the BSISO convection in the tropics, with a 3–9-day lag. During phases 1 and 2 when the BSISO positive rainfall anomaly is primarily located over a northwest–southeast oriented belt extending from India to Maritime Continent and a negative rainfall anomaly appears in western North Pacific, the frequency of extreme hot events is 40% more than the frequency of non-extreme hot events. Most noticeable increase appears in midlatitude North Pacific (north of 40°N) and higher-latitude polar region.Two physical mechanisms are primarily responsible for the change of the extreme frequency. First, an upper-tropospheric Rossby wave train (due to the wave energy propagation) is generated in response to a negative heating anomaly over tropical western North Pacific in phases 1 and 2. This wave train consists of a strong high pressure anomaly center northeast of Japan, a weak low pressure anomaly center over Alaska, and a strong high pressure anomaly center over the western coast of United States. Easterly anomalies to the south of the two strong midlatitude high pressure centers weaken the climatological subtropical jet along 40°N, which is accompanied by anomalous subsidence and warming in North Pacific north of 40°N. Second, an enhanced monsoonal heating over South Asia and East Asia sets up a transverse monsoonal overturning circulation, with large-scale ascending (descending) anomalies over tropical Indian (Pacific) Ocean. Both the processes favor more frequent extreme hot events in higher-latitude Northern Hemisphere. An anomalous atmospheric general circulation model is used to confirm the tropical heating effect.  相似文献   

15.

The El Niño/Southern Oscillation (ENSO) strongly influences the large-scale atmospheric circulation over the extratropical North Pacific during boreal winter, which has an important impact on North American winter climate. This study analyses the interdecadal variability of the ENSO teleconnection to the wintertime extratropical North Pacific, over the period 1900–2010, using a range of observationally derived datasets and an ensemble of atmospheric model simulations. The observed teleconnection strength is found to vary substantially over the 20th century. Specifically, 31-year periods in the early-century (1912–1942), mid-century (1946–1976) and the late-century (1980–2010) are identified in the observations when the ENSO teleconnection to the North Pacific circulation are found to be particularly strong, weak and strong respectively. The ENSO teleconnection to the North Pacific in the atmospheric model ensemble is weak in the mid-century period and substantially stronger in the late-century, closely following the variability in the observed ENSO-North Pacific teleconnection. In the early-century, however, the atmospheric model also exhibits a weak teleconnection to the North Pacific, unlike in observations. In a subset of the model realisations that exhibit similar ENSO-North Pacific teleconnection as in observations during the early-century period there are large differences in extratropical circulation but not in equatorial Pacific precipitation anomalies, in contrast to the late-century period. This suggests that the high correlation in the early century period is largely due to internal extratropical variability. The important implications of these results for seasonal predictability and the assessment of seasonal forecasting systems are discussed.

  相似文献   

16.
气候系统模式FGOALS_gl模拟的赤道太平洋年际变率   总被引:4,自引:1,他引:3  
满文敏  周天军  张丽霞 《大气科学》2010,34(6):1141-1154
本文分析了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室 (LASG/IAP) 发展的气候系统模式FGOALS_gl对赤道太平洋年际变率的模拟能力。结果表明, FGOALS_gl可以较好地模拟出赤道太平洋SST异常年际变率的主要特征, 但模拟的ENSO事件振幅偏大, 且变率周期过于规则。耦合模式模拟的气候平均风应力在热带地区比ERA40再分析资料的风应力强度偏弱30%左右, 由此引起的海洋平均态的变化, 是造成模拟的ENSO振幅偏强的主要原因。FGOALS_gl模拟的ENSO峰值多出现在春季或夏季, 原因可归之于模式模拟的SST季节循环偏差。耦合模式可以合理再现ENSO演变过程, 但观测中SST异常的东传特征在模式中没有得到再现, 这与模拟的ENSO发展模态表现为单一的 “SST模态” 有关。模拟的ENSO位相转换机制与 “充电—放电” 概念模型相符合, 赤道太平洋热含量的变化是维持ENSO振荡的机制。在ENSO暖位相时期, 赤道中东太平洋与印度洋—西太平洋暖池区的海平面气压距平型表现为南方涛动型 (SO型), 200 hPa位势高度分布表现为太平洋—北美遥相关型 (PNA型)。  相似文献   

17.
施能 《气象学报》1996,54(6):675-683
研究北半球冬季大气环流遥相关型的长期变化发现:WA,PNA型有明显趋势变化及年代际变化。WA型有明显负趋势,PNA型有正趋势,它们的强度突变分别发生于1980年代初(WA型1983年由强转弱)及1970年代中(PNA型1976年由弱转强)。与此同时,亚洲地区、亚欧地区的经向环流强度于1983年突然减弱。大气环流及遥相关型强度的这种年代际变化是中国冬季气候变化的一个重要原因。  相似文献   

18.
Caribbean rainfall and associated regional-scale ocean–atmosphere anomalies are analyzed during and after warm pool (WP) and cold tongue (CT) El Niño (EN) events (i.e. from the usual peak of EN events in boreal winter to next summer from 1950 to 2011). During and after a CT event, a north–south dipolar pattern with positive (negative) rainfall anomalies over the northern (southern) Caribbean during the boreal winter tends to reverse in spring, and then to vanish in summer. On the contrary, during and after a WP event, weak rainfall anomalies during the boreal winter intensify themselves from spring, with anomalous wet conditions over most of the Caribbean basin observed during summer, except over the eastern coast of Nicaragua and Costa Rica. The Caribbean rainfall anomalies associated with WP and CT events are shaped by competition between at least four different, but interrelated, mechanisms; (1) the near-equatorial large-scale subsidence anomaly over the equatorial Atlantic linked to the zonal adjustment of the Walker circulation; (2) the extra-tropical wave-like train combining positive phase of the Pacific/North American mode and negative phase of the North Atlantic Oscillation; (3) the wind-evaporation-sea surface temperature (SST) positive feedback coupling warmer-than-normal SST with weaker-than-normal low level easterlies over the tropical North Atlantic; and (4) the air-sea coupling between the speed of low level easterlies, including the Caribbean low level jet, and the SST anomaly (SSTA) gradient between the Caribbean basin and the eastern equatorial Pacific. It seems that Caribbean rainfall anomalies are shaped mostly by mechanisms (1–3) during CT events from the boreal winter to spring. These mechanisms seem less efficient during WP events when the atmospheric response seems driven mostly by mechanism (4), coupling positive west-east SSTA gradient with weaker-than-normal low level easterlies, and secondary by mechanism (3), from the boreal spring to summer.  相似文献   

19.
By analyzing the observation data and performing the numerical simulation tests,it is shownthat the Kara and the Barents Sea area is a key region to influence climate variation over theNorthern Hemisphere.The variation of winter sea-ice area in the key region is closely associatedwith that of the EU teleconnection pattern at 500 hPa and East Asia winter monsoon(EAWM)intensity.When a heavy sea-ice prevails in the key region,the EU teleconnection pattern at 500hPa is excited easily(there are positive 500 hPa height anomalies over around Japan and WestEurope),and winter Siberia high is weakened,meanwhile,sea level pressure(SLP)has positiveanomalies over the Northern Pacific.Therefore,EAWM will be weakened,winter temperatureover East Asia is above normal and the frequency of cold-air activity in February in China will bedecreased.When the light sea-ice occurs in the key region,the results will be opposite.  相似文献   

20.
By analyzing the observation data and performing the numerical simulation tests,it is shown that the Kara and the Barents Sea area is a key region to influence climate variation over the Northern Hemisphere.The variation of winter sea-ice area in the key region is closely associated with that of the EU teleconnection pattern at 500 hPa and East Asia winter monsoon(EAWM) intensity.When a heavy sea-ice prevails in the key region,the EU teleconnection pattern at 500 hPa is excited easily(there are positive 500 hPa height anomalies over around Japan and West Europe),and winter Siberia high is weakened,meanwhile,sea level pressure(SLP) has positive anomalies over the Northern Pacific.Therefore,EAWM will be weakened,winter temperature over East Asia is above normal and the frequency of cold-air activity in February in China will be decreased.When the light sea-ice occurs in the key region,the results will be opposite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号