首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of numerical analyses of boundary value problems in geomechanics include output of three‐dimensional stress and strain states. Two‐dimensional plots of stress–stress or stress–strain quantities, often used to represent such output, do not fully communicate the evolution of stress and strain states. This paper describes the use of glyphs and hyperstreamlines for the visual representation of three dimensional stress and strain tensors in geomechanics applications. Glyphs can be used to represent principal stress states as well as normal stresses at a point. The application of these glyphs is extended in this paper to represent strain states. The paper introduces a new glyph, called HWY glyph for the representation of shear tensor components. A load step‐based hyperstreamline is developed to show the evolution of a stress or strain tensor under a general state of loading. The evolution of stress–strain states from simulated laboratory tests and a general boundary value problem of a deep braced excavation are represented using these advanced visual techniques. These visual representations facilitate the understanding of complex multidimensional stress–strain soil constitutive relationships. The visual objects introduced in this paper can be applied to stress and strain tensors from general boundary value problems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, frequency domain dynamic response of a pile embedded in a half‐space porous medium and subjected to P, SV seismic waves is investigated. According to the fictitious pile methodology, the problem is decomposed into an extended poroelastic half‐space and a fictitious pile. The extended porous half‐space is described by Biot's theory, while the fictitious pile is treated as a bar and a beam and described by the conventional 1‐D structure vibration theory. Using the Hankel transformation method, the fundamental solutions for a half‐space porous medium subjected to a vertical or a horizontal circular patch load are established. Based on the obtained fundamental solutions and free wave fields, the second kind of Fredholm integral equations describing the vertical and the horizontal interaction between the pile and the poroelastic half‐space are established. Solution of the integral equations yields the dynamic response of the pile to plane P, SV waves. Numerical results show the parameters of the porous medium, the pile and incident waves have direct influences on the dynamic response of the pile–half‐space system. Significant differences between conventional single‐phase elastic model and the poroelastic model for the surrounding medium of the pile are found. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A single pile embedded in a layered poroelastic half‐space subjected to a harmonic lateral load is investigated in this study. Based on Biot's theory, the frequency domain fundamental solution for a horizontal circular patch load applied in the layered poroelastic half‐space is derived via the transmission and reflection matrices method. Utilizing Muki and Sternberg's method, the second kind of Fredholm integral equation describing the dynamic interaction between the layered half‐space and the pile subjected to a top harmonic lateral load is constructed. The proposed methodology is validated by comparing results of this paper with some existing results. Numerical results show that for a two‐layered half‐space, the thickness of the upper softer layer has pronounced influences on the dynamic response of the pile and the half‐space. For a three‐layered half‐space, the presence of a softer middle layer in the layered half‐space will enhance the compliance for the pile significantly, while a stiffer middle layer will diminish the dynamic compliance of the pile considerably. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In this article, we present the solutions for the stresses induced by four different loads associated with an axially loaded pile in a continuously inhomogeneous cross‐anisotropic half‐space. The planes of cross‐anisotropy are parallel to the horizontal surface of the half‐space, and the Young's and shear moduli are assumed to vary exponentially with depth. The four loading types are: an embedded point load for an end‐bearing pile, uniform skin friction, linear variation of skin friction, and non‐linear parabolic variation of skin friction for a friction pile. The solutions for the stresses due to the pile load are expressed in terms of the Hankel integral and are obtained from the point load solutions of the same inhomogeneous cross‐anisotropic half‐space which were derived recently by the authors (Int. J. Rock Mech. Min. Sci. 2003; 40 (5):667–685). A numerical procedure is proposed to carry out the integral. For the special case of homogeneous isotropic and cross‐anisotropic half‐space, the stresses predicted by the numerical procedure agree well with the solutions of Geddes and Wang (Geotechnique 1966; 16 (3):231–255; Soils Found. 2003; 43 (5):41–52). An illustrative example is also given to investigate the effect of soil inhomogeneity, the type and degree of soil anisotropy, and the four different loading types on the vertical normal stress. The presented solutions are more realistic in simulating the actual stratum of loading problem in many areas of engineering practice. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper we present a new approach to computations in elasto‐plastic geomechanics. The approach is based on the object oriented design philosophy and observations on similarity of most incremental elastic–plastic material models. This new approach to elastic–plastic computations in geomechanics allows for creation of template material models. The analysis of template material models will in turn allow for an easy implementation of other elastic–plastic material models based on the object oriented design principles. Furthermore we present some illustrative implementation details. Finally we present analysis results that emphasize features of template elastic–plastic computations in geomechanics. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a finite‐element (FE) model for simulating injection well testing in unconsolidated oil sands reservoir. In injection well testing, the bottom‐hole pressure (BHP) is monitored during the injection and shut‐in period. The flow characteristics of a reservoir can be determined from transient BHP data using conventional reservoir or well‐testing analysis. However, conventional reservoir or well‐testing analysis does not consider geomechanics coupling effects. This simplified assumption has limitations when applied to unconsolidated (uncemented) oil sands reservoirs because oil sands deform and dilate subjected to pressure variation. In addition, hydraulic fracturing may occur in unconsolidated oil sands when high water injection rate is used. This research is motivated in numerical modeling of injection well testing in unconsolidated oil sands reservoir considering the geomechanics coupling effects including hydraulic fracturing. To simulate the strong anisotropy in mechanical and hydraulic behaviour of unconsolidated oil sands induced by fluid injection in injection well testing, a nonlinear stress‐dependent poro‐elasto‐plastic constitutive model together with a strain‐induced anisotropic permeability model are formulated and implemented into a 3D FE simulator. The 3D FE model is used to history match the BHP response measured from an injection well in an oil sands reservoir. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A quasi-3D continuum method is presented for the dynamic nonlinear effective stress analysis of pile foundation under earthquake excitation. The method was validated using data from centrifuge tests on single piles and pile groups in liquefiable soils conducted at the University of California at Davis. Some results from this validation studies are presented. The API approach to pile response using py curves was evaluated using the quasi-3D method and the results from simulated earthquake tests on a model pile in a centrifuge. The recommended API stiffnesses appear to be much too high for seismic response analysis under strong shaking, but give very good estimates of elastic response.  相似文献   

8.
Internal parts of the Alps have undergone widespread extensional deformation in the course of their Neogene exhumation history. Palaeostress inversion methods are used to map the prevailing stress fields and their evolution through time. Here we present new data from 100 sites with a total of about 2000 faults/striae couples, covering a large portion of the inner north‐western Alps. Palaeostress tensors are mostly extensional, although one‐third of them are transcurrent. The dominant direction of minimum horizontal stress axes (σ3) is in an orogen‐parallel (N30° to N70°) orientation around the bend of the north‐west alpine arc. A comparison between this older (Neogene, post‐metamorphic) stress field with the current stress and strain field determined from seismotectonics and geodesy indicates a change in deformation mode from early orogen‐parallel extrusion to a late and ongoing orogen‐perpendicular spreading.  相似文献   

9.
Thermal oil recovery processes involve high pressures and temperatures, leading to large volume changes and induced stresses. These cannot be handled by traditional reservoir simulation because it does not consider coupled geomechanics effects. In this paper we present a fully coupled, thermal half‐space model using a hybrid DDFEM method. A finite element method (FEM) solution is adopted for the reservoir and the surrounding thermally affected zone, and a displacement discontinuity method is used for the surrounding elastic, non‐thermal zone. This approach analyzes stress, pressure, temperature and volume change in the reservoir; it also provides stresses and displacements around the reservoir (including transient ground surface movements) in a natural manner without introducing extra spatial discretization outside the FEM zone. To overcome spurious spatial temperature oscillations in the convection‐dominated thermal advection–diffusion problem, we place the transient problem into an advection–diffusion–reaction problem framework, which is then efficiently addressed by a stabilized finite element approach, the subgrid‐scale/gradient subgrid‐scale method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Three-dimensional (3D) numerical analyses have been carried out to study the behaviour of a single pile to adjacent tunnelling in the lateral direction of the pile. The numerical analyses have included comparisons between the current study, previous elastic solutions and advanced 3D elasto-plastic analyses. In the numerical analyses, the interaction between the tunnel, the pile and the soil next to the pile has been analysed. The study includes the axial force distributions on the pile, the relative shear displacement between the pile and the soil, the shear stresses at the soil next to the pile and the pile settlement. In particular, the shear stress transfer mechanism along the pile related to tunnel advancement has been analysed by using interface elements allowing soil slip. It has been found that existing solutions may not accurately estimate the pile behaviour since several key issues are not included. Due to changes in the relative shear displacement between the pile and the soil next to the pile with tunnel advancement, the shear stresses and axial force distributions along the pile change drastically. Downward shear stress develops at the upper part of the pile, while upward shear stress is mobilised at the lower part of the pile, resulting in a compressive force on the pile. A maximum compressive force of about 0.25–0.52Pa was developed on the pile, solely due to tunnelling, depending on the pile tip locations relative to the tunnel position, where Pa is the service pile loading prior to tunnelling. The majority of the axial force on the pile developed within ±2D in the transverse direction (behind and ahead of piles) relative to the pile position, where D is the tunnel diameter. In addition, mobilisation of shear strength at the pile–soil interface was found to be a key factor governing pile–soil–tunnelling interaction. The reduction of apparent allowable pile capacity due to tunnelling was dependent on the pile location relative to the tunnel position. Some insights into the pile behaviour in tunnelling obtained from the numerical analyses will be reported and discussed.  相似文献   

11.
公路桥超长群桩的有效桩长研究   总被引:1,自引:0,他引:1  
王成 《岩土力学》2010,31(5):1569-1573
针对公路桥梁超长群桩的有效桩长问题,对国内公路桥梁桩基的荷载状况进行统计分析,得出桩顶应力主要分布在6~21 MPa范围。进行了长径比为96的桩间距分别为3D、4.5D和6D的3组不同群桩的超长群桩模型试验,得到3种不同桩间距的超长群桩中单桩轴力随着不同荷载的分布图,按照桩身轴力趋于0的桩截面的深度确定有效桩长,并利用指数函数关系分别拟合了3种不同桩间距的桩顶应力与有效桩长之间的关系。根据竖向荷载作用下群桩模型试验与实际原型之间的相似关系,确定公路桥超长群桩与荷载对应的有效桩长取值范围,研究了超长群桩的有效桩长与桩间距之间的关系,并对桥梁桩基有效桩长的取值与桩间距提出了建议。  相似文献   

12.
A simplified method of numerical analysis based on elasticity theory has been developed for the analysis of axially and laterally loaded piled raft foundations embedded in non‐homogeneous soils and incorporated into a computer program “PRAB”. In this method, a hybrid model is employed in which the flexible raft is modelled as thin plates and the piles as elastic beams and the soil is treated as springs. The interactions between structural members, pile–soil–pile, pile–soil–raft and raft–soil–raft interactions, are approximated based on Mindlin's solutions for both vertical and lateral forces with consideration of non‐homogeneous soils. The validity of the proposed method is verified through comparisons with some published solutions for single piles, pile groups and capped pile groups in non‐homogeneous soils. Thereafter, the solutions from this approach for the analysis of axially and laterally loaded 4‐pile pile groups and 4‐pile piled rafts embedded in finite homogeneous and non‐homogeneous soil layers are compared with those from three‐dimensional finite element analysis. Good agreement between the present approach and the more rigorous finite element approach is demonstrated. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
This study focuses on the three‐dimensional (3‐D) characteristics of wave propagation in pipe‐pile using elastodynamic finite integration technique. First, a real 3‐D pile‐soil model in cylindrical coordinate system is presented. Then, the governing equations are established. With the boundary and initial conditions, the numerical solution is obtained. The accuracy and feasibility of the self‐written code are further verified via comparing with the measured data. Velocity histories at different angles of pile top and pile tip are illustrated, and the snapshots reflecting the 3‐D characteristics of wave propagation are given. It shows that the interferences of Rayleigh waves can confuse the result interpretation for pile integrity testing. The increase of hammer contact time can effectively mitigate the interferences, and the interferences of Rayleigh waves are weakest at an angle of 90° from where hammer hits. Besides, surrounding soil can partly mitigate the wave interferences. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
This work is a contribution to the understanding of the mechanical properties of non-cohesive granular materials in the presence of friction and a continuation of our previous work (Roul et al. 2010) on numerical investigation of the macroscopic mechanical properties of sand piles. Besides previous numerical results obtained for sand piles that were poured from a localized source (“point source”), we here consider sand piles that were built by adopting a “line source” or “raining procedure”. Simulations were carried out in two-dimensional systems with soft convex polygonal particles, using the discrete element method (DEM). First, we focus on computing the macroscopic continuum quantities of the resulting symmetric sand piles. We then show how the construction history of the sand piles affects their mechanical properties including strain, fabric, volume fraction, and stress distributions; we also show how the latter are affected by the shape of the particles. Finally, stress tensors are studied for asymmetric sand piles, where the particles are dropped from either a point source or a line source. We find that the behaviour of stress distribution at the bottom of an asymmetric sand pile is qualitatively the same as that obtained from an analytical solution by Didwania and co-workers (Proc R Soc Lond A 456:2569–2588, 2000).  相似文献   

15.
This paper presents a superposition method expanded for computing impedance functions (IFs) of inclined‐pile groups. Closed‐form solutions for obtaining horizontal, vertical, and rocking IFs, estimated by using pile‐to‐pile interaction factors, are proposed. IFs of solitary inclined piles, crossed IFs, and explicit incorporation of compatibility conditions for pile‐head movements are also appropriately taken into consideration. All of these factors should be known in advance and will be computed and shown for the most relevant cases. The accuracy of the proposed closed‐form solutions is verified for 2 × 2 and 3 × 3 square inclined‐pile groups embedded in an isotropic viscoelastic homogeneous half‐space soil medium, with hysteretic damping. The pile‐to‐pile interaction factors are computed by means of a three‐dimensional time‐harmonic boundary elements–finite elements coupling formulation. The results indicate that the IFs obtained from the proposed method are in good agreement with those obtained from the coupling formulation. Furthermore, crossed vertical‐rocking IFs of solitary piles need to be appropriately considered for obtaining rocking IFs when the number of piles is small. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Reservoir simulators typically use cell‐centered finite volume schemes and do not model directly the coupling of the flow processes with the geomechanics. Coupling of geomechanics with fluid flow can be important in many cases, but introducing fully coupled geomechanical effects in those simulators is not a trivial issue, because the geomechanics is better done by using the Galerkin vertex‐centered finite element methods by which the solid displacements are computed at the vertices of the cells. This creates difficulties in interfacing cell variables with nodal variables. Uncoupled or loosely coupled models are used by many researchers/practitioners by which a reservoir model is coupled to a geomechanical model by staggering in‐time flow and deformation via a sophisticated interface that repeatedly calls first flow and then mechanics. The method therefore requires projection of the reservoir cell variables onto the nodes of the geomechanics Galerkin finite element mesh. In this note, we attempt to quantify the errors associated with cell to node projection operations. For that purpose, we use a simple model of the pressure equation for a heterogeneous medium in one dimension. We are able to derive the exact analytical solution for this problem for both nodal and cell pressures. This allows us to compute the errors due to projection analytically, function of meshing refinement and permeability field variations. We compute upper and lower bounds for the errors, and analyze their magnitude for a variety of cases. We conclude that, in general, cell to node projection operations lead to substantial errors. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Batter piles are widely used in geotechnical engineering when substantial lateral resistance is needed or to avoid the interference with existing underground constructions. Nevertheless, there is a lack of fast numerical tools for nonlinear soil‐structure interactions problems for this type of foundation. A novel hypoplastic macroelement is proposed, able to reproduce the nonlinear response of a single batter pile in sand under monotonic and cyclic static loadings. The behavior of batter piles (15°, 30°, and 45°) is first numerically investigated using 3D finite element modeling and compared with the behavior of vertical piles. It is shown that their response mainly depends on the pile inclination and the loading direction. Then, starting from the macroelement for single vertical piles in sand by Li et al (Acta Geotechnica, 11(2):373‐390, 2016), an extension is proposed to take into account the pile inclination introducing simple analytical equations in the expression describing the failure surface. 3D finite element numerical models are adopted to validate the macroelement that is proven able to reproduce the nonlinear behavior in terms of global quantities (forces‐displacements) and to significantly reduce the necessary computational time.  相似文献   

18.
本文依据北京市房山区史家营乡大村涧村的调查成果,借助于有限元分析软件,建立居住区附近影响范围内的边坡三维工程地质力学模型和弹塑性模型,利用有限差分法分析,对单一矸石堆边坡和矸石-岩土混合型边坡,进行计算分析,对比分析了这两种边坡在天然状态下与饱和状态下的安全系数,最终进行了边坡危险性评价。  相似文献   

19.
A modulus‐multiplier approach, which applies a reduction factor to the modulus of single pile py curves to account for the group effect, is presented for analysing the response of each individual pile in a laterally loaded pile group with any geometric arrangement based on non‐linear pile–soil–pile interaction. The pile–soil–pile interaction is conducted using a 3D non‐linear finite element approach. The interaction effect between piles under various loading directions is investigated in this paper. Group effects can be neglected at a pile spacing of 9 times the pile diameter for piles along the direction of the lateral load and at a pile spacing of 6 times the pile diameter for piles normal to the direction of loading. The modulus multipliers for a pair of piles are developed as a function of pile spacing for departure angle of 0, 90, and 180sup>/sup> with respect to the loading direction. The procedure proposed for computing the response of any individual pile within a pile group is verified using two well‐documented full‐scale pile load tests. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Many experiments on conical piles of granular materials have indicated, contrary to simple intuition that the maximum vertical stress does not occur directly beneath the sand‐pile vertex but rather at some distance from the apex resulting in a ring of maximum vertical stress. Some recent experiments have shown that the observed stress dip is very much dependent on construction history. A multi‐slip model has been proposed to investigate the stress dip phenomenon in granular heaps. The double‐slip version of the model was implemented into ABAQUS and used to study the vertical stress distribution along the base of a granular pile. The numerical simulations show that plastic deformation is confined within the localized region around the apex while the rest of the pile is in an elastic state of deformation. Within the plastic region the stress distribution differs significantly depending on the initial active slip orientation. The results show that for homogenous state of granular materials such as those produced by a raining procedure the vertical stress profile along the base reached its peak at the apex (i.e. no dip was observed). On the contrary, granular heaps constructed by the use of a localized source such as a funnel resulted in a significant reduction in the stress distribution within the ring with the minimum attained beneath the peak (i.e. a dip). Therefore, we believe that the initial microstructure and thus the initial slip orientation resulting from sand deposition is the source of the stress dip phenomenon. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号