首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
This paper presents a new constitutive model for the time dependent mechanical behaviour of rock which takes into account both viscoplastic behaviour and evolution of damage with respect to time. This model is built by associating a viscoplastic constitutive law to the damage theory. The main characteristics of this model are the account of a viscoplastic volumetric strain (i.e. contractancy and dilatancy) as well as the anisotropy of damage. The latter is described by a second rank tensor. Using this model, it is possible to predict delayed rupture by determining time to failure, in creep tests for example. The identification of the model parameters is based on experiments such as creep tests, relaxation tests and quasi‐static tests. The physical meaning of these parameters is discussed and comparisons with lab tests are presented. The ability of the model to reproduce the delayed failure observed in tertiary creep is demonstrated as well as the sensitivity of the mechanical response to the rate of loading. The model could be used to simulate the evolution of the excavated damage zone around underground openings. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Predicting the deformations of deep reservoirs due to fluid withdrawal/injection is a challenging task that could have important environmental, social, and economical impacts. Finite element models, if endowed with an appropriate constitutive law, represent a useful tool for computing the displacements, the deformations, and the stress distributions in reservoir applications. Several studies show that hypoelastic laws, based on a stress‐dependent vertical compressibility, are able to provide accurate results, confirmed by in situ and satellite measurements. On the other hand, such laws present some weaknesses related to the numerical implementation, in particular due to the nonsymmetry of the tangent operator. This paper presents a new constitutive model based on 2 invariants (the mean normal and deviatoric stresses), characterized by a variable pressure‐dependent bulk modulus K. This constitutive law allows for overcoming most shortcomings of the hypoelastic law, although preserving the same accuracy, reliability, and ease of use and calibration. This paper presents a procedure to identify the parameters of the new model, starting from the typically available data on the vertical compressibility. Numerical results show a good agreement between the 2 laws, suggesting the proposed approach as a valid alternative in reservoir applications.  相似文献   

3.
This paper deals with a new strategy for initial stress identification by stress relaxation methods, coupled with finite element calculation, and applied to the overcoring test. The back-analysis of such a test uses an inversion method which consists in the minimisation, with a gradient-based algorithm, of a cost functional of least-squares type, which quantizes the difference between measured and computed strains. The computed strains are assessed by three-dimensional finite element modellings of the overcoring test. The inversion methodology is applied to a recent in situ overcoring test performed at Mont Terri laboratory, Switzerland. The inversion gave good results and allows us to validate the inversion methodology. The constitutive law considered for this application is transverse isotropic elasticity but the inversion method developed is applicable to most constitutive laws and every kind of in situ test.  相似文献   

4.
A general approach for obtaining the consistent tangent operator for constitutive rate equations is presented. The rate equations can be solved numerically by the user's favourite time integrator. In order to obtain reliable results, the substepping in integration should be based on a control of the local error. The main ingredient of the consistent tangent operator, namely the derivative of the stress with respect to the strain increment must be computed simultaneously with the same integrator, applied to a numerical approximation of the variational equations. This information enables finite‐element packages to assemble a consistent tangent operator and thus guarantees quadratic convergence of the equilibrium iterations. Several numerical examples with a hypoplastic constitutive law are given. As numerical integrator we used a second‐order extrapolated Euler method. Quadratic convergence of the equilibrium iteration is shown. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
In this contribution an algorithm for parameter identification of geometrically linear Terzaghi–Biot‐type fluid‐saturated porous media is proposed, in which non‐uniform distributions of the state variables such as stresses, strains and fluid pore pressure are taken into account. To this end a least‐squares functional consisting of experimental data and simulated data is minimized, whereby the latter are obtained with the finite element method. This strategy allows parameter identification based on in situ experiments. In order to improve the efficiency of the minimization process, a gradient‐based optimization algorithm is applied, and therefore the corresponding sensitivity analysis for the coupled two‐phase problem is described in a systematic manner. For illustrative purpose, the performance of the algorithm is demonstrated for a slope stability problem, in which a quadratic Drucker–Prager plasticity model for the solid and a linear Darcy law for the fluid are combined. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
This study concerns the identification of constitutive models from geotechnical measurements by inverse analysis. Soil parameters are identified from measured horizontal displacements of sheet pile walls and from a measured pressuremeter curve. An optimization method based on a genetic algorithm (GA) and a principal component analysis (PCA), developed and tested on synthetic data in a previous paper, is applied. These applications show that the conclusions deduced from synthetic problems can be extrapolated to real problems. The GA is a robust optimization method that is able to deal with the non‐uniqueness of the solution in identifying a set of solutions for a given uncertainty on the measurements. This set is then characterized by a PCA that gives a first‐order approximation of the solution as an ellipsoid. When the solution set is not too curved in the research space, this ellipsoid characterizes the soil properties considering the measured data and the tolerate margins for the response of the numerical model. Besides, optimizations from different measurements provide solution sets with a common area in the research space. This intersection gives a more relevant and accurate identification of parameters. Finally, we show that these identified parameters permit to reproduce geotechnical measurements not used in the identification process. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Attention is focused on the mechanical behaviour of rock-like materials. Developments and applications of a constitutive model based on damage theory are presented. The internal damage model is calibrated for a hard brittle rock, Bushveld Norite, and through this process the identification of the material parameters is carried out. Emphasis is placed on the identification of the material parameters in the damage evolution law. The uniqueness of solutions in the softening regime is investigated through finite element mesh sensitivity studies of non-uniform deformation triaxial compression tests.  相似文献   

8.
This paper develops a practical approach to simulating fracture propagation in rock and concrete based on an augmented virtual internal bond (VIB) method in which the cohesion of solid is modeled as material particles interconnected by a network of randomized virtual micro bonds described by the Xu–Needleman potential. The micro bond potential is used to derive macroscale constitutive relations via the Cauchy–Born rule. By incorporating different energy contributions due to stretch and shearing, as well as different energy levels under tension and compression of each micro bond, the derived macro constitutive laws are particularly useful for modeling quasi‐brittle materials such as rock and concrete which usually have different Poisson ratios and much higher compressive strength than tensile strength. The mesh‐size sensitivity associated with strain‐softening in the present constitutive model is addressed by adjusting material constants near the crack tip so that the biJ‐integral is kept equal to the intrinsic fracture energy of the material. Numerical examples demonstrate that the proposed VIB method is capable of simulating mixed mode fracture propagation in rock and concrete with results in consistency with relevant experimental observations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
This paper completes the study presented in the accompanying paper, and demonstrates a numerical algorithm for parameter prediction from the piezocone test (CPTU) data. This part deals with a development of neural network (NN) models which are able to map multi‐variable input data onto typical geotechnical characteristics and constitutive parameters of the modified Cam clay model, which has been applied in this study. The identification procedure is designed for the coupled hydro‐mechanical boundary value problem in normally‐and lightly overconsolidated clayey soils including partially drained conditions that may appear during cone penetration. The NN models are trained with pseudo‐experimental measurements derived with the aid of the numerical model of the piezocone test, presented in the accompanying paper. Different input configurations containing CPTU measurements and some complementary data are studied with respect to the accuracy of predicted parameter values. Finally, the performance of the developed NN predictors is tested with field CPTU data which are derived from three well‐documented characterization sites, and the obtained predictions are compared with benchmark laboratory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Soil parameter identification using a genetic algorithm   总被引:1,自引:0,他引:1  
This paper is dedicated to the identification of constitutive parameters of the Mohr–Coulomb constitutive model from in situ geotechnical measurements. A pressuremeter curve and the horizontal displacements of a sheet pile wall retaining an excavation are successively used as measurements. Two kinds of optimization algorithms are used to minimize the error function, the first one based on a gradient method and the second one based on a genetic algorithm. The efficiency of each algorithm related to the error function topology is discussed. Finally, it is shown that the use of a genetic algorithm to identify the soil parameters seems particularly suitable when the topology of the error function is complex. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
盐岩储气库蠕变损伤分析   总被引:9,自引:1,他引:8  
陈锋  杨春和  白世伟 《岩土力学》2006,27(6):945-949
通过对盐岩本构关系的实验研究,对Norton Power 盐岩蠕变本构模型引入损伤变量,在损伤等效应力中引入考虑偏应力和围压影响的函数,建立了一种能反映盐岩蠕变和加速蠕变的本构模型。通过对某盐矿盐岩实验数据进行拟合,获得了本构模型的参数,理论曲线与实验曲线吻合得较好。通过三维数值模拟方法,应用该本构模型对某盐矿天然气储存库进行了数值模拟研究,探讨了该盐矿盐岩储气库最低内压工况下,腔周损伤区的扩展、变形规律及最长持续运行时间。研究结果表明:(1)盐岩本构模型在盐岩加速蠕变期具有较好的数值稳定性;(2)在最低运行压力下,腔周盐岩进入加速蠕变期后,储气库损伤区的扩展速度非常快,储气库最危险部位位于腔体顶部;(3)腔周盐岩进行加速蠕变期后,盐岩的腔体体积收敛变形主要表现为损伤蠕变体积收敛,稳态蠕变体积收敛趋于稳定;(4)该盐矿盐岩储气库在该压力下最长持续运行时间约为3个月。  相似文献   

12.
13.
This work deals with the development of a constitutive law for fractured rocks. Fractures are considered as penny‐shaped inclusions, whose constitutive law is deduced from an interface law and a regularization procedure. Such a method is applied to linear and non‐linear interface behaviours in order to reproduce effects such as an increase in stiffness during fracture closing, dilatancy or asperity surface degradation. Then, considering the fractured rock as a composite material, we use a Mori–Tanaka method to estimate the homogenized properties of the rock. Numerical experiments illustrate the interest of the proposed homogenization procedure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Recognition of non‐linear constitutive rock/soil model from experimental results is often multi‐modal in the large parameter space. A genetic evolution algorithm is thus proposed for its recognition, including that of structure of the model and coefficients in the model. The structure of the model can be firstly determined according to mechanical mechanism if the mechanism is clearly understood or searched by using evolutionary algorithm. The coefficients to be determined are then searched in global optional space. With the new evolutionary algorithm, the non‐linear stress–strain–time constitutive law to describe strain softening behaviours of diatomaceous soil under consolidated and undrained state was recognized by learning stress–strain–time behaviour of an intact sample under consolidated pressure of σc=0.1 MPa and strain velocity ofa=0.175%/min. This model gave reasonable prediction for diatomaceous soils under varying consolidated pressures (0.1–3.5 MPa) and strain velocities (0.0044–1.75%/min). It indicates that the methodology proposed in this paper is robust enough and strongly attractive for recognition of non‐linear constitutive model of soil and rock materials. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
A constitutive model for dry metamorphosed snow is proposed, within the framework of elasto‐viscoplasticity, which is able to reproduce the most relevant features of the macroscopic behaviour of snow, particularly its time and rate dependency. The basic ideas for modelling stem from the conceptual forms proposed for bonded geomaterials, such as cemented soils or soft rocks. The high viscosity of snow is accounted for by adopting an overstress approach, suitably modified. An evolution law for the curvature‐driven process of sintering, by which intergranular ice necks form and grow, is established. The system of constitutive equations is then numerically integrated via a fully implicit time stepping scheme. Selected results from finite element simulations of laboratory tests, available in the literature, are presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
This paper focuses on the sensitivity analysis for coupled thermo–hydro–mechanical problems employing both local and global sensitivity methods. A derivative‐based method is used in the local sensitivity approach, whereas the random balance designs method is used for the global sensitivity analysis. The main goal is to investigate the effect of uncertainties in the constitutive parameters on the results from nonlinear coupled thermo–hydro–mechanical analyses of unsaturated soil behavior whose modeling generally involves large sets of constitutive relations. Knowing the parameter sensitivity allows to qualitatively assess the validity of the results obtained by computational simulations of high‐risk situations, for example, emerging nuclear waste repositories. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This study concerns the identification of parameters of soil constitutive models from geotechnical measurements by inverse analysis. To deal with the non‐uniqueness of the solution, the inverse analysis is based on a genetic algorithm (GA) optimization process. For a given uncertainty on the measurements, the GA identifies a set of solutions. A statistical method based on a principal component analysis (PCA) is, then, proposed to evaluate the representativeness of this set. It is shown that this representativeness is controlled by the GA population size for which an optimal value can be defined. The PCA also gives a first‐order approximation of the solution set of the inverse problem as an ellipsoid. These developments are first made on a synthetic excavation problem and on a pressuremeter test. Some experimental applications are, then, studied in a companion paper, to show the reliability of the method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Strain gradient implies an important characteristic in localized damage deformation, which can be observed in the softening state of brittle materials, and strain gradients constitute the basic behaviours of localization failure area of the materials. The most important point in strain gradient is its damaging function including an internal length scale, which can be used to express the scale effects of mechanical responses of brittle rock mass. By extending the strain gradient theory and introducing an intrinsic material length scale into the constitutive law, the authors develop an isotropic damage model as well as a micro‐crack‐based anisotropic damage model for rock‐like materials in this paper. The proposed models were used to simulate the damage localization under uniaxial tension and plain strain compression, respectively. The simulated results well illustrated the potential of these models in dealing with the well‐known mesh‐sensitivity problem in FEM. In the computation, elements with C1 continuity have been implemented to incorporate the proposed models for failure localization. When regular rectangle elements are encountered, the coupling between finite difference method (FDM) and conventional finite element method (FEM) is used to avoid large modification to the existing FEM code, and to obtain relatively higher efficiency and reasonably good accuracy. Application of the anisotropic model to the 3D‐non‐linear FEM analysis of Ertan arch dam has been conducted and the results of its numerical simulation coincide well with those from the failure behaviours obtained by Ertan geophysical model test. In this paper, new applications of gradient theories and models for a feasible approach to simulate localized damage in brittle materials are presented. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
A constitutive operator split method with implicit-explicit time integration is presented for the transient analysis of rigid block models of jointed media. The linear portion of the joint constitutive law is integrated by an implicit method and the non-linear, time dependent portion is integrated by an explicit method. The method features the stability of implicit procedures as well as the flexibility of explicit procedures for non-linear problems. The solutions obtained with this method are compared to the solutions obtained by the explicit central difference method; in all cases there is good to excellent agreement. For some problems, particularly for those with low frequency excitation, it is shown that the implicit-explicit method can result in a substantial savings over more conventional explicit methods.  相似文献   

20.
A computational method, incorporating the finite element model (FEM) into data assimilation using the particle filter, is presented for identifying elasto‐plastic material properties based on sequential measurements under the known changing traction boundary conditions to overcome some difficulties in identifying the parameters for elasto‐plastic problems from which the existing inverse analysis strategies have suffered. A soil–water coupled problem, which uses the elasto‐plastic constitutive model, is dealt with as the geotechnical application. Measured data on the settlement and the pore pressure are obtained from a synthetic FEM computation as the forward problem under the known parameters to be identified for both the element tests and the ground behavior during the embankment construction sequence. Parameter identification for elasto‐plastic problems, such as soil behavior, should be made by considering the measurements of deformation and/or pore pressure step by step from the initial stage of construction and throughout the deformation history under the changing traction boundary conditions because of the embankment or the excavation because the ground behavior is highly dependent on the loading history. Thus, it appears that sequential data assimilation techniques, such as the particle filter, are the preferable tools that can provide estimates of the state variables, that is, deformation, pore pressure, and unknown parameters, for the constitutive model in geotechnical practice. The present paper discusses the priority of the particle filter in its application to initial/boundary value problems for elasto‐plastic materials and demonstrates a couple of numerical examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号