首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Thermophysical properties of the various polymorphs (i.e. α-, β- and γ) of Mg2SiO4 were computed with the CRYSTAL06 code within the framework of CO-LCAO-GTF approach by using the hybrid B3LYP density functional method. Potential wells were calculated through a symmetry preserving, variable cell-shape structure relaxation procedure. Vibrational frequencies were computed at the long-wavelength limit corresponding to the center of the Brillouin zone (→ 0). Thermodynamic properties were estimated through a semiclassical approach that combines B3LYP vibrational frequencies for optic modes and the Kieffer’s model for the dispersion relation of acoustic modes. All computed values except volume (i.e. electronic energy, zero point energy, optical vibrational modes, thermal corrections to internal energy, standard state enthalpy and Gibbs free energy of reaction, bulk modulus and its P and T derivatives, entropy, C V, C P) are consistent with available experimental data and/or reasonable estimates. Volumes are slightly overestimated relative to those determined directly by X-ray diffraction. A set of optimized volumetric properties that are consistent with the other semiclassical properties of the phases α, β and γ have been derived by optimization procedure such that the calculated boundaries for the α/β and β/γ equilibria have the best overall agreement with the experimental data for these transitions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
G. OttonelloEmail:
  相似文献   

2.
The O2 3?-Y3+ center in fluorite-type structures (CaF2 and SrF2) has been investigated at the density functional theory (DFT) level using the CRYSTAL06 code. Our calculations were performed by means of the hybrid B3PW method in which the Hartree–Fock exchange is mixed with the DFT exchange functional, using Becke’s three parameter method, combined with the non-local correlation functionals by Perdew and Wang. Our calculations confirm the stability and the molecular character of the O2 3?-Y3+ center. The unpaired electron is shown to be almost exclusively localized on and equally distributed between the two oxygen atoms that are separated by a bond distance of 2.47 Å in CaF2 and 2.57 Å in SrF2. The calculated 17O and 19F hyperfine constants for of the O2 3?-Y3+ center are in good agreement with their corresponding experimental values reported by previous electron paramagnetic resonance and electron nuclear double resonance studies, while discrepancies are notable for the 89Y hyperfine constants.  相似文献   

3.
从水文地质条件、充水情况等方面研究影响司家营铁矿Ⅲ采场地下水涌水量因素;在矿区水文地质条件的基础上,进行了矿区地下水均衡计算,通过矿区地下水影响因素的综合分析,计算出矿区地下水总补给量和总排泄量,得出两者的平衡关系;分别采用大井法及数值模拟法,对司家营铁矿Ⅲ采场露天转井下深部开采不同中段的地下水涌水量进行计算,并结合自然降水和考虑露天采场回填废石影响,系统预测了不同开采中段矿坑总涌水量。研究成果表明,矿区地下水呈负均衡状态,对矿区开采呈有利态势;矿坑系统涌水量综合预测结果与阶段性的实测资料较为一致,为司家营铁矿Ⅲ采场井下防排水及地质环境保护奠定了基础。  相似文献   

4.
The high-pressure behavior of -Fe2O3 has been studied under static compression up to 60 GPa, using a laser-heated diamond anvil cell. Synchrotron-based angular-dispersive X-ray diffraction shows that the sample remains in the corundum structure up to 50 GPa, but with the appearance of coexisting diffraction lines from a high-pressure phase at pressures above 45 GPa. A least-squares fit of low-pressure phase data to an Eulerian finite-strain equation of state yields linear incompressibilities of K a 0=749.5 (± 18.4) GPa and K c 0= 455.7 (± 21.4) GPa, differing by a factor of 1.6 along the two directions. The enhanced compressibility of the c axis may lead to breaking of vertex- or edge-sharing bonds between octahedra, inducing the high-pressure phase transformation at 50 GPa. Analysis of linear compressibilities suggests that the high-pressure phase above 50 GPa is of the Rh2O3 (II) structure. Continuous laser heating reveals a new structural phase transformation of -Fe2O3 at 22 GPa, to an orthorhombic structure with a=7.305(3) Å, b=7.850(3) Å, and c=12.877(14) Å, different from the Rh2O3 (II) structure.  相似文献   

5.
The paper reports new findings of avdoninite from deposits of active fumaroles in the Second Scoria Cone at the Northern Breach of the Great Fissure Tolbachik Eruption, Tolbachik Volcano, Kamchatka Peninsula, Russia. The crystal structure of the mineral has been determined for the first time, which has allowed reliable determination of its space group and unit cell dimensions, refinement of its formula K2Cu5-Cl8(OH)4 · 2H2O, and correct indexing of its X-ray powder diffraction pattern. Avdoninite is monoclinic, space group P21/c, a = 11.592(2), b = 6.5509(11), c = 11.745(2) Å, β = 91.104(6)°, V = 891.8(3) Å3, Z = 2. The crystal structure of this mineral has been determined on a single crystal R 1 [F > 4σ (F)] = 0.063. It is based on sheets of copper–oxo-chloride complexes [Cu5Cl8(OH)4]2– parallel to (100). The K+ cation and H2O molecules are interlayers.  相似文献   

6.
The specific heat capacity (C p) of six variably hydrated (~3.5 wt% H2O) iron-bearing Etna trachybasaltic glasses and liquids has been measured using differential scanning calorimetry from room temperature across the glass transition region. These data are compared to heat capacity measurements on thirteen melt compositions in the iron-free anorthite (An)–diopside (Di) system over a similar range of H2O contents. These data extend considerably the published C p measurements for hydrous melts and glasses. The results for the Etna trachybasalts show nonlinear variations in, both, the heat capacity of the glass at the onset of the glass transition (i.e., C p g ) and the fully relaxed liquid (i.e., C p l ) with increasing H2O content. Similarly, the “configurational heat capacity” (i.e., C p c  = C p l  ? C p g ) varies nonlinearly with H2O content. The An–Di hydrous compositions investigated show similar trends, with C p values varying as a function of melt composition and H2O content. The results show that values in hydrous C p g , C p l and C p c in the depolymerized glasses and liquids are substantially different from those observed for more polymerized hydrous albitic, leucogranitic, trachytic and phonolitic multicomponent compositions previously investigated. Polymerized melts have lower C p l and C p c and higher C p g with respect to more depolymerized compositions. The covariation between C p values and the degree of polymerization in glasses and melts is well described in terms of SMhydrous and NBO/T hydrous. Values of C p c increase sharply with increasing depolymerization up to SMhydrous ~ 30–35 mol% (NBO/T hydrous ~ 0.5) and then stabilize to an almost constant value. The partial molar heat capacity of H2O for both glasses (\( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{g}} \)) and liquids (\( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \)) appears to be independent of composition and, assuming ideal mixing, we obtain a value for \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \) of 79 J mol?1 K?1. However, we note that a range of values for \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \) (i.e., ~78–87 J mol?1 K?1) proposed by previous workers will reproduce the extended data to within experimental uncertainty. Our analysis suggests that more data are required in order to ascribe a compositional dependence (i.e., nonideal mixing) to \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \).  相似文献   

7.
Based on a study of samples found in the Khibiny (Mt. Rasvumchorr: the holotype) and Lovozero (Mts Alluaiv and Vavnbed) alkaline complexes on the Kola Peninsula, Russia, tinnunculite was approved by the IMA Commission on New Minerals, Nomenclature, and Classification as a valid mineral species (IMA no. 2015-02la) and, taking into account a revisory examination of the original material from burnt dumps of coal mines in the southern Urals, it was redefined as crystalline uric acid dihydrate (UAD), C5H4N4O3 · 2H2O. Tinnunculite is poultry manure mineralized in biogeochemical systems, which could be defined as “guano microdeposits.” The mineral occurs as prismatic or tabular crystals up to 0.01 × 0.1 × 0.2 mm in size and clusters of them, as well as crystalline or microglobular crusts. Tinnunculite is transparent or translucent, colorless, white, yellowish, reddish or pale lilac. Crystals show vitreous luster. The mineral is soft and brittle, with a distinct (010) cleavage. Dcalc = 1.68 g/cm3 (holotype). Tinnunculite is optically biaxial (–), α = 1.503(3), β = 1.712(3), γ = 1.74(1), 2Vobs = 40(10)°. The IR spectrum is given. The chemical composition of the holotype sample (electron microprobe data, content of H is calculated by UAD stoichiometry) is as follows, wt %: 37.5 О, 28.4 С, 27.0 N, 3.8 Hcalc, total 96.7. The empirical formula calculated on the basis of (C + N+ O) = 14 apfu is: C4.99H8N4.07O4.94. Tinnunculite is monoclinic, space group (by analogy with synthetic UAD) P21/c. The unit cell parameters of the holotype sample (single crystal XRD data) are a = 7.37(4), b = 6.326(16), c = 17.59(4) Å, β = 90(1)°, V = 820(5) Å3, Z = 4. The strongest reflections in the XRD pattern (d, Å–I[hkl]) are 8.82–84[002], 5.97–15[011], 5.63–24[102?, 102], 4.22–22[112], 3.24–27[114?,114], 3.18–100[210], 3.12–44[211?, 211], 2.576–14[024].  相似文献   

8.
The high-pressure behaviour and the P-induced structural evolution of a synthetic zeolite Rb7NaGa8Si12O40·3H2O (with edingtonite-type structure) were investigated both by in situ synchrotron powder diffraction (with a diamond anvil cell and the methanol:ethanol:water = 16:3:1 mixture as pressure-transmitting fluid) up to 3.27 GPa and by ab initio first-principles computational modelling. No evidence of phase transition or penetration of P-fluid molecules was observed within the P-range investigated. The isothermal equation of state was determined; V 0 and K T0 refined with a second-order Birch–Murnaghan equation of state are V 0 = 1311.3(2) Å3 and K T0 = 29.8(7) GPa. The main deformation mechanism (at the atomic scale) in response to the applied pressure is represented by the cooperative rotation of the secondary building units (SBU) about their chain axis (i.e. [001]). The direct consequence of SBU anti-rotation on the zeolitic channels parallel to [001] is the increase in pore ellipticity with pressure, in response to the extension of the major axis and to the contraction of the minor axis of the elliptical channel parallel to [001]. The effect of the applied pressure on the bonding configuration of the extra-framework content is only secondary. A comparison between the P-induced main deformation mechanisms observed in Rb7NaGa8Si12O40·3H2O and those previously found in natural fibrous zeolites is made.  相似文献   

9.
The solubility of chromium in chlorite as a function of pressure, temperature, and bulk composition was investigated in the system Cr2O3–MgO–Al2O3–SiO2–H2O, and its effect on phase relations evaluated. Three different compositions with X Cr = Cr/(Cr + Al) = 0.075, 0.25, and 0.5 respectively, were investigated at 1.5–6.5 GPa, 650–900 °C. Cr-chlorite only occurs in the bulk composition with X Cr = 0.075; otherwise, spinel and garnet are the major aluminous phases. In the experiments, Cr-chlorite coexists with enstatite up to 3.5 GPa, 800–850 °C, and with forsterite, pyrope, and spinel at higher pressure. At P > 5 GPa other hydrates occur: a Cr-bearing phase-HAPY (Mg2.2Al1.5Cr0.1Si1.1O6(OH)2) is stable in assemblage with pyrope, forsterite, and spinel; Mg-sursassite coexists at 6.0 GPa, 650 °C with forsterite and spinel and a new Cr-bearing phase, named 11.5 Å phase (Mg:Al:Si = 6.3:1.2:2.4) after the first diffraction peak observed in high-resolution X-ray diffraction pattern. Cr affects the stability of chlorite by shifting its breakdown reactions toward higher temperature, but Cr solubility at high pressure is reduced compared with the solubility observed in low-pressure occurrences in hydrothermal environments. Chromium partitions generally according to \(X_{\text{Cr}}^{\text{spinel}}\) ? \(X_{\text{Cr}}^{\text{opx}}\) > \(X_{\text{Cr}}^{\text{chlorite}}\) ≥ \(X_{\text{Cr}}^{\text{HAPY}}\) > \(X_{\text{Cr}}^{\text{garnet}}\). At 5 GPa, 750 °C (bulk with X Cr = 0.075) equilibrium values are \(X_{\text{Cr}}^{\text{spinel}}\) = 0.27, \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.08, \(X_{\text{Cr}}^{\text{garnet}}\) = 0.05; at 5.4 GPa, 720 °C \(X_{\text{Cr}}^{\text{spinel}}\) = 0.33, \(X_{\text{Cr}}^{\text{HAPY}}\) = 0.06, and \(X_{\text{Cr}}^{\text{garnet}}\) = 0.04; and at 3.5 GPa, 850 °C \(X_{\text{Cr}}^{\text{opx}}\) = 0.12 and \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.07. Results on Cr–Al partitioning between spinel and garnet suggest that at low temperature the spinel- to garnet-peridotite transition has a negative slope of 0.5 GPa/100 °C. The formation of phase-HAPY, in assemblage with garnet and spinel, at pressures above chlorite breakdown, provides a viable mechanism to promote H2O transport in metasomatized ultramafic mélanges of subduction channels.  相似文献   

10.
Larisa Fleishman 《Geoforum》2008,39(2):1021-1043
The Green Line constituted the armistice line between Israel and Jordan during the period 1949-1967. This paper discusses the familiarity of Israeli students with the nature and geographical location of the Green Line by restructuring and analyzing their mental maps. The findings of this study show that students who are men, long-term residents, identify themselves on the left end of the political spectrum, and professional geographers, show better knowledge concerning the issue of borders. However, most students revealed a certain vagueness and even ignorance concerning both spatial perception of the Green Line and its essence. The reasons for the revealed phenomenon are also discussed in this paper, as well as the behavioral implications of the familiarity with the Green Line, both in spatial and political contexts.  相似文献   

11.
Irradiation techniques are often applied to gem minerals for color enhancement purposes. Natural green, blue and colorless specimens of rare gemological quality euclase, BeAlSiO4(OH), from Brazil were irradiated with gamma rays in the dose range from 10 to 500 kGy. Although the colors of the different specimens were not strongly influenced, two different irradiation-induced paramagnetic defect centers were found by electron paramagnetic resonance (EPR). The first one is an O hole center interacting with one Al neighbor and the second is a Ti3+ electron center. The EPR angular rotation patterns of both irradiation-induced defects were measured and analyzed. The results suggest that O hole centers are formed by dissociation of the hydroxyl ions, similar as in topaz crystals. In euclase the OH ions interconnect distorted Al octahedra and Be tetrahedra in O5 positions. During irradiation, the electrons are captured by titanium ions (Ti4+ + e), leading to the formation of paramagnetic Ti3+ ions. From the EPR rotation patterns it is clear that these ions substitute for Al ions. The spin Hamiltonian parameters of the irradiation-induced defects are analyzed and compared to similar defect centers in other mineral specimens. Thermal annealing experiments show that the O hole centers and Ti3+ electron centers are directly connected through the radiation process.  相似文献   

12.
本文回顾了盆地模拟研究的发展简史和研究现状;以盆地充填过程模拟为例讨论了盆地模拟在研究沉积程序主要控制因素方面的应用,对盆地分析研究的发展方向、盆地模拟研究的重点以及沉积工作者的任务和作用做了尝试性展望。  相似文献   

13.
Single-crystal electron paramagnetic resonance (EPR) spectra of a gem-quality jeremejevite, Al6B5O15(F, OH)3, from Cape Cross, Namibia, reveal an S = 1/2 hole center characterized by an 27Al hyperfine structure arising from interaction with two equivalent Al nuclei. Spin-Hamiltonian parameters obtained from single-crystal EPR spectra at 295 K are as follows: g 1 = 2.02899(1), g 2 = 2.02011(2), g 3 = 2.00595(1); A 1/g e β e  = −0.881(1) mT, A 2/g e β e  = −0.951(1) mT, and A 3/g e β e  = −0.972(2) mT, with the orientations of the g 3- and A 3-axes almost coaxial and perpendicular to the Al–O–Al plane; and those of the g 1- and A 1-axes approximately along the Al–Al and Al–OH directions, respectively. These results suggest that this aluminum-associated hole center represents hole trapping on a hydroxyl oxygen atom linked to two equivalent octahedral Al3+ ions, after the removal of the proton (i.e., a VIAl–OVIAl center). Periodic ab initio UHF and DFT calculations confirmed the experimental 27Al hyperfine coupling constants and directions, supporting the proposed structural model. The VIAl–OVIAl center in jeremejevite undergoes the onset of thermal decay at 300 °C and is completely bleached at 525 °C. These data obtained from the VIAl–OVIAl center in jeremejevite provide new insights into analogous centers that have been documented in several other minerals.  相似文献   

14.
The injection of CO2 into deep saline aquifers is being considered as an option for greenhouse gas mitigation. However, the response of an aquifer to the injected CO2 is largely unknown. Experiments involving the reaction of Navajo Sandstone with acidic brine were conducted at 200°C and 25 or 30 MPa to evaluate the extent of fluid–rock interactions. The first experiment examined sandstone interaction with CO2-impregnated brine; the second experiment examined sandstone dissolution in CO2-free acidic brine; the third one is carried out in a mixed-flow reactor and designed to measure sandstone dissolution rates based on time-series Si concentrations. The solution chemistry data indicate that the SiO2(aq) increases gradually and pH increases slowly with reaction progress. Silicate minerals in the sandstone display textures (dissolution features, secondary mineralization), indicating that these phases are reacting strongly with the fluid. Dissolution of feldspars and conversion of smectite to illite are likely to be the two reactions that contribute to the release of SiO2(aq). The product minerals present at the end of the experiments are illite, illite/smectite, allophane, and carbonate minerals (for the CO2-charged system). Dissolved CO2 is likely to acidify the brine and to provide a source of carbon for the precipitation of carbonate minerals. Mineral trapping through the precipitation of carbonate minerals is favored thermodynamically and was observed in the experiments. The chemical reactions likely increase the bulk porosity of the sandstone due to dissolution of silicate minerals. However, allophane and illite/smectite fill voids in sandstone grains. There is no evidence for the removal of clay coatings due to chemical reactions. It is uncertain whether the mechanical forces near an injection well would mobilize the smectite and allophane and clog pore throats. Trace amounts of metals, including Cu, Zn, and Ba, were mobilized.  相似文献   

15.
In this article, we reported the synthesis of novel Sb–SnO2/kaolinite (SK) nanocomposites by assembling antimony-doped tin oxide (ATO) nanoparticles on the surface of kaolinite rods without addition of dispersant. The samples were characterized by X-ray diffraction, transmission electron microscopy (TEM), high-resolution TEM, X-ray photoelectron spectroscopy (XPS), and N2 adsorption–desorption techniques. The crystal size and loading density of ATO nanoparticles onto kaolinite rods could be controlled through the synthetic conditions. The color and resistivity of the composites varied with the loading density of ATO nanoparticles. Investigations of the interfacial binding between ATO layer and rod surface indicated that surface characteristics could facilitate the deposition of various metal oxides nanoparticles. XPS analysis demonstrated that the entrance of Sb5+ into SnO2 crystallite led to the improvement of conductivity and the color change of the composites. The formation mechanism for SK composites was also discussed.  相似文献   

16.
Biotite is one of the most common minerals dated by the 40Ar–39Ar method. It frequently shows K contents below the expected stoichiometric value, suggesting the presence of low-K impurities. The most common low-K alteration product of biotite is chlorite. Therefore, it is important to understand the effects of chlorite interlayering on 40Ar–39Ar ages in order to correctly interpret 40Ar–39Ar data. This study examines the outcome of 40Ar–39Ar dating analyses on variably chloritised biotites from Ordovician intrusive rocks. The infrared (IR) laser-probe technique and different gas extraction methods were adopted. Incremental laser-heating data on bulk samples yielded hump-shaped age profiles with meaningless young and old age steps. Both the extent of anomalous old age steps and the degree of discordance of the age spectra were much more pronounced in the more chloritised biotite samples. In contrast, in situ data on rock chips and total-fusion ages on single biotite flakes yielded ages concordant with, or younger than, the inferred emplacement ages. Transmission electron microscopy (TEM) was used to texturally characterise biotite samples at the nanometre scale. It was also used to document the complex decomposition-transformation process affecting interlayered biotite–chlorite during in-vacuo IR-laser heating to temperatures ranging from ~600 to >1,000 °C. TEM results suggest that hump-shaped age profiles result from an interplay between 39ArK redistribution by recoil during sample irradiation and differential release of argon isotopes hosted in three main reservoirs. These reservoirs are (from least to most retentive): extended defects, chlorite and biotite. The final descending age segment is attributed to the progressive release of argon with increasing temperature from large biotite domains for which 39ArK recoil loss was less important. 40Ar–39Ar data support previous findings, which suggest that 40Ar–39Ar ages when recoil effects are minimised, provide minimum estimates that approach the true biotite age, when the pristine domains are analysed. The most effective approach for obtaining meaningful 40Ar–39Ar ages was using individual total-fusion analyses on carefully selected, single flakes previously split along the basal cleavage by wet-grinding and corresponding to a sample mass of a few micrograms.Editorial responsibility: I Parsons  相似文献   

17.
Analytical expressions for the variation in D La and D Yb with increasing liquid SiO2 for olivine, plagioclase, augite, hornblende, orthopyroxene, magnetite and ilmenite (Brophy in Contrib Mineral Petrol 2008, online first) have been combined with numerical models of hydrous partial melting, of mid-ocean ridge (MOR) cumulate gabbro melting, and fractional crystallization of slightly hydrous mid-ocean ridge basalt (MORB) magma to assess a melting versus fractionation origin for oceanic plagiogranite. For felsic magmas (>63 wt.% SiO2) the modeling predicts the following. MOR cumulate gabbro melting should yield constant or decreasing La and constant Yb abundances with increasing liquid SiO2. The overall abundances should be similar to those in associated mafic magmas. MORB fractional crystallization should yield steadily increasing La and Yb abundances with increasing SiO2 with overall abundances significantly higher than those in associated mafic magmas. Application to natural occurrences of oceanic plagiogranite indicate that both MOR cumulate gabbro melting and MORB fractionation are responsible. Application of the model results to Icelandic rhyolites strongly support a fractional crystallization rather than a crustal melting origin.  相似文献   

18.
Experimental data are presented for the solubility of NaNbO3 in the ternary system CaCO3–CaF2–NaNbO3 (or calcite–fluorite–lueshite) over the temperature range 500–1,000°C at 0.1 GPa pressure. Liquidus to solidus phase relationships are given for the pseudo-binary join ([CaCO3]60[CaF2]40)100-x–(NaNbO3)x (0<x<60 wt%). These data show that the maximum solubility of NaNbO3 in these liquids is about 17 wt% (or 13.8 wt% Nb2O5) at approximately 930°C, and is represented by the appearance of pyrochlore as the primary liquidus phase. The sub-liquidus assemblages with decreasing temperature for NaNbO3 contents of 20–50 wt% are: pyrochlore + liquid; pyrochlore + CaF2 + liquid; pyrochlore + CaF2 + CaCO3 + liquid. The solidus assemblage is pyrochlore + CaF2 + CaCO3 at temperatures of approximately 700°C (20 wt% NaNbO3) and 600°C (40 wt% NaNbO3). NaNbO3 is present only in sub-solidus assemblages. These data show that in this fluorine-bearing anhydrous system pyrochlore is the principal Nb-hosting supra-solidus phase, in contrast to fluorine-free hydrous melts from which perovskite-structured compounds crystallize. The crystallization of pyrochlore and/or perovskite-structured compounds from haplocarbonatite liquids is thus considered to be dependent upon the F/OH ratio of the melt.  相似文献   

19.
The concentrations of Br and I in marine sediments have been used to categorize the sedimentary environments of different coastal regions of the world with respect to organic matter contents. The present study uses the concentrations of Br, I and P2O5 of different marine settings as a new proxy to interpret the depositional environments. A total of 150 coastal lagoon sediment samples (suspended sediments, surface sediments and sediment cores) were analyzed for Br, I and P2O5 concentrations by X-ray fluorescence spectrometry. They were compared with the Br, I and P2O5 concentrations of the 2004 Indian Ocean tsunami sediments. Sediments from various sources are separately clustered in I–Br plot and a trivial negative correlation is found for the whole plot. A similar correlation pattern exists in the I–P2O5 diagram. This correlation is explained by the distribution of marine plants (higher and lower) in different sedimentary environments of the coastal profile. Therefore, the concentration of I and its relation to P2O5 can be used as a tool to identify sediment depositional environments in marine settings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号