首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2009年2—12月间在胶州湾大沽河口邻近海域的逐月现场调查中,利用垂直拖网研究了海月水母碟状体和水母体的时空分布情况以及对其它浮游动物类群的影响,并探讨了海月水母的生态适应性。结果表明:海月水母的碟状体4月份开始在胶州湾出现,并且丰度逐渐增加,到6月份达到最高峰。海月水母的水母体集中在7月份大量出现。碟状体和水母体高峰期的月平均丰度分别为2.9和1.3ind/m3。碟状体开始出现时的水温平均为11.5℃,数量高峰期的水温为20.6℃,而水母体高峰期的水温为25.2℃。该海域的浮游动物总丰度(不含夜光虫)在5—7月份有个高峰期,其中5月份最高值为486.9ind/m3。7月份海月水母高峰期,浮游动物的丰度没有明显下降,两者丰度的地理变化之间也没有显著的相关性。但是通过对2006—2010年间的浮游动物各类群丰度对比,2009年海月水母暴发时夜光虫和桡足类春季丰度高值显著低于其它年份。  相似文献   

2.
Small pelagics are the main fish resource in North West Africa. In Senegal, these are mainly sardinellas (Sardinella aurita and S. maderensis) and bonga shad (Ethmalosa fimbriata). The fisheries, mainly encircling gillnets and purse seines, are predominantly performed by artisanal fishers and are of great importance for the Senegalese economy and for food security in the region. However, in recent years, the main conditions for these fisheries have changed and recent observations have shown strong declines in profit. An analysis over the last twenty years (1993–2013) show that the fisheries lost profit between 65% and 100% while operating costs increased by 25% and 90%, for encircling gillnet and purse seine, respectively. While the fuel price dominates as determining factor during the survey period, important other drivers during the last five years were a decrease in fish biomass and an increase in fishing effort.  相似文献   

3.
五种海水鱼视网膜结构的比较   总被引:6,自引:0,他引:6  
何大仁  徐永淦 《台湾海峡》1993,12(4):342-350,T002
本文比较和分析了黄鳍鲷,普通鲻鱼,赤点石斑鱼,蓝圆Shen,金色小沙丁鱼的视网膜形态特点,生理机能及其与生活环境的关系。指出这五种鱼视膜均为混合型网膜。按主要形态特点划分,这五种鱼视网膜可归纳为三类。这五种鱼的视锥,视杆和色素上皮细胞黑色素均参与视网膜运动反应。这五种鱼视网膜上都存在着单锥和两个内段染色反应相同的孪生双锥。  相似文献   

4.
Several in situ iron-enrichment experiments have been conducted, where the response of the phytoplankton community differed. We use a marine ecosystem model to investigate the effect of iron on phytoplankton in response to different initial plankton conditions and mixed-layer depths (MLDs). Sensitivity analysis of the model results to the MLDs reveals that the modeled response to the same iron enhancement treatment differed dramatically according to the different MLDs. The magnitude of the iron-induced biogeochemical responses in the surface water, such as maximum chlorophyll, is inversely correlated with MLD, as observed. The significant decrease in maximum surface chlorophyll with MLD results from the difference in diatom concentration in the mixed layer, which is determined by vertical mixing. The modeled column-integrated chlorophyll, on the other hand, is the highest with intermediate MLD cases, suggesting difference in iron-induced biogeochemical responses between volume and area considerations. The iron-induced diatom bloom is severely restricted below the compensation depth due to both light limitation and grazing pressure, irrespective of the MLD. Sensitivity of the model to initial mesozooplankton (as grazers on diatoms) biomass shows that column-integrated biomass, net community production and export production are strongly controlled by the initial mesozooplankton biomass. Higher initial mesozooplankton biomass yields high grazing pressure on diatoms, which results in less accumulation of diatom biomass and may account for notably lower surface chlorophyll during SEEDS (Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study) II than during SEEDS. The initial diatom biomass is also important to the outcome of iron enrichment but is not as crucial as the MLD and the initial mesozooplankton biomass. This modeling study suggests that not only MLD but also the initial biomass of diatoms and its principle grazers are crucial factors in the response of the phytoplankton community to iron enrichments, and should be considered in designing future iron-enrichment experiments.  相似文献   

5.
We surveyed the distribution of colonies of polyps of Aurelia aurita sensu lato (s.l.) in Mikawa Bay, Japan. First, we surveyed the distribution of ephyrae of A. aurita s.l. at 75 stations encompassing the whole of Mikawa Bay in early 2008. A total of 37 ephyrae were sampled mostly from fishing ports. Ephyrae were most abundant around the islands located near the mouth of the bay, and decreased from the western part to the eastern part of Mikawa Bay. Next, we selected five fishing ports in Mikawa Bay where ephyrae occurred and surveyed the underside of floating piers and underwater overhangs of wharfs. We found dense colonies of polyps of A. aurita s.l. under nearly all of the floating piers at the two islands located near the mouth of the bay. Fitting a logistic regression model to the dataset showed that the percentage coverage of Aurelia polyps was significantly greater at the two islands compared with the other locations. In addition, the coverage of Aurelia polyps was greater when the coverage of other fouling organisms was in the range of 65–90%, and the coverage of Aurelia polyps was lower on floating piers with a vinyl surface and on concrete wharfs. The combined distribution of polyp colonies of A. aurita s.l. in Ise Bay and Mikawa Bay suggested that A. aurita s.l. in the two bays probably forms a single population and shoals of medusae mainly originate from protected harbors along the mouth-part of the bays.  相似文献   

6.
Abstract. The marine plant communities of the littoral zone in different biotopes of the Greek coasts were investigated in 1980-81. Seasonal distribution and variation of marine plant biomass were assessed. The communities of Cystoseira crinita and C. compressa were outstanding with maximum biomass during the summer months. Corallina officinalis and Pterocladia capillacea + Viva rigida communities predominated with maximum biomass in autumn and exhibited a decrease in winter, except in stressed biotopes. The species diversity and productivity of seaweeds along the Greek coasts are interpreted in relation to a number of environmental parameters.  相似文献   

7.
The abundances, biomasses, and population structures of two introduced ctenophore species—Mnemiopsis leidyi and Beroe ovata—were monitored along with mesoplankton in the near-shore waters of the northern Black Sea (Sevastopol Bay and adjacent regions) over a period of four years (2000–2003), after the B. ovata invasion. The annual dynamics of the M. leidyi population were similar in these years: very low abundances and biomass values were observed during the major part of the year (unlike previous years) with a shortterm peak in the summer-early autumn. B. ovata development during the growth in the M. leidyi biomass resulted in a sharp fall in the M. leidyi biomass down to extremely low values. The interannual differences in the populations of both ctenophore species were reflected by their quantitative parameters: the maximum biomass of M. leidyi varied from 790 g/m2 in 2001 to 211–266 g/m2 in other years. The maximum biomass values of B. ovata (38.9 and 32.5 g/m2) were observed in 2001 and 2003, respectively. In 2000–2003, from July to September, during the peak in mnemiopsis development, the population consumed from 1.9 ± 0.4 to 13.4 ± 5.7% of the mesoplankton biomass per day, while in the years of B. ovata absence, these values were as high as 30–40%. For the first time, the grazing rate of microzooplankton by M. leidi larvae was estimated. In August 2003, the maximum daily consumption rate was as great as 23–25% of the microzooplankton biomass. The daily rations of the mnemiopsis larvae on microzooplankton were close or even higher than those on mesoplankton.  相似文献   

8.
Phytoplankton standing stocks and carbon assimilation were measured during four cruises to the southern Ross Sea, Antarctica during 1996 and 1997 in order to assess the details of the seasonal cycle of biomass and productivity. The seasonal composite showed that phytoplankton biomass increased rapidly during the austral spring, and integrated chlorophyll reached a maximum during the summer (January 15) and decreased thereafter. Particulate matter ratios (carbon:nitrogen, carbon:chlorophyll) also showed distinct seasonal trends with summer minima. Carbon assimilation increased rapidly in the spring, and reached a maximum of 231 mmol C m−2 d−1, ca. four weeks earlier than the maximum observed biomass (during early December). It decreased rapidly thereafter, and in austral autumn when ice formed, it approached zero. The time of maximum growth rate coincided with the maximum in C-assimilation, and at 0.66 d−1 equaled predictions based on laboratory cultures. Growth rates over the entire growing season, however, were generally much less. Deck-board incubations suggested that photoinhibition occurred at the greatest photon flux densities, but in situ incubations revealed no such surface inhibition. We suggest that due to the nature of the irradiance field in the Antarctic, assemblages maintained in on-deck incubators received more light than those in situ, which resulted in photoinhibition. This in turn resulted in a 17% underestimate in on-deck productivity relative to in situ determinations. The phytoplankton bloom appeared to be initiated when vertical stability was imparted in austral spring, coincident with greater daily photon flux densities. Conversely, decreased productivity likely resulted from trace metal limitation, whereas biomass declines likely resulted from enhanced loss rates, such as aggregate formation and enhanced vertical flux of larger particles. The seasonal progression of productivity and biomass in the southern Ross Sea was similar to other areas in the ocean that experience blooms, and the cycling of carbon in this region is extensive, despite the fact that the growing season extends no more than five months.  相似文献   

9.
海月水母的生物学特征及其爆发   总被引:1,自引:0,他引:1  
介绍了海月水母的形态、生活习性、生活史、分布、生存条件、爆发及危害等基本情况,并分析了其爆发成因,最后提出了我国海月水母及其爆发研究的工作重点:确认在我国海域爆发的海月水母究竟是外来种还是本地种,了解其种群的生活史、食性及生活习性,掌握其种群数量动态变化规律并进行数量动态监测,分析其种群数量动态与海域环境的关系,开展其爆发的危害评价工作。  相似文献   

10.
A one-dimensional ecosystem model has been used to investigate the processes relevant to the spring diatom bloom which play important roles in the biogeochemical cycle in the western subarctic Pacific. The model represents the plankton dynamics and the nutrient cycles in the spring diatom bloom; its results show the importance of dilution by deep mixing in winter. It is supposed that the vertically integrated biomass of phytoplankton decreases in the winter due to the decrease of photosynthesis, because the deep mixing transports phytoplankton to a layer with a low light level. However, the observed integrated diatom biomass increases as the mixed layer deepens. This is because the decrease of concentration due to dilution by mixing causes the diatom grazed pressure to be less significant than diatom photosynthesis. In other words, the effect of dilution on the grazed rate is more significant than the effect on the photosynthesis rate because the grazed rate depends on the concentrations of both diatom and grazer, whereas the photosynthesis rate depends only diatom concentration. The average specific diatom grazed rate, defined as grazed rate divided by diatom biomass, decreases by 35% associated with the deepening, while the average specific photosynthesis rate of diatom decreases by 11%. As a result, the average specific net diatom growth rate during the deep mixing is about 70% of its maximum during the spring diatom bloom. The deep mixing significantly affects the amplitude of the spring diatom bloom not only by the supply of nutrients but also by the dilution which drastically decreases the grazed pressure. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
In recent years, the small pelagic fishery on the Pacific northwest coast of Mexico has significantly increased fishing pressure on thread herring Opisthonema spp. This fishery is regulated using a precautionary approach(acceptable biological catch(ABC) and minimum catch size). However, due to fishing dynamics, fish aggregation habits and increased fishing mortality, periodic biomass assessments are necessary to estimate ABC and assess the resource status. The Catch-MSY approach was used to analyze historical series of thread herring catches off the western Baja California Sur(BCS, 1981–2018) and the Gulf of California(GC, 1972–2018) to estimate exploitable biomass and target reference points in order to obtain catch quotas. According to the results, in GC,the maximum biomass reached in 1972(at the beginning of fishery) and minimum biomass reached in 2015; the estimated exploitable biomass for 2019 was 42.2×10~4 t; and the maximum sustainable yield(MSY) was 15.4×10~4 t.In the western BCS coast, the maximum biomass was reached in 1981(at the beginning of fishery) and minimum biomass was reached in 2017; the estimated exploitable biomass for 2019 was 3.2×10~4 t; and the MSY was 1.2×10~4 t.Both stocks showed a decrease in biomass over the past years and were currently near to point of full exploitation.The results suggest that the use of the Catch-MSY method is suitable to obtain annual biomass estimates, in order to establish an ABC, to know the current state of the resource, and to avoid overcoming the potential recovery of the stocks.  相似文献   

12.
《Oceanologica Acta》1998,21(6):793-802
The mesozooplankton distribution in the upper water layer (up to 200 m) off Marseilles (NW Mediterranean Sea) was studied during 22 cruises performed between March 1992 and February 1995. Four stations (M1, M3, M5 and M7) were investigated along a coast-open sea transect. Spatial and seasonal variations of zooplankton were described using different quantitative parameters: biomass (dry weight, carbon, nitrogen), displacement volume (biovolurne) and abundance of total organisms. C/N ratio, dry weight per individual and volume per individual were also calculated. The seasonal quantitative variations occurring at the four stations were not well synchronized. Annual maximum biomass was observed during spring and summer at M1 but only in early spring at the other stations. Abundance and biovolumes followed the same general pattern of variation. The mean values of the different parameters were maximum near the coast, at M1, and minimum at the most distant station (M7), but the decrease towards the open sea was not regular: the values found at M5 were higher than at M3 and markedly exceeded those at M7. This seems to be related to the presence of the oligotrophic Northern Mediterranean Current flowing parallel to the coast. In most cases M3 was in the core of the current whereas M5 seemed to be frequently influenced by its external boundary. Locally, this frontal situation enhanced the primary production and consequently favoured an increase in zooplankton biomass or production as suggested by the strong temporal correlation between chlorophyll and Zooplankton at this station. Comparison between stations demonstrated the specificity of M5 zooplankton which showed the lowest variability in its specific dry weight and biovolurne and the highest C/N ratios.  相似文献   

13.
Seasonal changes in mesozooplankton biomass and their community structures were observed at time-series stations K2 (subarctic) and S1 (subtropical) in the western North Pacific Ocean. At K2, the maximum biomass was observed during the spring when primary productivity was still low. The annual mean biomasses in the euphotic and 200- to 1000-m layers were 1.39 (day) and 2.49 (night) g C m?2 and 4.00 (day) and 3.63 (night) g C m?2, respectively. Mesozooplankton vertical distribution was bimodal and mesopelagic peak was observed in a 200- to 300-m layer; it mainly comprised dormant copepods. Copepods predominated in most sampling layers, but euphausiids were dominant at the surface during the night. At S1, the maximum biomass was observed during the spring and the peak timing of biomass followed those of chlorophyll a and primary productivity. The annual mean biomasses in the euphotic and 200- to 1000-m layers were 0.10 (day) and 0.21 (night) g C m?2 and 0.47 (day) and 0.26 (night) g C m?2, respectively. Copepods were dominant in most sampling layers, but their mean proportion was lower than that in K2. Mesozooplankton community characteristics at both sites were compared with those at other time-series stations in the North Pacific and with each other. The annual mean primary productivities and sinking POC fluxes were equivalent at both sites; however, mesozooplankton biomasses were higher at K2 than at S1. The difference of biomasses was probably caused by differences of individual carbon losses, population turnover rates, and trophic structures of communities between the two sites.  相似文献   

14.
Main features of the zooplankton distribution and the ecological characteristics of the dominant species in the northern Benguela during different phases of upwelling are discussed. The composition of the zooplankton between 17 and 27°S was similar each year. Among the 20°30 most abundant species, 3°4 copepods dominated, influencing the distribution of total zooplankton biomass. During quiescent upwelling, zooplankton abundance was low and there were no significant differences in the inshore-offshore distribution of zooplankton biomass, the maximum occurring over the slope. During active upwelling, zooplankton biomass increased significantly, the maximum over the shelf being constituted almost entirely of developmental stages of herbivorous copepods. Over the inner shelf, all stages of the copepod Calanoides carinatus were feeding actively, removing up to 5 per cent per day of the standing stock of phytoplankton. Comparison of daily ration, respiration rate and biochemical composition of C. carinatus revealed active storage of energy inshore. Offshore populations of C. carinatus, found deeper than 200 m, comprised mainly copepodite stage V, which were not feeding and were characterized by decreased mobility and respiration and a high lipid content. It is estimated that the energy stored during active upwelling enables copepods to survive up to six months without any additional source of energy.  相似文献   

15.
Phytoplankton dynamics in the upper reach of the northern San Francisco Bay estuary are usually characterized by low biomass dominated by microflagellates or freshwater diatoms in winter, and high biomass dominated by neritic diatoms in summer. During two successive years of very low river discharge (the drought of 1976-77), the summer diatom bloom was absent. This is consistent with the hypothesis that formation of the diatom population maximum is a consequence of the same physical mechanisms that create local maxima of suspended sediments in partially-mixed estuaries: density-selective retention of particles within an estuarine circulation cell. Because the estuary is turbid, calculated phytoplankton growth rates are small in the central deep channel but are relatively large in lateral shallow embayments where light limination is less severe. When river discharge falls within a critical range (100–350 m3 s?1) that positions the suspended particulate maximum adjacent to the productive shallow bays, the population of neritic diatoms increases. However, during periods of high discharge (winter) or during periods of very low discharge (drought), the suspended particulate maximum is less well-defined and is uncoupled (positioned downstream or upstream) from the shallow bays of the upper estuary, and the population of neritic diatoms declines. Hence, the biomass and community composition of phytoplankton in this estuary are controlled by river discharge.  相似文献   

16.
基于2020年8月至11月在南海北部获取的声学多普勒流速剖面仪观测数据,利用后向散射强度数据估算得到相对体积散射强度并用其表征浮游动物生物量的相对大小,对相对体积散射强度的半月变化与具有半月周期的潮流动能进行相关性分析,进而分析天文大潮对声学估算的浮游动物生物量的影响。结果表明:半月周期的相对体积散射强度与潮流动能之间呈负相关关系,即天文大潮时,潮流动能较强,水体相对体积散射强度较低,浮游动物生物量则较小,天文小潮时则情况相反。初步推测其原因为:天文大潮时,强潮流一方面导致浮游动物生存环境恶化,使其生物量下降,另一方面也改变了浮游动物垂直迁移特性,浮游动物迁移到近海底处使其难以被观测。  相似文献   

17.
Abstract. Cymodocea nodosa is a relatively small seagrass species which is common in the Mediterranean. An intensive survey on its growth and production was carried out in a dense, monospecific stand located in a semi-estuarine embayment. Data on leaf appearance and growth, shoot recruitment and death, rhizome growth, above- and belowground biomass, and nutrient content in the different parts of the plant were obtained over 2 years. All these variables showed a clear seasonality. In general, maximum growth and production occurred in early summer (July), and maximum biomass was reached between July and September. Biomass, shoot density, growth and production showed clear minima in winter.  相似文献   

18.
Massive occurrences of jellyfish can cause direct impacts on the economy, especially on tourism and commercial fisheries. Translocation of jellyfish species by humans has caused damaging blooms in new habitats. Aurelia aurita s.l. has been introduced in many locations around the world. To test the potential success of Au. aurita s.l. in various habitats, scyphistomae from different climatic locations (Mediterranean, Red and Baltic Seas) were cultured individually for 201 days at three temperatures (14, 21 and 28 °C) with the same salinity, food and light. We tested the null hypotheses that there were no differences in survival or asexual reproduction (budding and strobilation) amongst populations [native (Mediterranean) and exotic (Red and Baltic)]. Survival of the three scyphistoma populations did not differ significantly across temperatures; however, the Red Sea group had lower survival at all temperatures than did the other populations. Most individuals strobilated at 14 °C. Red Sea scyphistomae strobilated more quickly than Baltic and Mediterranean Sea scyphistomae and produced the fewest ephyrae, whereas Baltic Sea scyphistomae produced the most. Our results indicate that Au. aurita from the Baltic or Red Seas introduced into the Northwest Mediterranean Sea would potentially persist and successfully asexually reproduce there. A new invader could even have greater asexual production than the local Au. aurita s.l. Establishment of the invaders could increase genetic variation of subsequent generations and increase their adaptability to environmental changes. Our results suggest that introduction of exotic Au. aurita s.l. populations could increase jellyfish blooms in the Mediterranean Sea.  相似文献   

19.
胶州湾增养殖海域营养状况与赤潮形成的初步研究   总被引:11,自引:1,他引:11  
根据对胶州湾女姑山增养殖海域1998年5月~9月的连续监测资料,参照潜在性富营养化的概念,应用NQI指数对该海域的营养状况进行分析。认为该海域水质富营养化是7月3~8日Skeletonemacostatum和Biddulphiaaurita混合型赤潮形成的基础,磷、硅营养盐的消耗是赤潮消亡的主要原因;赤潮消亡之后浮游植物群落发生演替,水体叶绿素a仍保持较高含量,NQI指数也相应较高,水质表现为磷限制潜在性富营养化,由于磷酸盐的限制没有发展为赤潮。  相似文献   

20.
Continuous distribution of the subsurface chlorophyll maximum (SCM) was confirmed in the Kuroshio and neighbouring areas in observations at 15 to 40 km intervals. Chlorophyll amounts occurring in and immediately around the SCM constituted 60 to 80% of the total chlorophyll in the water column above the 1% light level. The SCM zone received 1 to 10% of the surface irradiance at its center and contained sufficient macronutrients to support approximately one doubling of the existing phytoplankton biomass at most stations. There were several stations where there were higher nutrient concentrations that would support more than one doubling of the existing biomass around the SCM zone, and this was interpreted as resulting from uplift of the SCM zone due to upwelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号