首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a semi-analytical model of star formation which explains simultaneously the observed ultraviolet (UV) luminosity function (LF) of high-redshift Lyman break galaxies (LBGs) and LFs of Lyman α emitters. We consider both models that use the Press–Schechter (PS) and Sheth–Tormen (ST) halo mass functions to calculate the abundances of dark matter haloes. The Lyman α LFs at   z ≲ 4  are well reproduced with only ≲10 per cent of the LBGs emitting Lyman α lines with rest equivalent width greater than the limiting equivalent width of the narrow band surveys. However, the observed LF at   z > 5  can be reproduced only when we assume that nearly all LBGs are Lyman α emitters. Thus, it appears that  4 < z < 5  marks the epoch when a clear change occurs in the physical properties of the high-redshift galaxies. As Lyman α escape depends on dust and gas kinematics of the interstellar medium (ISM), this could mean that on an average the ISM at   z > 5  could be less dusty, more clumpy and having more complex velocity field. All of these will enable easier escape of the Lyman α photons. At   z > 5  , the observed Lyman α LF are well reproduced with the evolution in the halo mass function along with very minor evolution in the physical properties of high-redshift galaxies. In particular, up to   z = 6.5  , we do not see the effect of evolving intergalactic medium opacity on the Lyman α escape from these galaxies.  相似文献   

2.
We present confusion-limited submillimetre (submm) observations with the Submillimetre Common-User Bolometer Array (SCUBA) camera on the James Clerk Maxwell Telescope of the   z = 2.83  Lyman-break galaxy (LBG), Westphal–MM8, reaching an 850 μm sensitivity even greater than that achieved in the SCUBA map of the Hubble Deep Field region. The detection of MM8  ( S 850 μm= 1.98 ± 0.48 mJy)  , along with the literature submm detections of lensed LBGs, suggests that the LBG population may contribute significantly to the source counts of submm-selected galaxies in the 1–2 mJy regime. Additionally, submm-luminous LBGs are a viable progenitor population for the recently discovered evolved galaxies at   z ∼ 2–2.5  . These observations represent an important baseline for SCUBA2 observations which will regularly map large regions of the sky to this depth.  相似文献   

3.
As part of a large spectroscopic survey of   z > 5  Lyman break galaxies (LBGs), we have identified a single source which is clearly hosting an active galactic nucleus (AGN). Out of a sample of more than 50 spectroscopically confirmed R -band dropout galaxies at   z ∼ 5  and above, only J104048.6−115550.2 at   z = 5.44  shows evidence for a high ionization potential emission line indicating the presence of a hard ionizing continuum from an AGN. Like most objects in our sample the rest-frame-UV spectrum shows the UV continuum breaking across a Lyα line. Uniquely within this sample of LBGs, emission from N  v is also detected, a clear signature of AGN photoionization. The object is spatially resolved in Hubble Space Telescope ( HST ) imaging. This, and the comparatively high Lyα/N  v flux ratio indicates that the majority of the Lyα (and the UV continuum longward of it) originates from stellar photoionization, a product of the ongoing starburst in the LBG. Even without the AGN emission, this object would have been photometrically selected and spectroscopically confirmed as a Lyman break in our survey. The measured optical flux  ( I AB= 26.1)  is therefore an upper limit to that from the AGN and is of order 100 times fainter than the majority of known quasars at these redshifts. The detection of a single object in our survey volume is consistent with the best current models of high redshift AGN luminosity function, providing a substantial fraction of such AGN is found within luminous starbursting galaxies. We discuss the cosmological implications of this discovery.  相似文献   

4.
We present detailed predictions for the properties of Lyα-emitting galaxies in the framework of the Λ cold dark matter cosmology, calculated using the semi-analytical galaxy formation model galform . We explore a model that assumes a top-heavy initial mass function in starbursts and that has previously been shown to explain the sub-millimetre number counts and the luminosity function of Lyman-break galaxies at high redshift. We show that this model, with the simple assumption that a fixed fraction of Lyα photons escape from each galaxy, is remarkably successful at explaining the observed luminosity function of Lyα emitters (LAEs) over the redshift range  3 < z < 6.6  . We also examine the distribution of Lyα equivalent widths and the broad-band continuum magnitudes of emitters, which are in good agreement with the available observations. We look more deeply into the nature of LAEs, presenting predictions for fundamental properties such as the stellar mass and radius of the emitting galaxy and the mass of the host dark matter halo. The model predicts that the clustering of LAEs at high redshifts should be strongly biased relative to the dark matter, in agreement with observational estimates. We also present predictions for the luminosity function of LAEs at   z > 7  , a redshift range that is starting to be be probed by near-infrared surveys and using new instruments such as the Dark Ages Z Lyman Explorer (DAzLE).  相似文献   

5.
We present predictions for the abundance of submillimetre galaxies (SMGs) and Lyman-break galaxies (LBGs) in the Λ cold dark matter cosmology. A key feature of our model is the self-consistent calculation of the absorption and emission of radiation by dust. The new model successfully matches the LBG luminosity function, as well as reproducing the properties of the local galaxy population in the optical and infrared. The model can also explain the observed galaxy number counts at 850 μm, but only if we assume a top-heavy initial mass function for the stars formed in bursts. The predicted redshift distribution of SMGs depends relatively little on their flux over the range 1–10 mJy, with a median value of   z ≈ 2.0  at a flux of 5 mJy, in good agreement with the recent measurement by Chapman et al. The counts of SMGs are predicted to be dominated by ongoing starbursts. However, in the model these bursts are responsible for making only a few per cent of the stellar mass locked up in massive ellipticals at the present day.  相似文献   

6.
Recent results have shown that a substantial fraction of high-redshift Lyman α (Lyα) galaxies contain considerable amounts of dust. This implies that Lyα galaxies are not primordial, as has been thought in the past. However, this dust has not been directly detected in emission; rather it has been inferred based on extinction estimates from rest-frame ultraviolet (UV) and optical observations. This can be tricky, as both dust and old stars redden galactic spectra at the wavelengths used to infer dust. Measuring dust emission directly from these galaxies is thus a more accurate way to estimate the total dust mass, giving us real physical information on the stellar populations and interstellar medium enrichment. New generation instruments, such as the Atacama Large Millimeter Array and Sub-Millimeter Array, should be able to detect dust emission from some of these galaxies in the submillimeter. Using measurements of the UV spectral slopes, we derive far-infrared flux predictions for of a sample of  23 z ≥ 4  Lyα galaxies. We find that in only a few hours, we can detect dust emission from 39 ± 22 per cent of our Lyα galaxies. Comparing these results to those found from a sample of 21 Lyman break galaxies (LBGs), we find that LBGs are on average 60 per cent more likely to be detected than Lyα galaxies, implying that they are more dusty, and thus indicating an evolutionary difference between these objects. These observations will provide better constraints on dust in these galaxies than those derived from their UV and optical fluxes alone. Undeniable proof of dust in these galaxies could explain the larger than expected Lyα equivalent widths seen in many Lyα galaxies today.  相似文献   

7.
Using semi-analytic models of galaxy formation set within the cold dark matter (CDM) merging hierarchy, we investigate several scenarios for the nature of the high-redshift     ) Lyman-break galaxies (LBGs). We consider a 'collisional starburst' model in which bursts of star formation are triggered by galaxy–galaxy mergers, and find that a significant fraction of LBGs are predicted to be starbursts. This model reproduces the observed comoving number density of bright LBGs as a function of redshift and the observed luminosity function at     and     with a reasonable amount of dust extinction. Model galaxies at     have star formation rates, half-light radii,     colours and internal velocity dispersions that are in good agreement with the data. Global quantities such as the star formation rate density and cold gas and metal content of the Universe as a function of redshift also agree well. Two 'quiescent' models without starbursts are also investigated. In one, the star formation efficiency in galaxies remains constant with redshift, while in the other, it scales inversely with disc dynamical time, and thus increases rapidly with redshift. The first quiescent model is strongly ruled out, as it does not produce enough high-redshift galaxies once realistic dust extinction is accounted for. The second quiescent model fits marginally, but underproduces cold gas and very bright galaxies at high redshift. A general conclusion is that star formation at high redshift must be more efficient than locally. The collisional starburst model appears to accomplish this naturally without violating other observational constraints.  相似文献   

8.
A model for gas outflows is proposed which simultaneously explains the correlations between the (i) equivalent widths of low-ionization and Lyα lines, (ii) outflow velocity, and (iii) star formation rate observed in Lyman break galaxies (LBGs). Our interpretation implies that LBGs host short-lived (30 ± 5 Myr) starburst episodes observed at different evolutionary phases. Initially, the starburst powers a hot wind bound by a denser cold shell, which after ≈5 Myr becomes dynamically unstable and fragments; afterwards the fragment evolution is approximately ballistic while the hot bubble continues to expand. As the fragments are gravitationally decelerated, their screening ability of the starlight decreases as the ultraviolet (UV) starburst luminosity progressively dims. LBG observations sample all these evolutionary phases. Finally, the fragments fall back on to the galaxy after ≈60 Myr. This phase cannot be easily probed as it occurs when the starburst UV luminosity has already largely faded; however, galaxies dimmer in the UV than LBGs should show infalling gas.  相似文献   

9.
I review here a few important questions that X‐shooter can help tackle and answer in the field of quasar absorption lines. This includes (i) determine the ionizing background and the physical state of the inter‐galactic medium (IGM) by analysing the characteristics of the Lyman‐α forest and the proximity effect; (ii) investigate the metal content of the high redshift IGM; (iii) study the small scale transverse correlation in the IGM by observing pairs of quasars with small separation in the sky; (iv) study the galaxy‐IGM relations by detecting the counterpart of damped Lyman‐α systems (DLAs) or determining the correlation between the properties of galaxies and absorption lines; (v) detect and characterize the long‐sought cold diffuse molecular (H2 and CO) interstellar medium (ISM) of high redshift galaxies and study its dust content (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We estimate the evolution of the contribution of galaxies to the cosmic background flux at 912 Å by means of a semi-analytic model of galaxy formation and evolution. Such modelling has been quite successful in reproducing the optical properties of galaxies. We assume that high-redshift damped Lyman α systems are the progenitors of present-day galaxies, and we design a series of models that are consistent with the evolution of cosmic comoving emissivities in the available near-infrared, optical, ultraviolet and far-infrared bands along with the evolution of the neutral hydrogen content and average metallicity of damped Lyman α systems. We use these models to compute the galactic contribution to the Lyman-limit emissivity and background flux for 0 ≃  z  ≤ 4. We take into account the absorption of Lyman-limit photons by H  I and dust in the interstellar medium of the galaxies. We find that the background Lyman-limit flux due to galaxies might dominate (or be comparable to) the contribution from quasars at almost all redshifts if the absorption by H  I in the interstellar medium is neglected. Such H  I absorption would result in a severe diminishing of this flux — by almost three orders of magnitude at high redshifts and by one to two orders at z  ≃ 0. Though the resulting galaxy flux is completely negligible at high redshifts, it is comparable to the quasar flux at z  ≃ 0.  相似文献   

11.
It has recently been shown that galaxy formation models within the Λ cold dark matter cosmology predict that, compared to the observed population, small galaxies (with stellar masses  <1011 M  ) form too early, are too passive since   z ∼ 3  and host too old stellar populations at   z = 0  . We then expect an overproduction of small galaxies at   z ≳ 4  that should be visible as an excess of faint Lyman-break galaxies. To check whether this excess is present, we use the morgana galaxy formation model and grasil spectrophotometric  +  radiative transfer code to generate mock catalogues of deep fields observed with Hubble Space Telescope Advanced Camera for Surveys. We add observational noise and the effect of Lyman α emission, and perform colour–colour selections to identify Lyman-break galaxies. The resulting mock candidates have plausible properties that closely resemble those of observed galaxies. We are able to reproduce the evolution of the bright tail of the luminosity function of Lyman-break galaxies (with a possible underestimate of the number of the brightest i -dropouts), but uncertainties and degeneracies in dust absorption parameters do not allow to give strong constraints to the model. Besides, our model shows a clear excess with respect to observations of faint Lyman-break galaxies, especially of   z 850∼ 27 V   -dropouts at   z ∼ 5  . We quantify the properties of these 'excess' galaxies and discuss the implications: these galaxies are hosted in dark matter haloes with circular velocities in excess of 100 km s−1, and their suppression may require a deep rethinking of stellar feedback processes taking place in galaxy formation.  相似文献   

12.
We present the K -band Hubble diagrams ( K – z relations) of submillimetre-selected galaxies and hyperluminous galaxies (HLIRGs). We report the discovery of a remarkably tight K – z relation of HLIRGs, indistinguishable from that of the most luminous radio galaxies. Like radio galaxies, the HLIRG K – z relation at   z ≲ 3  is consistent with a passively evolving ∼3 L * instantaneous starburst starting from a redshift of   z ∼ 10  . In contrast, many submillimetre-selected galaxies are ≳2 mag fainter, and the population has a much larger dispersion. We argue that dust obscuration and/or a larger mass range may be responsible for this scatter. The galaxies so far proved to be hyperluminous may have been biased towards higher AGN bolometric contributions than submillimetre-selected galaxies due to the 60-μm selection of some, so the location on the K – z relation may be related to the presence of the most massive active galactic nucleus. Alternatively, a particular host galaxy mass range may be responsible for both extreme star formation and the most massive active nuclei.  相似文献   

13.
We perform a spectrophotometric analysis of galaxies at redshifts z = 4–6 in cosmological smoothed particle hydrodynamics simulations of a Λ cold dark matter universe. Our models include radiative cooling and heating by a uniform ultraviolet (UV) background, star formation, supernova feedback, and a phenomenological model for galactic winds. Analysing a series of simulations of varying box size and particle number allows us to isolate the impact of numerical resolution on our results. Specifically, we determine the luminosity functions in B , V , R , i ' and z ' filters, and compare the results with observational surveys of Lyman break galaxies (LBGs) performed with the Subaru telescope and the Hubble Space Telescope . We find that the simulated galaxies have UV colours consistent with observations and fall in the expected region of the colour–colour diagrams used by the Subaru group. The stellar masses of the most massive galaxies in our largest simulation increase their stellar mass from   M ∼ 1011 M  at z = 6 to   M ∼ 1011.7 M  at z = 3. Assuming a uniform extinction of E ( B − V ) = 0.15, we also find reasonable agreement between simulations and observations in the space density of UV bright galaxies at z = 3–6, down to the magnitude limit of each survey. For the same moderate extinction level of E ( B − V ) ∼ 0.15, the simulated luminosity functions match observational data, but have a steep faint-end slope with α∼−2.0. We discuss the implications of the steep faint-end slope found in the simulations. Our results confirm the generic conclusion from earlier numerical studies that UV bright LBGs at z ≥ 3 are the most massive galaxies with E ( B − V ) ∼ 0.15 at each epoch.  相似文献   

14.
Ultra-high resolution hydrodynamic simulations using 10243 grid points are performed of early supernova burst in a forming galaxy, with properties similar to those inferred for Lyman α emitters (LAEs) and Lyman Break Galaxies (LBGs). We show that, at the earliest stages of less than 300 Myr, continual supernova explosions produce multitudinous hot bubbles and cooled H(I) shells in-between. The H(I) shells radiate intense Lyman α (Lyα) emission like LAEs. We found that the bubbly structures produced are quite similar to the observed features in the Lyα surface brightness distribution of the extended LAEs. After 1 Gyr, the galaxies are dominated by stellar continuum radiation and then resemble the LBGs. At this point, the abundance of heavy elements appears to be solar. After 13 Gyr, these galaxies resemble present-day ellipticals.  相似文献   

15.
During the early stages of galaxy evolution, the metallicity is generally low and nearby metal-poor star-forming galaxies may provide templates for primordial star formation. In particular, the dust content of such objects is of great importance, because early molecular formation can take place on grains. To gain insight into primeval galaxies at high redshift, we examine the dust content of the nearby extremely low-metallicity galaxy SBS  0335–052  which hosts a very young starburst (≲107 yr). In young galaxies, the dust formation rate in Type II supernovae governs the amount of dust, and by incorporating recent results on dust production in Type II supernovae we model the evolution of dust content. If the star-forming region is compact (≲100 pc), as suggested by observations of SBS  0335–052  , our models consistently explain the quantity of dust, far-infrared luminosity, and dust temperature in this low-metallicity object. We also discuss the H2 abundance. The compactness of the region is important to H2 formation, because the optical depth of dust for UV photons becomes large and H2 dissociation is suppressed. We finally focus on implications for damped Ly α systems.  相似文献   

16.
We present photometric analysis of deep mid-infrared (mid-IR) observations obtained by Spitzer /IRAC covering the fields Q1422+2309, Q2233+1341, DSF2237a,b, HDFN, SSA22a,b and B20902+34, giving the number counts and the depths for each field. In a sample of 751 Lyman-break galaxies (LBGs) lying in those fields, 443, 448, 137 and 152 are identified at 3.6-, 4.5-, 5.8-, 8.0-μm IRAC bands, respectively, expanding their spectral energy distribution to rest-near-IR and revealing that LBGs display a variety of colours. Their rest-near-IR properties are rather inhomogeneous, ranging from those that are bright in IRAC bands and exhibit  [ R ]−[3.6] > 1.5  colours to those that are faint or not detected at all in IRAC bands with  [ R ]−[3.6] < 1.5  colours and these two groups of LBGs are investigated. We compare the mid-IR colours of the LBGs with the colours of star-forming galaxies and we find that LBGs have colours consistent with star-forming galaxies at   z ∼ 3  . The properties of the LBGs detected in the 8-μm IRAC band (rest-frame K band) are examined separately, showing that they exhibit redder  [ R ]−[3.6]  colours than the rest of the population and that although in general, a multiwavelength study is needed to reach more secure results, IRAC 8-μm band can be used as a diagnostic tool, to separate high z , luminous AGN-dominated objects from normal star-forming galaxies at   z ∼ 3  .  相似文献   

17.
18.
Deep surveys in many wavebands have shown that the rate at which stars were forming was at least a factor of 10 higher at redshifts >1 than today. Heavy elements ('metals') are produced by stars, and the star formation history deduced by these surveys implies that a significant fraction of all metals in the Universe today should already exist at   z ∼ 2–3  . However, only 10 per cent of the total metals expected to exist at this redshift have so far been accounted for (in damped Lyman α absorbers and the Lyman forest). In this paper, we use the results of submillimetre surveys of the local and high-redshift Universe to show that there was much more dust in galaxies in the past. We find that a large proportion of the missing metals are traced by this dust, bringing the metals implied from the star formation history and observations into agreement. We also show that the observed distribution of dust masses at high redshift can be reproduced remarkably well by a simple model for the evolution of dust in spheroids, suggesting that the descendants of the dusty galaxies found in deep submillimetre surveys are the relatively dust-free spiral bulges and ellipticals in the Universe today.  相似文献   

19.
We have used extensive libraries of model and empirical galaxy spectra [assembled, respectively, from the population synthesis code of Bruzual and Charlot and the fourth data release of the Sloan Digital Sky Survey (SDSS)] to interpret some puzzling features seen in the spectra of high-redshift star-forming galaxies. We show that a stellar He  ii  λ1640 emission line, produced in the expanding atmospheres of Of and Wolf–Rayet stars, should be detectable with an equivalent width of 0.5–1.5 Å in the integrated spectra of star-forming galaxies, provided the metallicity is greater than about half solar. Our models reproduce the strength of the He  ii  λ1640 line measured in the spectra of Lyman-break galaxies for established values of their metallicities. With better empirical calibrations in local galaxies, this spectral feature has the potential of becoming a useful diagnostic of massive star winds at high, as well as low redshifts.
We also uncover a relationship in SDSS galaxies between their location in the [O  iii ]/Hβ versus [N  ii ]/Hα diagnostic diagram (the BPT diagram) and their excess specific star formation rate relative to galaxies of similar mass. We infer that an elevated ionization parameter U is at the root of this effect, and propose that this is also the cause of the offset of high-redshift star-forming galaxies in the BPT diagram compared to local ones. We further speculate that higher electron densities and escape fractions of hydrogen ionizing photons may be the factors responsible for the systematically higher values of U in the H  ii regions of high-redshift galaxies. The impact of such differences on abundance determinations from strong nebular lines are considered and found to be relatively minor.  相似文献   

20.
We investigate the properties of the first galaxies at   z ≳ 10  with highly resolved numerical simulations, starting from cosmological initial conditions and taking into account all relevant primordial chemistry and cooling. A first galaxy is characterized by the onset of atomic hydrogen cooling, once the virial temperature exceeds  ≃104 K  , and its ability to retain photoheated gas. We follow the complex accretion and star formation history of a  ≃5 × 107 M  system by means of a detailed merger tree and derive an upper limit on the number of Population III (Pop III) stars formed prior to its assembly. We investigate the thermal and chemical evolution of infalling gas and find that partial ionization at temperatures  ≳104 K  catalyses the formation of  H2  and hydrogen deuteride, allowing the gas to cool to the temperature of the cosmic microwave background. Depending on the strength of radiative and chemical feedback, primordial star formation might be dominated by intermediate-mass Pop III stars formed during the assembly of the first galaxies. Accretion on to the nascent galaxy begins with hot accretion, where gas is accreted directly from the intergalactic medium and shock heated to the virial temperature, but is quickly accompanied by a phase of cold accretion, where the gas cools in filaments before flowing into the parent halo with high velocities. The latter drives supersonic turbulence at the centre of the galaxy and could lead to very efficient chemical mixing. The onset of turbulence in the first galaxies thus likely marks the transition to Pop II star formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号