首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 431 毫秒
1.
利用常规气象观测资料、区域自动站资料、强天气监测资料以及NCEP 1°×1°逐6 h再分析资料,从影响系统、环境场条件以及低空急流对混合强对流天气的水汽、热力、动力影响的诊断分析入手,对2019年3月4—5日贵州大范围雷雨大风、冰雹、短时强降水和暴雨等混合强对流天气过程进行综合分析。结果表明:低空急流建立并呈爆发式增强,使中低层水汽输送和辐合加强,大气上干冷、下暖湿的特征更显著,中低空能量锋区加强,垂直风切变增大,动力辐合加强,同时"低层辐合、高层辐散"的抽吸结构长时间维持,为混合强对流天气的发生发展提供了重要条件。超前的500 hPa温度槽叠加在中低空强暖湿气流之上,触发锋前暖区强对流天气,强对流天气发生在低空急流发展增强至最强盛期间,主要分布在700 hPa和850 hPa温度脊区附近强暖湿不稳定区;4日夜间南支槽配合低空切变线和活跃的静止锋,共同触发锋后冷区强降水天气,强降水主要发生在低空急流和水汽辐合达到最强之后,强降水主要分布在低空急流左前侧、850 hPa切变线南侧及850 hPa和700 hPa饱和湿区重叠区内。  相似文献   

2.
利用MICAPS常规资料和NCEP再分析资料,对2013年7月辽宁省降水异常物理机制进行了研究。结果表明:2013年7月辽宁省降水偏多发生在异常环流背景下,乌拉尔山高压脊和贝加尔湖低压槽强度大于常年,冷空气偏强且路径偏南;东亚40°—50°N处在纬向强锋区中,有利于气旋生成发展;副热带高压脊线比常年偏北2个纬度,西北侧暖湿气流活跃。7月中高纬地区有3次明显冷空气向南侵入至40°N,与中低纬北上至40°N及以北的暖湿气流交绥形成暴雨,影响系统分别为华北气旋、蒙古气旋冷锋和副热带高压西侧辐合线,不同影响系统暴雨过程的物理机制存在差异。3次暴雨过程中,华北气旋暴雨水汽供应最充沛,水汽源地不仅有西太平洋、南海、东海和黄海,还有孟加拉湾;暴雨区水汽主要由副热带高压外围西南或偏南气流向北输送,东海北部和黄海是水汽汇合及输送量最大的区域。高空急流受贝加尔湖低槽强度影响,不同影响系统高空急流演变和强度不同,低空急流分布与强度及高空辐散区、低空辐合区相对高、低空急流轴分布的位置也不同;高、低空急流耦合发展及高空辐散区、低空辐合区叠置产生的强垂直上升运动造成了水汽强烈辐合,其中华北气旋暴雨水汽辐合最强,水汽辐合层顶达850hPa,蒙古气旋冷锋和副热带高压西侧辐合线暴雨水汽辐合顶在900hPa附近及以下。热力分析表明,3次暴雨过程环境大气中层均有干冷空气侵入,增加了降水对流的不稳定性。  相似文献   

3.
利用高空气象观测资料、物理量、地面逐时降雨量、卫星云图FY-2G等资料,对2017年7月25—26日榆林市一次区域性大暴雨过程成因进行了分析,结果表明:此次大暴雨过程是在高空冷槽、强盛的副热带高压、低空西南急流、东南气流共同影响下产生,暴雨落区位于副高588 dagpm 西北侧的辐合区;700 hPa西南急流和850 hPa东南气流为强降水的产生提供了充沛水汽,长时间充沛的水汽输送和较强的水汽辐合是区域性大暴雨产生的重要原因之一;低层暖湿气流携带大量水汽和不稳定能量影响陕北地区,在中层冷空气触发下产生强对流,强降水出现在能量锋区中;陕北地区500~850 hPa深厚辐合层产生的强上升运动是暴雨发生的动力条件,暴雨落区和强度与上升运动相对应;中尺度对流复合体MCC的发展东移是造成此次大暴雨过程的主要原因。  相似文献   

4.
2012年2—3月浙江异常连阴雨天气过程分析   总被引:1,自引:0,他引:1  
分析了2012年2—3月异常连阴雨天气的环流背景、副热带西风急流、低层热力场特征及水汽输送,结果表明:1)500hPa在乌拉尔山以东地区为稳定的高压脊区,东西两路冷空气从高压脊两侧的低槽分裂南下交替影响;华西低槽稳定维持,西北太平洋高度场偏高,形成西低东高环流特征。2)200hPa西风急流位置比常年偏北。3)850hPa在西南地区东部有冷温槽,在江南地区有明显的锋区维持。4)低层水汽输送主要来自南海。5)连阴雨期间的区域性暴雨过程中存在一支强劲的西南风低空急流。  相似文献   

5.
夏季两次低槽冷锋型暴雨成因对比分析   总被引:1,自引:0,他引:1  
郑丽娜  孙兴池  孟伟 《气象科技》2015,43(6):1133-1141
利用常规观测资料和NCEP 1°×1°再分析资料,对对流层低层无低涡、无低空急流配置的低槽和冷锋影响下2004年7月29—30日后倾槽和2004年8月3—4日前倾槽两次暴雨过程的成因进行了对比分析,结果表明: 虽然两次过程对流层中低层形势非常相近,但在空间结构上却存在显著差异。后倾槽锋区向冷空气倾斜且成3段锋,其中,第1段锋在850 hPa以下,冷空气虽较弱,但对整个降水过程起抬升触发作用,暴雨区出现在该段锋移动方向的前沿,即地面辐合线呈气旋性弯曲的流线密集处;前倾槽锋区完整,湿斜压锋区向暖区倾斜,暴雨区出现在锋前1~2个纬距处,即地面辐合线右侧偏南气流密集带中。两次过程低层均有强的水汽输送,存在高温高湿区,925 hPa比湿均达15 g〖DK〗·kg-1以上,所不同的是,后倾槽暴雨区位于水汽通量大值区、等〖WTBX〗θe〖WTBZ〗密集线前沿及风场辐合明显的水汽辐合区内,而前倾槽暴雨区则位于水汽通量等值线密集带中的水汽辐合区、〖WTBX〗θe〖WTBZ〗暖舌的舌尖和风场辐合处,但更偏向暖空气一侧。此外,暴雨易发生在山区或海岸线等特殊地形抬升的区域。  相似文献   

6.
该文主要利用常规资料和NCEP 1°×1°6h再分析资料,对2017年5月2日四川省巴中市出现的春季暴雨过程的环流背景和影响系统、动力条件、水汽条件、能量条件等方面进行诊断分析。结果表明:(1)500 hPa南北支低槽配合东移,低层有低空急流建立,同时有700 hPa的切变和850 hPa的辐合配合,地面图上有冷空气侵入盆地。(2)大气表现为低层辐合高层辐散的垂直结构,正涡度区发展深厚。(3)低层风速迅速增大,低空急流建立,为暴雨区输送了水汽,水汽辐合中心与强度的时空分布与降雨一致。(4)大气层结不稳定,随着动力条件进一步加强,配合地面冷空气的触发,对流发展,降雨强度加强。  相似文献   

7.
2009年7月8-9日发生在泰安的暴雨天气过程主要是在副高西进北抬、副高边缘西南暖湿气流与高空低槽东移南压相结合的大尺度环流下,由黄河北部的低层中尺度切变线和鲁中地区的小低涡以及低空西南急流共同作用造成的.低空西南急流为大暴雨的产生输送了充足的水汽,低涡加大了辐合上升运动和水汽辐合.850 hPa低空大气散度辐合中心正处于泰安,垂直速度强上升区也在鲁中地区,为暴雨产生提供了足够的动力条件,低层850 hPa假相当位温θse>75 ℃的高能舌为这次暴雨提供了不稳定能量.  相似文献   

8.
陕西历史最早暴雨成因初步分析   总被引:1,自引:1,他引:1       下载免费PDF全文
利用天气学原理和T213提供的物理量场分析了2004-02-20发生在陕西历史上最早的暴雨过程,发现此次暴雨是在新疆分裂冷空气、高原槽、低涡切变和地面倒槽的共同影响形成的,环流形势为“东高西低”和“北槽南涡”.西南低空急流、低涡切变是此次暴雨的直接影响系统,动力结构为高层强辐散和低层强辐合.能量场具有典型的“Ω”中尺度结构,700hPa层SW低空暖湿急流是主要水汽和能量输送系统,暴雨区水汽辐合强烈,暴雨发生在水汽通量的最大梯度处,与夏季暴雨水汽特征相似。  相似文献   

9.
利用常规观测资料和NCEP 1°×1°再分析资料,采用天气动力学诊断方法,对河北中南部春末一次回流暴雨的风场、水汽、热力条件进行了详细分析。结果表明:(1)此次大暴雨发生在地面冷锋后部、近地层超低空急流产生回流的稳定气团中,850—700 hPa低空西南急流和切变线是其主要影响系统。(2)随高空急流发展,急流中心右前方强辐合引起气流下沉,使低层高压加强、高压南部风速加大,导致山东、河北南部低空东北风加强而产生近地面层超低空东北风急流,与其上层偏南急流相遇在太行山东麓产生耦合形成回流,有利于在河北南部、山东等地形成暴雨中心。(3)强暴雨发生在西南水汽通道北侧边缘,暴雨区水汽主要为西南急流输送;强暴雨区位于水汽通量散度强辐合区与水汽通量散度强辐散区之间的水汽通量散度锋区中,低层风切变辐合对暴雨触发起到关键作用。  相似文献   

10.
利用常规高空、地面观测资料以及NCEP/NCAR 1°×1°间隔6 h再分析资料,对2020年8月4—5日陕北区域性暴雨过程进行诊断分析。结果表明:此次暴雨过程的主要影响系统为500 hPa西风槽和副热带高压,中低层的切变及正涡度,为暴雨提供了有利的动力条件。随着台风“黑格比”的西移北上,副高主体西伸北抬,引导副高外围水汽向西北地区输送,促进了西南急流的建立和水汽的持续输送;同时台风西北侧偏东气流的加强,高能锋区梯度加强且向陕北地区伸展,使得雨强增大,850 hPa能量锋区为强降水的落区。暴雨区对流层中低层表现为较强的对流不稳定层结,形成有利于暴雨的高能高湿环境场。暴雨前期主要受弱的东路冷空气影响,降水效率低。暴雨后期高空冷空气入侵,850 hPa台风外围东风风速辐合增强,同时伴有强的上升运动,陕北地区受中尺度对流系统的作用导致暴雨加强。  相似文献   

11.
锋面北侧冷气团中连续降雹环境场特征及成因   总被引:2,自引:0,他引:2       下载免费PDF全文
对2009年2月24日—3月5日我国南方锋面北侧冷气团中连续冰雹天气过程的环流形势和环境场特征及形成机理进行分析。此次冰雹过程是发生在我国南方典型的连阴雨天气形势背景下,欧亚中高纬度地区为两槽一脊形势,副热带高压偏强、中南半岛为低槽区,青藏高原有5次短波槽东移,中层700 hPa暖湿气流势力强盛。中层强西南暖湿气流在强锋区 (冷垫) 上抬升,形成我国南方典型的高架雷暴。高架雷暴的发生与中低层强温度锋区、中层700 hPa不低于20 m·s-1的西南急流、强风垂直切变、对流层中层较大的温度直减率、较低的0℃层高度 (4 km以下) 有关。  相似文献   

12.
东北冷涡诱发的一次连续强风暴环境条件分析   总被引:14,自引:8,他引:6       下载免费PDF全文
从深对流发展必须满足的对流层低层有足够强的湿层、层结不稳定和足够强的触发机制出发,对2002年7月11~15日由东北冷涡诱发的一次连续强风暴生成的环境条件进行了诊断分析。结果表明:低层暖湿条件是冷涡强对流预报的关键,强大的冷涡由于冷性层结深厚难以诱发强的对流性天气,而其分裂的次涡度中心或弱的冷性低涡配合低层暖湿气流常常产生突发性强对流性天气;强的风垂直切变引发的斜压不稳定和垂直运动是强对流触发和维持的重要条件,风暴发生前边界层到500 hPa风向随高度顺转超过90°,随着对流性天气的发展,850 hPa以上风垂直切变逐渐减小,而850 hPa以下可能受低层冷丘产生中高压的影响,切变有增大的趋势;冷涡诱发的强对流性天气常常位于高空急流出口区左侧,但在实际预报业务中需要配合散度场来进行综合判断。  相似文献   

13.
浙江省2月份连续降雹过程诊断   总被引:1,自引:1,他引:0  
利用NCEP再分析资料、MICAPS常规资料、雷达产品等资料对浙江省2009年2月23—26日连续降雹天气过程进行了诊断分析。结果表明:此次连续降雹过程降雹区均出现在高低空急流轴交叉点南侧约1个纬度,底层辐合区;850 hPa较强的水汽辐合和湿舌为此次降对流过程提供了充沛的水汽条件,上干下湿结构使对流性不稳定增强,逆温层存在使大量不稳定能量储积起来,底层冷空气渗透触发强对流发生;Ic500-700指数对此次降雹过程有较好指示意义;2月份冰雹雷达回波特征有别于春、夏季冰雹回波特征,冬末春初冷空气势力仍较强,对流强度偏弱,回波顶高偏低,其三体散射特征不明显,VIL值较小。  相似文献   

14.
一次梅雨锋气旋波雷暴天气生成的剖析   总被引:1,自引:1,他引:1  
魏绍远  林锡怀 《气象科学》1995,15(3):209-218
本文利用常规观测资料,并采用滤波方法,仔细地分析了1980年6月24日一次江淮气旋中发生物强对流性质的暴雨天气。分析表明,强对流性质的暴雨天气之所发发生,是由于低层的西南风急流轴与Td的湿舌轴重合,极有利于水汽的不断输送,850-700hPa之间较长时间对流不稳定居存在,雷暴区又正好与S〈0的对称不稳定区重合,对称不稳定产生了倾斜对流,使雷暴天气得以维持;  相似文献   

15.
利用地面降水观测、NCEP/NCAR FNL再分析、ECMWF模式预报场和FY-2H静止卫星TBB资料, 对2020年6月30日浙江省一次暴雨过程进行了综合分析。结果表明: (1) 200 hPa南亚高压强高空辐散、中纬度低槽东移、副热带高压带状稳定的阻塞形势、江淮气旋后部下摆冷空气与暖湿气流交汇形成的冷式切变等共同提供了有利的环境条件; (2)对流层中低层水汽通量向高空伸展、700 hPa正的垂直螺旋度中心都对暴雨落区有示踪作用, 高层正水汽通量散度强于低层负水汽通量散度, 垂直螺旋度和垂直速度中心几乎重合, 先低层强辐合后强垂直上升运动均为本次暴雨的发生提供了重要的水汽和动力条件; (3)暴雨发生在MPV、MPV1和MPV2为正负过渡的零值区, 为对流不稳定和斜压不稳定相结合区域, θse线密集区与地面近乎垂直, 湿位涡的高值中心位于θse梯度最大处, 高空湿位涡下传触发了位势不稳定能量的释放, 引起大范围的强对流暴雨; (4) 850 hPa冷切变线附近的降水云团, 是由多个块状对流云团合并加强形成完整的带状积雨云团, 而上游不断有新生对流云团生成东移补充消散的老单体, 触发阶段对流云后向传播, 扰动发展阶段对流云团合并过程, 形成对流云串的“列车效应”。   相似文献   

16.
2013年3月20日三明市大范围冰雹过程分析   总被引:1,自引:0,他引:1  
利用常规观测资料、Micaps资料、三明市区域站加密资料以及多普勒雷达资料,对2013年3月20日三明市大范围冰雹大风过程进行诊断分析。结果表明:500hPa高空槽加深、南支槽东移、三层强劲西南急流、中低层的低涡切变及弱冷空气南下、地面锋面低槽等是该次冰雹过程的主要影响系统。冰雹的发生需要较强的垂直温度梯度t850-500≥25℃,上干下湿,冰雹的0℃层高度约3.5~4.3km左右,一20℃层约在7.0~7.8km左右,低层比湿q≥10g/kg。地面气象要素的剧烈变化对强天气的发生具有一定的指示意义。850hPaθse高能舌向降雹区输送不稳定能量,低层水汽充沛,地面冷空气南下渗透触发了不稳定能量的释放使得中尺度对流天气发生发展。该次冰雹过程强度强、范围大,对流回波(飑线)呈带状自西而东影响三明市。  相似文献   

17.
热带气旋远距离暴雨(TRP)往往成为高影响天气,是业务预报难点。本文用地面、探空观测资料、雷达遥感资料以及NCEP一日四次0.5°×0.5°再分析资料,对2018年第22号台风“山竹”登陆广东期间在长江三角洲(简称长三角)地区引起的远距离暴雨过程进行分析。结果表明:(1)这是一次发生在副热带高压(简称副高)控制范围内的热带气旋远距离暴雨,低层受台风倒槽影响。(2)这次过程第一阶段暴雨主要是在强的对流不稳定条件下,由对流层低层“山竹”倒槽中的辐合线触发对流产生,同时对流层高层“山竹”的极向流出汇入加大了中纬度西风风速,在长三角地区上空产生辐散,有利于上升运动的维持。第二阶段,对流不稳定条件有所减弱,但前一阶段强回波产生的低层偏北外出气流与东南风形成辐合线,辐合线上还有中γ尺度的涡旋产生,又促进了对流发展。850 hPa台风倒槽北端形成一个低涡,500 hPa副高边缘发展出一个短波槽,暴雨的动力条件更为有利。(3)长三角的3个强降水中心分别在长江口、杭州湾北岸的嘉兴沿海及宁波沿海,都是在水陆边界附近。(4)远距离暴雨区的涡度收支诊断发现:暴雨的初始扰动主要由近地层水平辐合辐散项提供,850 hPa的水平辐合辐散项和扭曲项共同作用形成和加强低涡,并通过垂直运动上传使中层700~500 hPa附近涡度增长,进而发展出500 hPa短波槽。850 hPa涡度来自于台风倒槽和副高边缘的偏南急流。(5)在这次远距离暴雨过程中,台风“山竹”与海上西太平洋副高之间形成偏南低空急流,向长三角输送水汽,这与典型TRP事件相似。不同之处在于:典型TRP中暴雨的初始扰动一般由西风槽提供,而这次过程主要由低空台风倒槽和偏南急流提供,涡度上传形成高空短波槽,是不同于典型TRP事件的一个物理过程。  相似文献   

18.
针对2008年6月29日下午到夜间,发生在山西省忻州市神池、五寨、原平等县(市)一带的严重局部冰雹天气过程,利用天气环流形势,各种物理量特征,分析其成因。指出:a)500hPa蒙古东部的冷涡东移,冷空气叠加在850hPa暖脊上,产生上冷下暖的位势不稳定能量。b)前期先导槽的滑过,使低层增湿,潜在不稳定度增大。c)降雹区域沙氏指数、K指数等都符合山西降雹标准。d)850hPa-500hPa有较强垂直风切变,使动力不稳定能量加强,为冰雹天气发生发展提供了必要条件。e)特别是山区由于海拔高,山脉阻挡,气流辐合上升,容易产生局地强对流,诱发雹云生成,出现冰雹天气。  相似文献   

19.
利用地面气象观测资料、ERA5再分析资料、FY-2E卫星和多普勒雷达资料,对2011年7月17日发生在巢湖地区的一次强对流暴雨过程进行诊断分析。结果显示:500hPa深槽、850hPa切变线及地面低压是此次暴雨过程的天气尺度影响系统,强降水发生在湿层和暖云层深厚、较低的抬升凝结高度、中等强度对流不稳定及弱垂直风切变条件下;FY-2E卫星云图分析表明,此次强降水过程主要是多个中尺度对流系统在巢湖合并所致,短时强降水落区主要落在中尺度对流系统TBB等值线密集区附近,TBB中心强度越强,TBB等值线梯度越大,对应的1h降水量越强;多普勒雷达分析揭示,短时强降水发生在两个对流回波合并期间,对流风暴移动缓慢,大于45dBz强回波均在6km以下,呈低层强烈气旋式辐合、高层辐散特征;地面中尺度辐合线是此次风暴的触发因子;湿位涡诊断结果表明,600hPa以下对流不稳定,600hPa以上对称不稳定,有利于暴雨和中尺度系统的发生发展。  相似文献   

20.
利用1961—2018年新疆12个探空气象站逐日观测资料,分析了新疆对流层850、700和500 hPa比湿的气候特征,结果表明:新疆大气比湿呈自西向东、自南向北递减分布,随高度增加而减小分布特征,新疆比湿远小于东亚季风区;新疆夏季比湿最大,其次为秋季、春季,冬季最小,850hPa和500hPa新疆各站之间比湿差异较大,而700hPa各站比湿差异较小;对流层850、700和500 hPa比湿均表现为线性上升趋势,并有1967-1986年偏干、1987-2005年偏湿的特征,1987年为突变点;对流层850、700和500 hPa比湿与降水均呈显著正相关关系;夏季暴雨天气对流层中低层比湿最大,发生暴雨时比湿约为气候平均1—2倍,夏季暴雨的动力和不稳定条件更关键,新疆暴雨天气时的比湿比东亚季风区显著偏小;冬季暴雪天气比湿是一年中最小的,春秋季强降水比湿介于夏、冬季之间,但可达气候平均的2—3倍,春秋季需要更多的水汽产生强降水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号