首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 293 毫秒
1.
We report on the discovery of a narrow-emission-line object at z  = 0.672 detected in a deep ASCA survey. The object, AXJ 0341.4–4453, has a flux in the 2–10 keV band of 1.1 ± 0.27 × 10−13 erg s−1 cm−2, corresponding to a luminosity of 1.8 × 1044 erg s−1 ( q 0 = 0.5, H 0 = 50 km s−1 Mpc−1). It is also marginally detected in the ROSAT 0.5–2 keV band with a flux 5.8 × 10−15 erg s−1 cm−2. Both the ASCA data alone and the combined ROSAT/ASCA data show a very hard X-ray spectrum, consistent with either a flat power law (α < 0.1) or photoelectric absorption with a column of n H > 4 × 1022 cm−2 (α = 1). The optical spectrum shows the high-ionization, narrow emission lines typical of a Seyfert 2 galaxy. We suggest that this object may be typical of the hard sources required to explain the remainder of the X-ray background at hard energies.  相似文献   

2.
We report the first detection of an inverse Compton X-ray emission, spatially correlated with a very steep spectrum radio source (VSSRS), 0038-096, without any detected optical counterpart, in cluster Abell 85. The ROSAT PSPC data and its multiscale wavelet analysis reveal a large-scale (linear diameter of the order of 500 h −150 kpc), diffuse X-ray component, in addition to the thermal bremsstrahlung, overlapping an equally large-scale VSSRS. The primeval 3 K background photons, scattering off the relativistic electrons, can produce the X-rays at the detected level. The inverse Compton flux is estimated to be (6.5 ± 0.5) × 10−13 erg s−1 cm−2 in the 0.5–2.4 keV X-ray band. A new 327-MHz radio map is presented for the cluster field. The synchrotron emission flux is estimated to be (6.6 ± 0.90) × 10−14 erg s−1 cm−2 in the 10–100 MHz radio band. The positive detection of both radio and X-ray emission from a common ensemble of relativistic electrons leads to an estimate of (0.95 ± 0.10) × 10−6 G for the cluster-scale magnetic field strength. The estimated field is free of the 'equipartition' conjecture, the distance, and the emission volume. Further, the radiative fluxes and the estimated magnetic field imply the presence of 'relic' (radiative lifetime ≳ 109 yr) relativistic electrons with Lorentz factors γ ≈ 700–1700; this would be a significant source of radio emission in the hitherto unexplored frequency range ν ≈ 2–10 MHz.  相似文献   

3.
We present a sample of eight extended X-ray sources detected in the wide-field (∼2.3 deg2), bright (2–10 ks) XMM–Newton /2dF survey, reaching a flux limit of  ∼2 × 10−14 erg s−1 cm−2  . Of these, seven are identified as secure X-ray clusters in the soft 0.3–2 keV band using a standard wavelet algorithm on either the PN or the MOS images. Spectroscopic or photometric redshifts are available for five clusters, spanning a range between 0.12 and 0.68. The X-ray spectral fittings show temperatures between 1 and 4.6 keV, characteristic of poor clusters and groups of galaxies. We derive for the first time the XMM–Newton cluster number count  log  N –log  S   distribution albeit with poor statistics. Both the  log  N –log  S   and the luminosity–temperature relation are in good agreement with previous ROSAT results.  相似文献   

4.
We report the first extensive measurements of hyperfine structure in Ta  ii . Spectra of Ta  ii were recorded by high-resolution Fourier transform spectrometry in the region  10 000–53 000 cm-1   (1886–10 000 Å)  and the majority of observed lines show significant hyperfine structure. Computer fits to several hundred of these line profiles have yielded values of the magnetic dipole hyperfine interaction constant A for 88 energy levels with an uncertainty of between 0.5 and 10 per cent for the majority of A factors. The A factors range from −0.078 to +0.065 cm−1 for the even levels and from −0.064 to +0.083 cm−1 for the odd levels. For the majority of these A factors no previous measurements are known. Approximate values of the electric quadrupole hyperfine interaction constant B were found for 73 levels. These measurements of A and B factors allow, for the first time, the effects of hyperfine structure in Ta  ii lines to be correctly accounted for both in abundance analysis and in the resolution of blended lines in astrophysical spectra.  相似文献   

5.
We present a catalogue of 147 serendipitous X-ray sources selected to have hard spectra ( α <0.5) from a survey of 188 ROSAT fields. Such sources must be the dominant contributors to the X-ray background at faint fluxes. We have used Monte Carlo simulations to verify that our technique is very efficient at selecting hard sources: the survey has 10 times as much effective area for hard sources as it has for soft sources above a 0.5–2 keV flux level of 10−14 erg cm−2 s−1. The distribution of best-fitting spectral slopes of the hard sources suggests that a typical ROSAT hard source in our survey has a spectral slope α ∼0. The hard sources have a steep number flux relation (d N /d S ∝ S − γ with a best-fitting value of γ =2.72±0.12) and make up about 15 per cent of all 0.5–2 keV sources with S >10−14 erg cm−2 s−1. If their N ( S ) continues to fainter fluxes, the hard sources will comprise ∼40 per cent of sources with 5×10−15< S <10−14 erg cm−2 s−1. The population of hard sources can therefore account for the harder average spectra of ROSAT sources with S <10−14 erg cm−2 s−1. They probably make a strong contribution to the X-ray background at faint fluxes and could be the solution to the X-ray background spectral paradox.  相似文献   

6.
We report the discovery of type I X-ray bursts from the low-mass X-ray binary  4U 1708 − 40  during the 100-ks observation performed by BeppoSAX on 1999 August 15–16. Six X-ray bursts have been observed. The unabsorbed 2–10 keV fluxes of the bursts range from ∼3 to  9 × 10−10 erg cm−2 s−1  . A correlation between peak flux and fluence of the bursts is found, in agreement with the behaviour observed in other similar sources. There is a trend of the burst flux to increase with the time interval from the previous burst. From the value of the persistent flux we infer a mass accretion rate     , which may correspond to the mixed hydrogen/helium burning regime triggered by thermally unstable hydrogen. We have also analysed a BeppoSAX observation performed on 2001 August 22 and previous RXTE observations of  4U 1708 − 40  , where no bursts have been observed; we find persistent fluxes of more than a factor of 7 higher than the persistent flux observed during the BeppoSAX observation showing X-ray bursts.  相似文献   

7.
RX J1856.5−3754 is one of the brightest nearby isolated neutron stars (INSs), and considerable observational resources have been devoted to it. However, current models are unable to satisfactorily explain the data. We show that our latest models of a thin, magnetic, partially ionized hydrogen atmosphere on top of a condensed surface can fit the entire spectrum, from X-rays to optical, of RX J1856.5−3754, within the uncertainties. In our simplest model, the best-fitting parameters are an interstellar column density   N H≈ 1 × 1020 cm−2  and an emitting area with   R ≈ 17 km  (assuming a distance to RX J1856.5−3754 of 140 pc), temperature   T ≈ 4.3 × 105 K  , gravitational redshift   z g ∼ 0.22  , atmospheric hydrogen column   y H≈ 1 g cm−2  , and magnetic field   B ≈ (3–4) × 1012 G  ; the values for the temperature and magnetic field indicate an effective average over the surface. We also calculate a more realistic model, which accounts for magnetic field and temperature variations over the NS surface as well as general relativistic effects, to determine pulsations; we find that there exist viewing geometries that produce pulsations near the currently observed limits. The origin of the thin atmospheres required to fit the data is an important question, and we briefly discuss mechanisms for producing these atmospheres. Our model thus represents the most self-consistent picture to date for explaining all the observations of RX J1856.5−3754.  相似文献   

8.
We present BeppoSAX observations of Nova Velorum 1999 (V382 Vel), carried out in a broad X-ray band covering 0.1–300 keV only 15 d after the discovery and again after 6 months. The nova was detected at day 15 with the BeppoSAX instruments which measured a flux F x≃1.8×10−11 erg cm−2 s−1 in the 0.1–10 keV range and a 2 σ upper limit F x<6.7×10−12 erg cm−2 s−1 in the 15–60 keV range. We attribute the emission to shocked nebular ejecta at a plasma temperature kT ≃6 keV . At six months no bright component emerged in the 15–60 keV range, but a bright central supersoft X-ray source appeared. The hot nebular component previously detected had cooled to a plasma temperature kT <1 keV . There was strong intrinsic absorption of the ejecta in the first observation and not in the second, because the column density of neutral hydrogen decreased from N (H)≃1.7×1023 to N (H)≃1021 cm−2 (close to the interstellar value). The unabsorbed X-ray flux also decreased from F x=4.3×10−11 to F x≃10−12 erg cm−2 s−1 .  相似文献   

9.
The X-ray-luminous quasar GB 1428+4217 at redshift 4.72 has been observed with ASCA . The observed 0.5–10 keV flux is 3.2 Å– 10−12 erg cm−2 s−1. We report here on the intrinsic 4 − 57 keV X-ray spectrum, which is very flat (photon index 1.29). We find no evidence for flux variability within the ASCA data set or between it and ROSAT data. We show that the overall spectral energy distribution of GB 1428+4217 is similar to that of lower redshift MeV blazars, and present models that fit the available data. The Doppler beaming factor is likely to be at least 8. We speculate on the number density of such high-redshift blazars, which must contain rapidly formed massive black holes.  相似文献   

10.
We present Chandra and XMM–Newton observations of 12 bright  [ f (2–10 keV) > 10−13 erg cm−2 s−1]  sources from the ASCA search for the High Energy Extragalactic Population (SHEEP) survey. Most of these have been either not observed or not detected previously with the ROSAT mission, and therefore they constitute a sample biased towards hard sources. The Chandra observations are important in locating the optical counterpart of the X-ray sources with accuracy. Optical spectroscopic observations show that our sample is associated with both narrow-line (NL) (six objects) and broad-line (BL) active galactic nuclei (AGN) (five objects), with one source remaining unidentified. Our sources cover the redshift range 0.04–1.29, spanning luminosities from 1042 to  1045 erg s−1  (2–10 keV). The NL sources have preferentially lower redshift (and luminosity) compared to the BL ones. This can be most easily explained in a model where the NL AGN are intrinsically less luminous than the BL ones in line with the results of Steffen et al. The X-ray spectral fittings show a roughly equal number of obscured  ( N H > 1022 cm−2)  and unobscured  ( N H < 1022 cm−2)  sources. There is a clear tendency for obscured sources to be associated with NL AGN and unobscured sources with BL ones. However, there is a marked exception with the highest obscuring column observed at a BL AGN at a redshift of z = 0.5.  相似文献   

11.
We discuss the evolution of the magnetic flux density and angular velocity in a molecular cloud core, on the basis of three-dimensional numerical simulations, in which a rotating magnetized cloud fragments and collapses to form a very dense optically thick core of  >5 × 1010 cm−3  . As the density increases towards the formation of the optically thick core, the magnetic flux density and angular velocity converge towards a single relationship between the two quantities. If the core is magnetically dominated its magnetic flux density approaches  1.5( n /5 × 1010 cm−3)1/2 mG  , while if the core is rotationally dominated the angular velocity approaches  2.57 × 10−3 ( n /5 × 1010 cm−3)1/2 yr−1  , where n is the density of the gas. We also find that the ratio of the angular velocity to the magnetic flux density remains nearly constant until the density exceeds  5 × 1010 cm−3  . Fragmentation of the very dense core and emergence of outflows from fragments will be shown in the subsequent paper.  相似文献   

12.
We report on the BeppoSAX detection of a hard X-ray excess in the X-ray spectrum of the classical high-ionization Seyfert 2 galaxy Tol 0109–383. The X-ray emission of this source observed below 7 keV is dominated by reflection from both cold and ionized gas, as seen in the ASCA data. The excess hard X-ray emission is presumably caused by the central source absorbed by an optically thick obscuring torus with N H∼2×1024 cm−2 . The strong cold X-ray reflection, if it is produced at the inner surface of the torus, is consistent with the picture where much of the inner nucleus of Tol 0109–383 is exposed to direct view, as indicated by optical and infrared properties. However, the X-ray absorption must occur at small radii in order to hide the central X-ray source but leave the optical high-ionization emission-line region unobscured. This may also be the case for objects such as the Seyfert 1 galaxy Mrk231.  相似文献   

13.
Chandra X-ray Observatory observations of the powerful, peculiar radio galaxy 3C 123 have resulted in an X-ray detection of the bright eastern hotspot, with a 1-keV flux density of ∼5 nJy. The X-ray flux and spectrum of the hotspot are consistent with the X-rays being inverse-Compton scattering of radio synchrotron photons by the population of electrons responsible for the radio emission ('synchrotron self-Compton emission') if the magnetic fields in the hotspot are close to their equipartition values. 3C 123 is thus the third radio galaxy to show X-ray emission from a hotspot which is consistent with being in equipartition. Chandra also detects emission from a moderately rich cluster surrounding 3C 123, with L X(2–10 keV)=2×1044 erg s−1 and kT ∼5 keV, and absorbed emission from the active nucleus, with an inferred intrinsic column density of 1.7×1022 cm−2 and an intrinsic 2–10 keV luminosity of 1044 erg s−1.  相似文献   

14.
We present optical and near-infrared spectroscopic observations of the optical Einstein ring 0047 – 2808. We detect both [O III ] lines λλ4959, 5007 near ∼ 2.3 μm, confirming the redshift of the lensed source as z  = 3.595. The Lyα line is redshifted relative to the [O III ] line by 140 ± 20 km s−1. Similar velocity shifts have been seen in nearby starburst galaxies. The [O III ] line is very narrow, 130 km s−1 FWHM. If the ring is the image of the centre of a galaxy, the one-dimensional stellar velocity dispersion σ = 55 km s−1 is considerably smaller than the value predicted by Baugh et al. for the somewhat brighter Lyman-break galaxies. The Lyα line is significantly broader than the [O III ] line, probably due to resonant scattering. The stellar central velocity dispersion of the early-type deflector galaxy at z  = 0.485 is 250 ± 30 km s−1. This value is in good agreement both with the value predicted from the radius of the Einstein ring (and a singular isothermal sphere model for the deflector), and with the value estimated from the D n −σ relation.  相似文献   

15.
High-resolution spectra of comet 8P/Tuttle were obtained in the frequency range 3449.0–3462.2 cm−1 on 2008 January 3 ut using CGS4 with echelle grating on United Kingdom Infrared Telescope. In addition to observing solar pumped fluorescent lines of H2O, the long integration time (152 min on target) enabled eight weaker H2O features to be assigned, most of which had not previously been identified in cometary spectra. These transitions, which are from higher energy upper states, are similar in character to the so-called SH lines recorded in the post Deep Impact spectrum of comet Tempel 1. We have identified certain characteristics that these lines have in common, and which in addition to helping to define this new class of cometary line give some clues to the physical processes involved in their production. Finally, we derive an H2O rotational temperature of     and a water production rate of  (1.4 ± 0.3) × 1028  molecules s−1.  相似文献   

16.
During a systematic search for periodic signals in a sample of ROSAT PSPC (0.1–2.4 keV) light curves, we have discovered ∼12-min large-amplitude X-ray pulsations in 1WGA J1958.2+3232, an X-ray source which lies close to the Galactic plane. The energy spectrum is well fitted by a power law with a photon index of 0.8, corresponding to an X-ray flux level of ∼ 10−12 erg cm−2 s−1. The source is probably a long-period, low-luminosity X-ray pulsar, similar to X Per, or an intermediate polar.  相似文献   

17.
We present results from a new XMM–Newton observation of the high-redshift quasar RX J1028.6 – 0844 at a redshift of 4.276. The soft X-ray spectral flattening, as reported by a previous study with ASCA , is confirmed to be present, with, however, a reduced column density when modelled by absorption. The inferred column density for absorption intrinsic to the quasar is  2.1(+0.4−0.3) × 1022  cm−2  for cold matter, and higher for ionized gas. The spectral flattening shows remarkable similarity with that of two similar object, namely GB 1428 + 4217 and PMN J0525 − 3343. The results improve upon those obtained from a previous short-exposure observation for RX J1028.6 – 0844 with XMM–Newton . A comparative study of the two XMM–Newton observations reveals a change in the power-law photon index from  Γ≃ 1.3  to 1.5 on time-scales of about one year. A tentative excess emission feature in the rest-frame 5–10 keV band is suggested, which is similar to that marginally suggested for GB 1428 + 4217.  相似文献   

18.
We present the Chandra ACIS-S3 data of the old classical nova RR Pic (1925). The source has a count rate of 0.067 ± 0.002 count s−1 in the 0.3–5.0 keV energy range. We detect the orbital period of the underlying binary system in the X-ray wavelengths. We also find that the neutral hydrogen column density differs for orbital minimum and orbital maximum spectra with values  0.25+0.23−0.18× 1022  and  0.64+0.13−0.14× 1022 cm−2  at 3σ confidence level. The X-ray spectrum of RR Pic can be represented by a composite model of bremsstrahlung with a photoelectric absorption, two absorption lines centered around 1.1–1.4 keV and five Gaussian lines centered at emission lines around 0.3–1.1 keV corresponding to various transitions of S, N, O, C, Ne and Fe. The bremsstrahlung temperature derived from the fits ranges from 0.99 to 1.60 keV and the unabsorbed X-ray flux is found to be  2.5+0.4−1.2× 10−13 erg  cm−2 s−1  in the 0.3–5.0 keV range with a luminosity of 1.1 ± 0.2  1031 erg s−1  at 600 pc. We also detect excess emission in the spectrum possibly originating from the reverse shock in the ejecta. A fit with a cooling flow plasma emission model shows enhanced abundances of He, C, N, O and Ne in the X-ray emitting region indicating existence of diffusive mixing.  相似文献   

19.
We have monitored the Seyfert galaxy NGC 3227 with the Rossi X-ray Timing Explorer ( RXTE ) since 1999 January. During late 2000 and early 2001 we observed an unusual hardening of the 2–10 keV X-ray spectrum which lasted several months. The spectral hardening was not accompanied by any correlated variation in flux above 8 keV. We therefore interpret the spectral change as transient absorption by a gas cloud of column density 2.6 × 1023 cm−2 crossing the line of sight to the X-ray source. A spectrum obtained by XMM–Newton during an early phase of the hard-spectrum event confirms the obscuration model and shows that the absorbing cloud is only weakly ionized. The XMM–Newton spectrum also shows that ∼10 per cent of the X-ray flux is not obscured, but this unabsorbed component is not significantly variable and may be scattered radiation from a large-scale scattering medium. Applying the spectral constraints on the cloud ionization parameter and assuming that the cloud follows a Keplerian orbit, we constrain the location of the cloud to be   R ∼ 10–100  light-days from the central X-ray source, and its density to be   n H∼ 108 cm−3  , implying that we have witnessed the eclipse of the X-ray source by a broad line region cloud.  相似文献   

20.
An analysis of the spatial fluctuations in 15 deep ASCA SIS0 images has been conducted in order to probe the 2–10 keV X-ray source counts down to a flux limit ∼ 2 × 10−14 erg cm−2 s−1. Special care has been taken in modelling the fluctuations in terms of the sensitivity maps of every one of the 16 regions (5.6 × 5.6 arcmin2 each) into which the SIS0 has been divided, by means of ray-tracing simulations with improved optical constants in the X-ray telescope. The very extended 'sidelobes' (extending up to a couple of degrees) exhibited by these sensitivity maps make our analysis sensitive to both faint on-axis sources and brighter off-axis ones, the former being dominant. The source counts in the range (2−12) × 10−14 erg cm−2 s−1 are found to be close to a Euclidean form which extrapolates well to previous results from higher fluxes and are in reasonable agreement with some recent ASCA surveys. However, our results disagree with the deep survey counts by Georgantopoulos et al. The possibility that the source counts flatten to a sub-Euclidean form, as is observed at soft energies in ROSAT data, is only weakly constrained to happen at a flux < 1.8 × 10−12 erg cm−2 s−1 (90 per cent confidence). Down to the sensitivity limit of our analysis, the integrated contribution of the sources the imprint of which is seen in the fluctuations amounts to ∼ 35 ± 13 per cent of the extragalactic 2–10 keV X-ray background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号