首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
This study firstly analyzed the shrinkage of winter wheat and the changes of cropping systems in the Hebei Plain from 1998 to 2010 based on the agricultural statistic data of 11 cities and meteorological data, including daily temperature, precipitation, water vapor, wind speed and minimum relative humidity data from 22 meteorological stations, and then calculated the water deficit and irrigation water resources required by different cropping systems, as well as the irrigation water resources conserved as a result of cropping system changes, using crop coefficient method and every ten-day effective precipitation estimation method. The results are as follows. 1) The sown areas of winter wheat in the 11 cities in the Hebei Plain all shrunk during the study period. The shrinkage rate was 16.07% and the total shrinkage area amounted to 49.62×104ha. The shrinkage was most serious in the Beijing-Tianjin-Tangshan metropolitan agglomerate, with a shrinkage rate of 47.23%. 2) The precipitation fill rate of winter wheat was only 20%–30%, while those of spring maize and summer maize both exceeded 50%. The irrigation water resources demanded by the winter wheat-summer maize double cropping system ranged from 400 mm to 530 mm, while those demanded by the spring maize single cropping system ranged only from 160 mm to 210 mm. 3) The water resources conserved as a result of the winter wheat sown area shrinkage during the study period were about 15.96×108m3/a, accounting for 27.85% of those provided for Beijing, Tianjin and Hebei by the first phase of the Mid-Route of the South-to-North Water Diversion Project.  相似文献   

2.
This study firstly analyzed the shrinkage of winter wheat and the changes of crop- ping systems in the Hebei Plain from 1998 to 2010 based on the agricultural statistic data of 11 cities and meteorological data, including daily temperature, precipitation, water vapor, wind speed and minimum relative humidity data from 22 meteorological stations, and then calcu- lated the water deficit and irrigation water resources required by different cropping systems, as well as the irrigation water resources conserved as a result of cropping system changes, using crop coefficient method and every ten-day effective precipitation estimation method. The results are as follows. 1) The sown areas of winter wheat in the 11 cities in the Hebei Plain all shrunk during the study period. The shrinkage rate was 16.07% and the total shrinkage area amounted to 49.62×10^4 ha. The shrinkage was most serious in the Bei- jing-Tianjin-Tangshan metropolitan agglomerate, with a shrinkage rate of 47.23%. 2) The precipitation fill rate of winter wheat was only 20%-30%, while those of spring maize and summer maize both exceeded 50%. The irrigation water resources demanded by the winter wheat-summer maize double cropping system ranged from 400 mm to 530 mm, while those demanded by the spring maize single cropping system ranged only from 160 mm to 210 ram. 3) The water resources conserved as a result of the winter wheat sown area shrinkage during the study period were about 15.96×10^8 m^3/a, accounting for 27.85% of those provided for Beijing, Tianjin and Hebei by the first phase of the Mid-Route of the South-to-North Water Diversion Project.  相似文献   

3.
西北干旱地区大气降水δ18O的特征及水汽来源   总被引:7,自引:1,他引:6  
In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Precipitation (CHNIP). During the year 2005 and 2006, monthly precipitation samples have been collected and analyzed for the composition of δD and δ18O. The established local meteoric water line δD=7.42 δ18O+1.38, based on the 95 ob-tained monthly composite samples, could be treated as isotopic input function across the region. The deviations of slope and intercept from the Global Meteoric Water Line indicated the specific regional meteorological conditions. The monthly δ18O values were characterized by a positive correlation with surface air temperature (δ18O (‰) =0.33 T (℃)-13.12). The amount effect visualized during summer period (δ18O (‰) = -0.04P (mm)-3.44) though not appeared at a whole yearly-scale. Spatial distributions of δ18O have properly portrayed the atmospheric circulation background in each month over Arid Northwestern China. The quan-titative simulation of δ18O, which involved a Rayleigh fractionation and a kinetic fractionation, demonstrated that the latter one was the dominating function of condensation of raindrops. Furthermore, the raindrop suffered a re-evaporation during falling processes, and the pre-cipitation vapor might have been mixed with a quantity of local recycled water vapor. Multiple linear regression equations and a δ18O-T relation have been gained by using meteorological parameters and δ18O data to evaluate physical controls on the long-term data. The estab-lished δ18O-T relation, which has been based on the present-day precipitation, could be considered as a first step of quantitatively reconstructing the historical environmental climate.  相似文献   

4.
The vulnerable ecosystem of the arid and semiarid region in Central Asia is sensitive to precipitation variations. Long-term changes of the seasonal precipitation can reveal the evolution rules of the precipitation climate. Therefore, in this study, the changes of the seasonal precipitation over Central Asia have been analyzed during the last century(1901–2013) based on the latest global monthly precipitation dataset Global Precipitation Climatology Centre(GPCC) Full Data Reanalysis Version 7, as well as their relations with El Ni?oSouthern Oscillation(ENSO). Results show that the precipitation in Central Asia is mainly concentrated in spring and summer seasons, especially in spring. For the whole study period, increasing trends were found in spring and winter, while decreasing trends were detected in summer and fall. Inter-annual signals with 3–7 years multi-periods were derived to explain the dominant components for seasonal precipitation variability. In terms of the dominant spatial pattern, Empirical orthogonal function(EOF) results show that the spatial distribution of EOF-1 mode in summer is different from those of the other seasons during 1901–2013. Moreover, significant ENSO-associated changes in precipitation are evident during the fall, winter, spring, and absent during summer. The lagged associations between ENSO and seasonal precipitation are also obtained in Central Asia. The ENSO-based composite analyses show that these water vapor fluxes of spring, fall and winter precipitation are mainly generated in Indian and North Atlantic Oceans during El Ni?o. The enhanced westerlies strengthen the western water vapor path for Central Asia, thereby causing a rainy winter.  相似文献   

5.
In this paper, stable isotope(δ~(18)O, δD) investigations were completed in ground ice from a deep borehole in the Beiluhe Basin on northern Qinghai-Tibet Plateau to unravel the isotopic variations of ground ice and their possible source water. The δ~(18)O and δD of ground ice show distinctive characteristics compared with precipitation and surface water. The near-surface ground ice is highly enriched in heavier isotopes(δ~(18)O and δD), which were gradually depleted from top to bottom along the profile. It is suggestive of different origin and ice formation process. According to isotopic variations, the ice profile was divided into three sections: the near-surface ground ice at 2.5 m is frozen by the active-layer water which suffered evaporation. It is possible that ground ice between 3 and 4.2 m is recharged by the infiltration of snowmelt. From 5 to 6 m, the ground ice show complex origin and formation processes. Isotopic variations from 6 to 11.1 m and 20.55 m indicate different replenishment water. The calculated slope of freezing line(S=6.4) is larger than the experimental value(5.76), and is suggestive of complex origin and formation process of ground ice.  相似文献   

6.
Zhang  Qinghua  Luo  Zhuanxi  Lu  Wen  Harald  Zepp  Zhao  Yufeng  Tang  Jialiang 《地理学报(英文版)》2020,30(6):935-948
Despite the increasing depletion of the groundwater at the Zhangjiakou aquifer system in the northwest of Beijing-Tianjin-Hebei region, little information is available on the hydrological process of groundwater in this region. In this study, we utilized water isotopes composition(δ~(18) O, δD and ~3 H) of groundwater, river and precipitation to identify the characteristics of hydrochemistry, groundwater age and recharge rates in different watersheds of the Zhangjiakou area. Results showed that the river water and groundwater could be characterized as HCO_3-Mg·Na, HCO_3·Cl-Na and HCO_3-Mg·Na, HCO_3·Cl-Na, HCO_3·Cl-Na·Mg types, respectively. The δD and δ~(18) O values in precipitation were linearly correlated, which is similar to the Global Meteorological Water Line(GMWL). Furthermore, the decreasing values of the δD and δ~(18) O from precipitation to surface water and groundwater indicate that groundwater is mainly recharged by atmospheric precipitation. In addition, the variation of 3 H concentration with depth suggests that groundwater shallower than around 100 m is generally modern water. In contrast, groundwater deeper around 100 m is a mixture of modern and old waters, which has longer residence times. Groundwater showed a relatively low tritium concentration in the confined aquifers, indicating the groundwater recharged might be relatively old groundwater of over 60 years. The flow velocity of the groundwater in the study area varied from 1.10 to 2.26 m/a, and the recharge rates ranged from 0.034 to 0.203 m/a. The obtained findings provide important insights into understanding the groundwater recharge sources and hydrochemistry in the Zhangjiakou area, in turn developing a sustainable groundwater management plan.  相似文献   

7.
Stable oxygen and hydrogen isotopic compositions (δ18O and δD) of soil water and shallow groundwater of a riparian forest, an artificial shrub forest, and Gobi of the lower reaches of the Heihe River Basin are used to study the recharge water sources of those ecosystems. IsoSource software is used to determine the δ180 values for root water of Populous euphratica and Tamarix ramosissima in the riparian forest ecosystem, Haloxylon ammodendron in the artificial shrub forest, and Reaumuria soongorica in the Gobi, as well as for local soil water and groundwater, and precipitation in the upper reaches of the Heihe River Basin. Our results showed that soil water and shallow groundwater of the riparian forest and the artificial shrub forest were recharged by river water which originated from precipitation in the upper reaches, and strong evaporation occurred in the artificial shrub forest. Soil water of the Gobi was not affected by Heihe River water due to this area being far away from the river channel. The main water sources of Populous euphratica were from 40-60-cm soil water and groundwater, and of Tamarix ramosissima were from 40-80-cm soil water in the riparian forest ecosystem. In the artificial forest, Haloxylon ammodendron used 200-cm saturated-layer soil water and shallow groundwater. The Reaumuria soongorica mainly used soil water from the 175-200-cm depth in the Gobi. Therefore, soil water and groundwater are the main water sources which maintain survival and growth of the plants in the extremely arid regions of the lower reaches of the Heihe River Basin.  相似文献   

8.
Stable hydrogen and oxygen isotope has important implication on water and moisture transportation tracing research. Based on stable hydrogen(δD) and oxygen(δ~(18)O) isotope using a Picarro L1102-i and water chemistry(e.g. major ions, p H, EC and TDS) measurement, this study discussed the temporal variation and characteristics of stable hydrogen and oxygen isotope, chemistry(e.g. TDS, p H, EC, Ca~(2+), Mg~(2+), Na+ and Cl-) in various water bodies including glacier meltwater runoff, ice and snow, and precipitation at the Laohugou glacier basin during June 2012 to September 2013. Results showed that δD and δ~(18)O in the meltwater runoff varied obviously with the temporal change from June to September, showing firstly increasing trend and then decreasing trend, with the highest values in July with high air temperature and strong glacier melting, which could indicate the temporal change of glacier melting process and extent. Variations of δD and δ~(18)O in the runoff were similar with that of snow and ice on the glacier, and the values were also above the GMWL, which probably implied that the glacier runoff was mainly originated from glacier melting and precipitation supply. The glacier meltwater chemical type at the Laohugou glacier basin were mainly composed by Ca-Na-HCO_3-SO_4 and Ca-Mg-HCO_3-SO_4, which also varied evidently with the glacier melting process in summer. By analyzing the temporal change of stable hydrogen and oxygen isotope and chemistry in the melting period, we find it is easy to separate the components of the snow and ice, atmospheric precipitation and melt-runoff in the river, which could reflect the change process of glacier melting during the melting period, and thus this work can contribute to the glacier runoff change study of large-scale region by stable isotope and geochemical method in future.  相似文献   

9.
Understanding the variation in a plant's water sources is critical to understanding hydrological processes in water-limited environments. Here, we measured the stable-isotope ratios(δ18 O) of xylem water of Caragana microphylla, precipitation,soil water from different depths, and groundwater to quantitatively analyze the proportion of water sources for the shrub.We found that the water sources of C. microphylla differed with the plant's ages and the seasons. The main water source for young shrubs was upper-soil water, and it showed significant changes with seasonal precipitation inputs. In summer,the proportion contributed by shallow water was significantly increased with increased precipitation inputs. Then, the contribution from shallow-soil water decreased with the decline in precipitation input in spring and autumn. However, the adult shrubs resorted to deep-soil layers and groundwater as the main water sources during the whole growing season and showed much less seasonal variation. We conclude that the main water source of the young shrubs was upper-soil water and was controlled by precipitation inputs. However, once the shrub gradually grew up and the roots reached sufficient depth, the main water sources change from the upper-soil layer recharged by precipitation to deep-soil water and groundwater, which were relatively stable and abundant in the desert ecosystem. These results also suggest that desert shrubs may be able to switch their main water sources to deep and reliable water sources as their age increases, and this adjustment to water availability carries significant importance for their acclimation to the desert habitat.  相似文献   

10.
Seasonal variation of stable isotopes in precipitation of Kathmandu Valley on the southern slope of Himalaya was carried out to understand the controlling mechanism of amount and temperature effect on the basis of one year stable isotope data from 2010 to 2011. Highly depleted isotope values in major rainy period are obtained just after the onset of precipitation in summer, which accounts for "amount effect" due to saturation isotopic compositions in high moisture condition, whereas, the higher values in winter are indicative to regional vapors (temperature effect) recycling of various sources. An abrupt depletion of isotope values in mid- June, indicates the onset date of monsoon precipitation, by the replacement of winter air mass with southern monsoon. Thus, precipitation isotopes are a tool revealing the onset date of summer monsoon and temporal features of variability, in local and regional monsoons precipitations. A comparison of long term monthly values of δ18O, temperature, and precipitation with GNIP δ18O data shows the temporal variations of stable isotopes are mostly controlled by amount and temperature effects. During summer monsoon, the amount effects are stronger for high values of precipitation (R=0.7) and altitude effect appears for low moisture in late rainy season, thus from December to June (winter to pre-monsoon) the controlling features of isotopes remains under the temperature effect. A temporal rate of temperature effect is derived as 0.04‰ per year which indicates a dry signal of atmospheric condition and a temperature relation δ18O=(0.371±0.08)T+(0.156±0.05) is obtained from this analysis. The meteoric water lines of Kathmandu before and after monsoon onset of 2011, are found as δD=(4.36±0.3)δ18O+(15.66±1.2) and δD=(6.91±0.2)δ18O?(7.92±2.26) from lab samples result, and δD=9.2δ18O+11.725 and δD=8.53δ18O+16.65 from GNIP data, which lacks the consistency both for slopes and intercepts values for the study period. The mean lapse rate values of δ18O and δD from GNIP data are obtained as ?0.002‰/m and ?0.015 ‰/m, which indicate the altitudinal effects in regional precipitation of the southern slope of Himalayas. This study estimates new stable isotopes data in recent precipitation using simple methodology which can be important for regional precipitation monitoring systems, environmental change and paleo-climatic studies.  相似文献   

11.
水体蒸发过程中稳定同位素的分形机制   总被引:1,自引:0,他引:1  
The variations of stable isotopes in atm ospheric vapor and precipitation are caused by stableisotopic fractionation during phase changes in w ater cycle. The isotopic fractionation m ainlyhappens in the m ass transportation of stable isotopes from free w…  相似文献   

12.
1 IntroductionThe U niversity of A rizona Laboratory of Tree-Ring Research collected tree-ring sam ples from anum ber of long-lived trees, dating back thousands of years, from eight states in the w esternU nited States. H ughes and G raum lich (1996) pres…  相似文献   

13.
The oxygen isotope ratios of diatoms (δ18Odiatom), and the oxygen and hydrogen isotope ratios of lake water (δW) of lakes in south Alaska provide insight into past changes in atmospheric circulation. Lake water was collected from 31 lakes along an elevation transect and diatoms were isolated from lake sediment from one lake (Mica Lake) in south Alaska. In general, δW values from coastal lakes overlap the global meteoric water line (GMWL). δW values from interior lakes do not lie on the GMWL; they fall on a local evaporation line trajectory suggesting source isotopes are depleted with respect to maritime lakes. Sediment cores were recovered from 58 m depth in Mica Lake (60.96° N, 148.15° W; 100 m asl), an evaporation-insensitive lake in the western Prince William Sound. Thirteen calibrated 14C ages on terrestrial macrofossil samples were used to construct an age-depth model for core MC-2, which spans 9910 cal years. Diatoms from 46, 0.5-cm-thick samples were isolated and analyzed for their oxygen isotope ratios. The analyses employed a newly designed, stepwise fluorination technique, which uses a CO2 laser-ablation system, coupled to a mass spectrometer, and has an external reproducibility of ±0.2‰. δ18Odiatom values from Mica Lake sediment range between 25.2 and 29.8‰. δ18Odiatom values are relatively uniform between 9.6 and 2.6 ka, but exhibit a four-fold increase in variability since 2.6 ka. High-resolution sampling and analyses of the top 100 cm of our lake cores suggest large climate variability during the last 2000 years. The 20th century shows a +4.0‰ increase of δ18Odiatom values. Shifts of δ18Odiatom values are likely not related to changes in diatom taxa or dissolution effects. Late Holocene excursions to lower δ18Odiatom values suggest a reduction of south-to-north storm trajectories delivered by meridional flow, which likely corresponds to prolonged intervals when the Aleutian Low pressure system weakened. Comparisons with isotope records of precipitation (δP) from the region support the storm-track hypothesis, and add to evidence for variability in North Pacific atmospheric circulation during the Holocene.
Zachary SharpEmail:
  相似文献   

14.
15.
Methods of calculating the basic hydrological characteristics of a water resource assessment, as well as the planning and management of their long-term use are based upon the concept of stationarity of long-term flow fluctuations. However, data of researches by hydrologists and climatologists clearly indicate that there are long-period changes in the characteristics of precipitation and river flow. This article discusses the variations of annual precipitation and river flow in the Ishim River Basin in Kazakhstan, based on the W, C and E classification developed by G.Y. Vangengeim who analyzed the long-term variability of anomalies by the number of days with some form of atmospheric circulation. From this study, the largest anomaly of the macro-circulation processes was revealed, and a comparative analysis of the number of days with various forms of atmospheric circulation and precipitation anomalies was made. It was demonstrated that the nature of atmospheric circulation depends on the distribution of precipitation; however, precipitation is also highly dependent on local physiographic conditions. The analysis of anomalous precipitation during the maximum number of days of positive anomalies with various forms of atmospheric circulation was also carried out. This study presents some results from the preliminary analysis of annual river flow linked with forms of atmospheric circulation.  相似文献   

16.
This paper reveals the temporal and spatial variations of stable isotope in precipitation of the Yarlung Zangbo River Basin based on the variations of δ^18O in precipitation at four stations (Lhaze, Nugesha, Yangcun and Nuxia) in 2005. The results show that δ^18O of precipitation has distinct seasonal changes in the Yarlung Zangbo River Basin. The higher value of δ^18O occurs in spring prior to monsoon precipitation, and the lower value occurs during monsoon precipitation. From the spatial variations, with the altitude-effect and rainout process during moisture transport along the Yarlung Zangbo River Valley, δ^18O of precipitation is gradually depleted. Thus, δ^18O of precipitation decreases gradually from the downstream to the upstream, and the lapse rate of δ^18O in precipitation is approximately 0.34‰/100m and 0.7%J‰/100km for the two reasons. During monsoon precipitation, spatial variation of δ^18O in precipitation is dominated by the amount effect in the large scale synoptic condition.  相似文献   

17.
We quantified differences in oxygen isotope fractionation among three biostratigraphically important subfossil ostracod species (Metacypris cordata, Pseudocandona rostrata and Candonopsis kingsleii) from an early Holocene freshwater tufa layer in northern Estonia. Estimated mean δ18O values are −10.05‰ for M. cordata, −9.34‰ for C. kingsleii and −8.75‰ for P. rostrata. All three species exhibit positive offset from the weighted mean annual δ18O of contemporary precipitation (−10.7‰ in δ18OV-PDB) and from the mean δ18O value of authigenic tufa carbonate (−10.64‰) in the ostracod-bearing layer. Assuming that the known oxygen isotope fractionation in P. rostrata (+2.5‰) and M. cordata (+1.5‰) has remained constant over time, the theoretical δ18OV-SMOW of the early Holocene lake water was calculated to have been between −11.52 and −11.92‰, slightly less negative than the local Ordovician groundwater (−11.7 to −12.2‰). δ18O values of the tufa carbonate differ by +0.6 to +1.0‰ from the calculated theoretical isotope composition (δ18OV-PDB) of lake water, indicating that the tufa also did not precipitate in isotopic equilibrium with ambient waters. Results show that the greater the δ18O offset from the calculated, theoretical isotope composition of lake water for an ostracod species, the lower is its preferred mean July temperature. Both our data and earlier published results on δ18O values in Holocene lacustrine carbonates and ostracods from north-eastern Europe, display pronounced decreases in δ18O with an increase in latitude of the study site. This suggests that temperature-dependent, and therefore latitude-dependent isotopic composition of meteoric waters controlled the δ18O values in lacustrine tufa and ostracods throughout the Holocene.  相似文献   

18.
We report oxygen isotope data from a 108-yr (1885–1993) sequence with annual laminae of bio-induced authigenic calcite in a frozen core from Baldeggersee, a small lake in Central Switzerland. These isotope results provide proxy data on the isotopic composition of past precipitation in the Baldeggersee catchment region and are quantitatively compared with instrumental climate data (i.e. mean annual air temperature and atmospheric circulation pattern indices) to evaluate climatic controls on oxygen isotopes in precipitation.Monitoring the isotope hydrology of Baldeggersee demonstrates that the oxygen isotopic composition of the lake water is controlled by the isotopic composition of local atmospheric precipitation (18Op) and that the isotopic signal of precipitation is preserved, albeit damped, in the lake calcite oxygen isotope record (18Oc). Comparison of the calcite oxygen isotope proxy for 18Op in the catchment with historical mean annual air temperature measurements from Bern, Switzerland confirms that authigenic calcite reliably records past annual air temperature in the region. This 18Oc/temperature relationship is calculated to be 0.39/°C for the period 1900–1960, based on an isotope mass-balance model for Baldeggersee. An exception is a 0.8 anomalous negative shift in calcite 18O values since the 1960s. Possible explanations for this recent 18Oc shift, as it is not related to mean annual air temperature, include changes in 18Op due to synoptic circulation patterns. In particular, the 0.8 negative shift coincides with a trend towards a more dominant North Atlantic Oscillation (NAO) index. This circulation pattern would tend to bring more isotopically more negative winter precipitation to the region and could account for the 0.8 offset in 18Oc data.  相似文献   

19.
采用1979-2016年ECMWF1.5°×1.5°逐月再分析资料及同期37个气象站点的降水资料,利用一元线性回归、累积距平、Kriging及IDW(反距离加权)等方法分析了祁连山地区大气水汽含量时空分布特征、降水转化率空间变化规律以及风场分布规律,并对比分析了中国西部不同地区降水转化率的变化趋势。结果表明:(1)1979-2016年祁连山地区大气水汽含量整体呈增加趋势,且季节变化明显。其中夏季是各层大气水汽含量最多的季节,高达329.24 mm,占多年平均大气水汽含量的48.1%。(2)近38 a来,祁连山地区的大气水汽含量呈东南多、西北少的空间分布,且随海拔的升高而逐渐减少,整层大气水汽主要集中在5 000 m以下。(3)祁连山地区的降水转化率从空间上表现出由东向西递减的趋势,说明该地区空中云水资源的开发潜力自东向西逐渐增强,空中云水资源的开发潜力区域差异明显;季风所携带的水汽对其影响区域的降水贡献率较高,西风所携带的水汽则对其影响区域的降水贡献率较低。(4)中国西部地区降水转化率呈向心式递减的趋势,且区域空间波动较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号