首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We present a novel numerical method that allows the calculation of nonlinear force-free magnetostatic solutions above a boundary surface on which only the distribution of the normal magnetic field component is given. The method relies on the theory of force-free electrodynamics and applies directly to the reconstruction of the solar coronal magnetic field for a given distribution of the photospheric radial field component. The method works as follows: we start with any initial magnetostatic global field configuration (e.g. zero, dipole), and along the boundary surface we create an evolving distribution of tangential (horizontal) electric fields that, via Faraday’s equation, give rise to a respective normal-field distribution approaching asymptotically the target distribution. At the same time, these electric fields are used as boundary condition to numerically evolve the resulting electromagnetic field above the boundary surface, modeled as a thin ideal plasma with non-reflecting, perfectly absorbing outer boundaries. The simulation relaxes to a nonlinear force-free configuration that satisfies the given normal-field distribution on the boundary. This is different from existing methods relying on a fixed boundary condition – the boundary evolves toward the a priori given one, at the same time evolving the three-dimensional field solution above it. Moreover, this is the first time that a nonlinear force-free solution is reached by using only the normal field component on the boundary. This solution is not unique, but it depends on the initial magnetic field configuration and on the evolutionary course along the boundary surface. To our knowledge, this is the first time that the formalism of force-free electrodynamics, used very successfully in other astrophysical contexts, is applied to the global solar magnetic field.  相似文献   

2.
Yan  Yihua  Sakurai  Takashi 《Solar physics》2000,195(1):89-109
A boundary integral equation to describe a force-free magnetic field with finite energy content in the open space above the solar surface is found. This is a new representation for a 3-D nonlinear force-free field in terms of the boundary field and its normal gradient at the boundary. Therefore the magnetic field observed on the solar surface can be incorporated into the formulation directly and a standard numerical technique, the boundary element method, can be applied to solve the field. A numerical test case demonstrates the power of the method by recovering the analytical solution to the desired accuracy and its application to practical solar magnetic field problems is straightforward and promising.  相似文献   

3.
Topology of Magnetic Field and Coronal Heating in Solar Active Regions   总被引:2,自引:0,他引:2  
Force-free magnetic fields can be computed by making use of a new numerical technique, in which the fields are represented by a boundary integral equation based on a specific Green's function. Vector magnetic fields observed on the photospheric surface can be taken as the boundary conditions of this equation. In this numerical computation, the following two points are emphasized: (1) A new method for data reduction is proposed, for removing uncertainties in boundary data and determining the parameter in this Green's function, which is important for solving the boundary integral equation. In this method, the transverse components of the observed boundary field are calibrated with a linear force-free field model without changing their azimuth. (2) The computed 3-D fields satisfy the divergence-free and force-free conditions with high precision. The alignment of these field lines is mostly in agreement with structures in Hα and Yohkoh soft X-ray images. Since the boundary data are calibrated with a linear force-free field model, the computed 3-D magnetic field can be regarded as a quasi-linear force-free field approximation. The reconstruction of 3-D magnetic field in active region NOAA 7321 was taken as an example to quantitatively exhibit the capability of our new numerical technique.  相似文献   

4.
Improvements to an existing method for calculating nonlinear force-free magnetic fields (Wheatland, Solar Phys. 238, 29, 2006) are described. In particular a solution of the 3-D Poisson equation using 2-D Fourier transforms is presented. The improved nonlinear force-free method is demonstrated in application to linear force-free test cases with localized nonzero values of the normal component of the field in the boundary. These fields provide suitable test cases for nonlinear force-free calculations because the boundary conditions involve localized nonzero values of the normal components of the field and of the current density, and because (being linear force-free fields) they have more direct numerical solutions. Despite their simplicity, fields of this kind have not been recognized as test cases for nonlinear methods before. The examples illustrate the treatment of the boundary conditions on current in the nonlinear force-free method, and in particular the limitations imposed by field lines that connect outside of the boundary region.  相似文献   

5.
Yan Yihua  Yu Qing  Kang Feng 《Solar physics》1991,136(1):195-198
A force-free magnetic field model with constant is established, and a boundary element method is proposed to solve the problem. The procedure ensures a unique solution as well as a finite magnetic energy content. The proposed formulation is effective in solving magnetic fields above the solar surface, and the validity of our procedure is demonstrated by satisfactory agreement between calculated and observed magnetograms.  相似文献   

6.
The possible existence of strong magnetic fields in stars is discussed and a method of constructing highly distorted models of magnetic, rotating stars developed. For stars with both poloidal and toroidal fields at the surface a force-free outer boundary condition is necessary. Non-linear solutions of the force-free equations must be used. The force-free equations and the structure equations for a white dwarf are solved simultaneously by a finite difference method.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

7.
The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) provides photospheric vector magnetograms with a high spatial and temporal resolution. Our intention is to model the coronal magnetic field above active regions with the help of a nonlinear force-free extrapolation code. Our code is based on an optimization principle and has been tested extensively with semianalytic and numeric equilibria and applied to vector magnetograms from Hinode and ground-based observations. Recently we implemented a new version which takes into account measurement errors in photospheric vector magnetograms. Photospheric field measurements are often affected by measurement errors and finite nonmagnetic forces inconsistent for use as a boundary for a force-free field in the corona. To deal with these uncertainties, we developed two improvements: i) preprocessing of the surface measurements to make them compatible with a force-free field, and ii) new code which keeps a balance between the force-free constraint and deviation from the photospheric field measurements. Both methods contain free parameters, which must be optimized for use with data from SDO/HMI. In this work we describe the corresponding analysis method and evaluate the force-free equilibria by how well force-freeness and solenoidal conditions are fulfilled, by the angle between magnetic field and electric current, and by comparing projections of magnetic field lines with coronal images from the Atmospheric Imaging Assembly (SDO/AIA). We also compute the available free magnetic energy and discuss the potential influence of control parameters.  相似文献   

8.
Wiegelmann  T. 《Solar physics》2004,219(1):87-108
We developed a code for the reconstruction of nonlinear force-free and non-force-free coronal magnetic fields. The 3D magnetic field is computed numerically with the help of an optimization principle. The force-free and non-force-free codes are compiled in one program. The force-free approach needs photospheric vector magnetograms as input. The non-force-free code additionally requires the line-of-sight integrated coronal density distribution in combination with a tomographic inversion code. Previously the optimization approach has been used to compute magnetic fields using all six boundaries of a computational box. Here we extend this method and show how the coronal magnetic field can be reconstructed only from the bottom boundary, where the boundary conditions are measured with vector magnetographs. The program is planed for use within the Stereo mission.  相似文献   

9.
Wheatland  M.S. 《Solar physics》2004,222(2):247-264
A numerical approach to calculating nonlinear force-free fields is presented. The approach is similar to Sakurai (1981) being a current-field iteration scheme using the integral solution to Ampere's law (the Biot–Savart law). However, the method of solution presented here is simpler than Sakurai's approach, in that the field is directly constructed on a grid without the intermediate solution of a large system of nonlinear equations. The method also permits straightforward implementation on parallel computers. Results of applying the method to a number test cases, including boundary conditions with substantial currents, are presented.  相似文献   

10.
11.
The behavior of adiabatically slow deformations of the force-free field is investigated. Using the linear approximation it is shown that for a rather wide class of boundary perturbations of one-dimensional force-free field there appear singular magnetic force lines or surfaces. Hence the problem of quasi-steady deformation of frozen-in magnetic field has no solution. Relating to the problem of magnetic field in the solar corona it means that there will appear discontinuities (current sheets), when the magnetic field is deformed, for example, due to photospheric motion.  相似文献   

12.
Secular Love numbers of the major planets have been determined by solving the first (Dirichlet's) boundary — value problem for the level ellipsoid as the boundary surface. It has been demonstrated that the rotational distortions are responsible for the actual figure of the bodies above. The 6th degree Stokes zonal parameter for Uranus and for Neptune have been predicted.  相似文献   

13.
Knowledge regarding the coronal magnetic field is important for the understanding of many phenomena, like flares and coronal mass ejections. Because of the low plasma beta in the solar corona, the coronal magnetic field is often assumed to be force-free and we use photospheric vector magnetograph data to extrapolate the magnetic field into the corona with the help of a nonlinear force-free optimization code. Unfortunately, the measurements of the photospheric magnetic field contain inconsistencies and noise. In particular, the transversal components (say B x and B y) of current vector magnetographs have their uncertainties. Furthermore, the magnetic field in the photosphere is not necessarily force free and often not consistent with the assumption of a force-free field above the magnetogram. We develop a preprocessing procedure to drive the observed non–force-free data towards suitable boundary conditions for a force-free extrapolation. As a result, we get a data set which is as close as possible to the measured data and consistent with the force-free assumption.  相似文献   

14.
The problem of magnetic field generation and advection in accretion discs is considered, in the context of wind launching and angular momentum extraction. A dipole-symmetry solution of the dynamo equations is found, with force-free boundary conditions appropriate for matching to a wind solution. Consideration of the curved field geometry and diffusive nature of the disc enables the position of the sonic point to be calculated and related to the field inclination at the disc surface. A critical inclination of 20° to the horizontal results, for which the sonic point lies in the disc surface and there is no potential barrier to wind launching. Hence the wind mass-loss rate will only become excessive, leading to disc disruption, for large field bending. The compressional effect of the horizontal magnetic field enhances the wind mass flux.  相似文献   

15.
It was shown in a previous paper, Smith (1975), that the determination of the structure of rotating polytropes by expansion in the small rotational parameter constitutes asingular perturbation problem as arises also, for example, in large Reynolds' number approximations in fluid dynamics. The technique used by him — the method of matched asymptotic expansions — is, in fact, just an extension of the Prandtl boundary layer theory familiar in this latter context. In this paper — the first of two — we introduce an alternative procedure: the method of strained co-ordinates; and for comparison purposes again consider rotating polytropes. In Paper II we extend this approach to differentially rotating stars and present an illustrative example.  相似文献   

16.
Unsteady hydromagnetic thermal boundary layer flow of an electrically conducting, viscous, incompressible fluid near a harmonically oscillating limiting surface (e.g. in stellar atmospheres) is considered when the viscous dissipation and the Joule heating terms are retained in the energy equation. Exact solution of the problem, with the aid of the Laplace transform technique, is obtained when the magnetic Prandtl number is unity. For the purpose of application and discussion of the results, the variations of the temperature and the rate of heat transfer (expressed in the form of the Nusselt number) are presented for different sets of values of the magnetic parameter for the case of two particular fluids — air and water — when the limiting surface is under the condition of either cooling or heating.  相似文献   

17.
We compare the performance of two alternative algorithms which aim to construct a force-free magnetic field given suitable boundary conditions. For this comparison, we have implemented both algorithms on the same finite element grid which uses Whitney forms to describe the fields within the grid cells. The additional use of conjugate gradient and multigrid iterations result in quite effective codes. The Grad Rubin and Wheatland Sturrock Roumeliotis algorithms both perform well for the reconstruction of a known analytic force-free field. For more arbitrary boundary conditions the Wheatland Sturrock Roumeliotis approach has some difficulties because it requires overdetermined boundary information which may include inconsistencies. The Grad Rubin code on the other hand loses convergence for strong current densities. For the example we have investigated, however, the maximum possible current density seems to be not far from the limit beyond which a force-free field cannot exist anymore for a given normal magnetic field intensity on the boundary.  相似文献   

18.
I. Contopoulos 《Solar physics》2013,282(2):419-426
We present a new improved version of our force-free electrodynamics (FFE) numerical code in spherical coordinates that extrapolates the magnetic field in the inner solar corona from a photospheric vector magnetogram. The code satisfies the photospheric boundary condition and the condition ??B=0 to machine accuracy. The performance of our method is evaluated with standard convergence parameters, and is found to be comparable to that of other nonlinear force-free extrapolations.  相似文献   

19.
Two-dimensional magnetostatic models of flux structure confined in stratified atmosphere are discussed in the present paper. The magnetic field in the flux structure is assumed to be force-free at the first step. Numerical solutions for this nonlinear free boundary problem are obtained by finite element method. Results show clearly the relation between the inside fields and outside pressure, especially the influence of atmospheric pressure distribution on the flux structure.  相似文献   

20.
B. C. Low's study on non-linear force-free magnetic field is extended in an effort to explain the preflare low-lying magnetic loops observed by Skylab. Using Low's method of analytical continuation, a revised boundary-value problem is solved analytically. It is shown that high magnetic loops will evolve into low-lying ones when both the shear angle between field line and the neutral line increases with time and the foot-points of the field lines close upon the neutral line. The density, temperature and electric current density are high in these lowlying loops, thus providing conditions for flare (especially proton flare) build-up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号