首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A new extended pollen and charcoal record is presented from Lake Euramoo, Wet Tropics World Heritage rainforest of northeast Queensland, Australia. The 8.4-m sediment core taken from the center of Lake Euramoo incorporates a complete record of vegetation change and fire history spanning the period from 23,000 cal yr B.P. to present. The pollen record is divided into five significant zones; 23,000–16,800 cal yr B.P., dry sclerophyll woodland; 16,800–8600 cal yr B.P., wet sclerophyll woodland with marginal rainforest in protected pockets; 8600–5000 cal yr B.P., warm temperate rainforest; 5000–70 cal yr B.P., dry subtropical rainforest; 70 cal yr B.P.–AD 1999, degraded dry subtropical rainforest with increasing influence of invasive species and fire.The process of rainforest development appears to be at least partly controlled by orbital forcing (precession), though more local environmental variables and human activity are also significant factors. This new record provides the opportunity to explore the relationship between fire, drought and rainforest dynamics in a significant World Heritage rainforest region.  相似文献   

2.
The Upper Doubs River Valley is a 910-km2watershed feeding into Lake Chaillexon. The lake was formed by a natural rockfall at the end of the Bølling Chronozone (around 14,250 cal yr B.P.) and since then has trapped material eroded from the watershed. The filling process and variations in sediment yield have been investigated by mechanical coring, seismic surveys, and electric soundings. The detrital sediment yield of the upstream watershed can be calculated by quantifying the sedimentary stocks for each climatic stage of the Late-Glacial period and Holocene Epoch and estimating the lake's entrapment capacity. This enables us to determine the intensity of the erosion processes in relation to climate and environmental factors. The Bølling–Allerød Interstade produced the greatest yields with mean values of 19,500 metric tons per calendar year (t/yr). The Younger Dryas Chronozone saw a sharp fall (8900 t/yr) that continued into the Preboreal (2100 t/yr). Clastic supply increased during the Boreal (4500 t/yr) before declining again in the Early Atlantic (2400 t/yr). Since then, yields have risen from 4500 t/yr in the Late Atlantic to 6800 t/yr in the Subboreal and 11,100 t/yr in the Subatlantic. Comparison of quantitative data with the qualitative analysis of the deposits and with the paleohydrologic curve of the watershed based on level fluctuations in lakes around Chaillexon shows that climate was the controlling factor of sediment yield until the Late Atlantic. From the Late Atlantic–Subboreal around 5400 cal yr B.P. (470014C yr B.P.) and especially from the end of the Subboreal Chronozone and during the Subatlantic Chronozone (2770 cal yr B.P./270014C yr B.P.–present) climatic constraints have been compounded by human activity related to forest clearing and land use.  相似文献   

3.
Analyses of sediment cores from Jellybean Lake, a small, evaporation-insensitive groundwater-fed lake, provide a record of changes in North Pacific atmospheric circulation for the last ∼7500 yr at 5- to 30-yr resolution. Isotope hydrology data from the southern Yukon indicate that the oxygen isotope composition of water from Jellybean Lake reflects the composition of mean-annual precipitation, δ18Op. Recent changes in the δ18O of Jellybean sedimentary calcite (δ18Oca) correspond to changes in the North Pacific Index (NPI), a measure of the intensity and position of the Aleutian Low (AL) pressure system. This suggests that δ18Op variability was related to the degree of fractionation during moisture transport from the Gulf of Alaska across the St. Elias Mountains and that Holocene shifts were controlled by the intensity and position of the AL. Following this model, between ∼7500 and 4500 cal yr B.P., long-term trends suggest a predominantly weaker and/or westward AL. Between ∼4500 and 3000 cal yr B.P. the AL shifted eastward or intensified before shifting westward or weakening between ∼3000 and 2000 cal yr B.P. Rapid shifts eastward and/or intensification occurred ∼1200 and 300 cal yr B.P. Holocene changes in North Pacific atmospheric circulation inferred from Jellybean Lake oxygen isotopes correspond with late Holocene glacial advances in the St. Elias Mountains, changes in North Pacific salmon abundance, and shifts in atmospheric circulation over the Beaufort Sea.  相似文献   

4.
Lake Zeribar sediments covering the time period of the last 25,000 years were examined for the contents of seeds, fruits, Characeae, diatoms, and molluscs. Reconstructions of the variations in the lake water level, salinity, and trophy suggest a sequence of climatic changes. Three pronounced stages of low and varying lake-water level occurred ca. 17,700–15,400, 12,600–12,000, and 10,000–6000 cal yr BP. Some water-level changes were correlated with variations in salinity. The most pronounced increase of salinity occurred 17,700–15,700 and 12,600–12,000 cal yr BP, and less distinct ones occurred about 6400–5900 and 2500 cal yr BP. Diatom assemblages indicated a strong increase of lake trophy ca. 20,200 cal yr BP. Between 6000 and 5000 cal yr BP diatoms characteristic of eutrophy increased in core 63J, and at about 3200 cal yr BP a distinct increase in mesotrophic forms occurred in core 70B. The changes in the occurrence of various organisms indicate increased temperatures about 21,000 cal yr BP, between 15,400 and 12,600, about 12,000, and about 11,700 cal yr BP. The reduced occurrence or disappearance of some of them suggest temperature decreases about 17,700–15,400 and 12,600–12,000 cal yr BP.  相似文献   

5.
This study evaluates the accuracy of optically stimulated luminescence to date well-preserved strandline sequences at Manistique/Thompson bay (Lake Michigan), and Tahquamenon and Grand Traverse Bays (Lake Superior) that span the past ∼4500 yr. The single aliquot regeneration (SAR) method is applied to produce absolute ages for littoral and eolian sediments. SAR ages are compared against AMS and conventional 14C ages on swale organics. Modern littoral and eolian sediments yield SAR ages <100 yr indicating near, if not complete, solar resetting of luminescence prior to deposition. Beach ridges that yield SAR ages <2000 yr show general agreement with corresponding 14C ages on swale organics. Significant variability in 14C ages >2000 cal yr B.P. complicates comparison to SAR ages at all sites. However, a SAR age of 4280 ± 390 yr (UIC913) on ridge77 at Tahquamenon Bay is consistent with regional regression from the high lake level of the Nipissing II phase ca. 4500 cal yr B.P. SAR ages indicate a decrease in ridge formation rate after ∼1500 yr ago, likely reflecting separation of Lake Superior from lakes Huron and Michigan. This study shows that SAR is a credible alternative to 14C methods for dating littoral and eolian landforms in Great Lakes and other coastal strandplains where 14C methods prove problematic.  相似文献   

6.
Seismic stratigraphy, sedimentary facies, pollen stratigraphy, diatom-inferred salinity, stable isotope (δ18O and δ13C), and chemical composition (Sr/Ca and Mg/Ca) of authigenic carbonates from Moon Lake cores provide a congruent Holocene record of effective moisture for the eastern Northern Great Plains. Between 11,700 and 950014C yr B.P., the climate was cool and moist. A gradual decrease in effective moisture occurred between 9500 and 710014C yr B.P. A change at about 710014C yr B.P. inaugurated the most arid period during the Holocene. Between 7100 and 400014C yr B.P., three arid phases occurred at 6600–620014C yr B.P., 5400–520014C yr B.P., and 4800–460014C yr B.P. Effective moisture generally increased after 400014C yr B.P., but periods of low effective moisture occurred between 2900–280014C yr B.P. and 1200–80014C yr B.P. The data also suggest high climatic variability during the last few centuries. Despite the overall congruence, the biological (diatom), sedimentological, isotopic, and chemical proxies were occassionally out of phase. At these times the evaporative process was not the only control of lake-water chemical and isotopic composition.  相似文献   

7.
A Glacier Peak tephra has been found in the mid-Holocene sediment records of two subalpine lakes, Frozen Lake in the southern Coast Mountains and Mount Barr Cirque Lake in the North Cascade Mountains of British Columbia, Canada. The age–depth relationship for each lake suggests an age of 5000–5080 14C yr B.P. (5500–5900 cal yr B.P.) for the eruption which closely approximates the estimated age (5100–5500 14C yr B.P.) of the Dusty Creek tephra assemblage found near Glacier Peak. The tephra layer, which has not been reported previously from distal sites and was not readily visible in the sediments, was located using contiguous sampling, magnetic susceptibility measurements, wet sieving, and light microscopy. The composition of the glass in pumice fragments was determined by electron microprobe analysis and used to confirm the probable source of this mid-Holocene tephra layer. Using the same methods, the A.D. 1481–1482 Mount St. Helens We tephra layer was identified in sediments from Dog Lake in southeastern British Columbia, suggesting the plume drifted further north than previously thought. This high-resolution method for identifying tephra layers in lake sediments, which has worldwide application in tephrachronologic/paleoenvironmental studies, has furthered our knowledge of the timing and airfall distribution of Holocene tephras from two important Cascade volcanoes.  相似文献   

8.
Continuous pollen and sediment records from two ∼8.5-m-long cores document late Pleistocene and Holocene sedimentation and vegetation change in the Ballston Lake basin, eastern New York State. Pebbles at the base of both cores and the geomorphology of the watershed reflect the presence of the Mohawk River in the basin prior to ∼12,900 ± 70 cal yr B.P. Ballston Lake formed at the onset of the Younger Dryas (YD) by an avulsion of the Mohawk River. The transition from clay to gyttja with low magnetic susceptibility (MS), low bulk density, and high organic carbon indicates rapid warming and increased lake productivity beginning 11,020 cal yr B.P. MS measurements reveal that the influx of magnetic particles, associated with pre-Holocene clastic sedimentation, ceased after ∼10,780 cal yr B.P. The pollen record is subdivided into six zones: BL1 (12,920 to 11,020 cal yr B.P.) is dominated by boreal forest pollen; BL2 (11,020 to 10,780 cal yr B.P.) by pine (Pinus) forest pollen; BL3 (10,780 to 5290 cal yr B.P.) by hemlock (Tsuga) and mixed hardwood pollen; BL4 (5290 to 2680 cal yr B.P.) by mixed hardwood pollen; BL5a (2680 cal yr B.P. to 1030 cal yr B.P.) by conifer and mixed hardwood pollen; and BL5b (1030 cal B.P. to present) by increasing ragweed (Ambrosia) pollen. A 62% decrease in spruce (Picea) pollen in <320 cal years during BL1 reflects rapid warming at the end of the YD. Holocene pollen zones record more subtle climatic shifts than occurred at the end of the YD. One of the largest changes in the Holocene pollen spectra began ∼5300 cal yr B.P., and is characterized by a marked decline in hemlock pollen. This has been noted in other pollen records from the region and may record preferential selection of hemlock by a pathogen or parasites.  相似文献   

9.
The record of Almoloya Lake in the Upper Lerma basin starts with the deposition of the late Pleistocene Upper Toluca Pumice layer. The data from this interval indicate a period of climatic instability that lasted until 8500 cal yr B.P., when temperature conditions stabilized, although moisture fluctuations continued until 8000 cal yr B.P. Between 8500 and 5000 cal yr B.P. a temperate climate is indicated by dominance of Pinus. From 5000 to 3000 cal yr B.P. Quercus forest expanded, suggesting a warm temperate climate: a first indication of drier environmental conditions is an increase in grassland between 4200 and 3500 cal yr B.P. During the Late Holocene (3300 to 500 cal yr B.P.) the increase of Pinus and grassland indicates temperate dry conditions, with a considerable increase of Pinus between 1100 and 950 cal yr B.P. At the end of this period, humidity increased. The main tendency during the Holocene was a change from humid to dry conditions. During the Early Holocene, Almoloya Lake was larger and deeper; the changing humidity regime resulted in a fragmented marshland, with the presence of aquatic and subaquatic vegetation types.  相似文献   

10.
Analyses of sediment cores from two lakes in the central Brooks Range provide temperature and moisture balance information for the past 8500 cal yr at century-scale resolution. Two methods of oxygen isotope analysis are used to reconstruct past changes in the effective moisture (precipitation minus evaporation) and temperature. Effective moisture is inferred from oxygen isotope ratios in sediment cellulose from Meli Lake (area 0.13 km2, depth 19.4 m). The lake has a low watershed-to-lake-area ratio (7) and significant evaporation relative to input. Summer temperature shifts are based on oxygen isotope analyses of endogenic calcite from Tangled Up Lake (area 0.25 km2, depth 3.5 m). This basin has a larger watershed-to-lake-area ratio (91) and less evaporation relative to input. Sediment oxygen isotope analyses from the two sites indicate generally more arid conditions than present prior to 6000 cal yr B.P. Subsequently, the region became increasingly wet. Temperature variability is recorded minimally at centennial scale resolution with values that are generally cool for the past 6700 cal yr. The timing and direction of climate variability indicated by the oxygen isotope time series from Meli and Tangled Up lakes are consistent with previously established late Holocene glacier advances at 5000 cal yr B.P. in the central Brooks Range, and high lake-levels at Birch Lake since 5500 cal yr B.P. This unique use of oxygen isotopes reveals both moisture balance and temperature histories at previously undetected high-resolution temporal scales for northern Alaska during the middle to late Holocene.  相似文献   

11.
Sedimentological, geochemical and palynological data from Wulungu Lake in northern Xinjiang, China, are used to reconstruct environmental and climate changes since 9550 cal yr BP. High abundance of Sparganium and Poaceae, low Md (median diameter) and δ13Corganic values indicate aridity between 9550 and 6730 cal yr BP. High Md and δ13Corganic values, and the prevalence of desert-steppe and steppe vegetation between 4200 and 560 cal yr BP, indicate that effective moisture increased after 6730 cal yr BP, peaking at 4200 and 560 cal yr BP. Low Md values, a negative excursion of δ13Corg, and the transition from steppe to desert vegetation since 560 cal yr BP reflect a decrease in effective moisture during the latest Holocene. Late Holocene human activities were indicated by sharp increase in the abundance of Pediastrum then. Variations in carbonate contents indicate that temperature was generally high between 9550 and 7740 cal yr BP, low between 7740 and 6730 cal yr BP, intermediate between 6730 and 560 cal yr BP, and low during the last 560 yr. Regional comparison indicates that the Asian monsoon did not extend to Wulungu Lake and westerlies were the main factor in determining the moisture availability during the Holocene.  相似文献   

12.
The post-Hypsithermal history of Waldsea Lake, a saline meromictic lake located in south-central Saskatchewan, has been deduced from a study of the changes in physical, mineralogical, and paleobiological parameters in sediment cores from the basin. Six lithostratigraphic units and three palynological zones are identified in the most recent sediment. These units and zones indicate that a shallow hypersaline lake with extensive mudflats existed about 4000 yr B.P. In response to the subsequent trend toward a cooler and wetter climate, deeper water conditions ensued, and by about 3000 yr ago a relatively deep stratified lake occupied the Waldsea Basin. A short climatic reversal about 2500 yr B.P. again caused low-water and mudflat conditions, but by 2000 yr ago the lake had regained its higher levels. The past 2000 yr of Waldsea's history have been relatively uneventful, except for a minor lowering of the lake about 700 yr B.P.  相似文献   

13.
To investigate the Holocene climate and treeline dynamics in the European Russian Arctic, we analysed sediment pollen, conifer stomata, and plant macrofossils from Lake Kharinei, a tundra lake near the treeline in the Pechora area. We present quantitative summer temperature reconstructions from Lake Kharinei and Lake Tumbulovaty, a previously studied lake in the same region, using a pollen–climate transfer function based on a new calibration set from northern European Russia. Our records suggest that the early-Holocene summer temperatures from 11,500 cal yr BP onwards were already slightly higher than at present, followed by a stable Holocene Thermal Maximum (HTM) at 8000–3500 cal yr BP when summer temperatures in the tundra were ca. 3°C above present-day values. A Picea forest surrounded Lake Kharinei during the HTM, reaching 150 km north of the present taiga limit. The HTM ended with a temperature drop at 3500–2500 cal yr BP associated with permafrost initiation in the region. Mixed spruce forest began to disappear around Lake Kharinei at ca. 3500 cal yr BP, with the last tree macrofossils recorded at ca. 2500 cal yr BP, suggesting that the present wide tundra zone in the Pechora region formed during the last ca. 3500 yr.  相似文献   

14.
Dimensions of Holocene relict channels and sedimentological characteristics of point bars associated with these relict channels were used to reconstruct a Holocene history of long-term changes in magnitudes of 1.58-yr floods in Upper Mississippi Valley watersheds of southwestern Wisconsin. The reconstructed record of floods shows relatively large and persistent (nonrandom) departures from contemporary long-term average flood magnitudes. The flood history indicates climatic changes that are broadly similar to climatic changes indicated from fossil pollen in the same region. The Holocene floods ranged from about 10–15% larger to 20–30% smaller than contemporary floods of the same recurrence frequency. Large floods were characteristic between about 6000 – 4500 and 3000 – 2000 yr B.P., and during a brief interval after 1200 yr B.P. Small floods were common between about 8000 – 6500, 4500 – 3000, and 2000 – 1200 yr B.P. These fluvial responses were found to be closely associated with a long-term episodic mobility and storage of sediments in the Wisconsin watersheds. During periods of relatively large floods, relatively rapid lateral channel migration either reworked or removed extensive tracts of valley bottom alluvium. In contrast, during periods of relatively small floods, relatively slow lateral channel migration is apparent and the channel and floodplain system appear to have been relatively stable.  相似文献   

15.
In the southern Argentine Andes, ten advances of valley glaciers were used to reconstruct the late-glacial and Holocene glacier history. The accumulation areas of these glaciers lie in the Precordillera and are thus independent of fluctuations of the South Patagonian Icefield. Like the Viedma outlet glacier, the valley glaciers advanced three times during late-glacial time (14,000–10,000 yr B.P.). The youngest advance correlates with the Younger Dryas Stade, based on two minimum AMS14C dates of 9588 and 9482 yr B.P. The second oldest advance occurred before 11,800 yr B.P. During the first half of the Holocene, (ca. 10,000–5000 yr B.P.), advances culminated about 8500, 8000–7500, and 5800–5500 yr B.P. During the second half of the Holocene, advances occurred between ca. 4500 and 4200 yr B.P., as well as between 3600 and 3300 yr B.P. In the Río Cóndor valley three subsequent advances have been identified.  相似文献   

16.
The environmental history of the Northern Rocky Mountains was reconstructed using lake sediments from Burnt Knob Lake, Idaho, and comparing the results with those from other previously published sites in the region to understand how vegetation and fire regimes responded to large-scale climate changes during the Holocene. Vegetation reconstructions indicate parkland or alpine meadow at the end of the glacial period indicating cold-dry conditions. From 14,000 to 12,000 cal yr B.P., abundant Pinus pollen suggests warmer, moister conditions than the previous period. Most sites record the development of a forest with Pseudotsuga ca. 9500 cal yr B.P. indicating warm dry climate coincident with the summer insolation maximum. As the amplification of the seasonal cycle of insolation waned during the middle Holocene, Pseudotsuga was replaced by Pinus and Abies suggesting cool, moist conditions. The fire reconstructions show less synchroneity. In general, the sites west of the continental divide display a fire-frequency maximum around 12,000–8000 cal yr B.P., which coincides with the interval of high summer insolation and stronger-than-present subtropical high. The sites on the east side of the continental divide have the highest fire frequency ca. 6000–3500 cal yr B.P. and may be responding to a decrease in summer precipitation as monsoonal circulation weakened in the middle and late Holocene. This study demonstrated that the fire frequency of the last two decades does not exceed the historical range of variability in that periods of even higher-than-present fire frequency occurred in the past.  相似文献   

17.
U-Series Chronology of Lacustrine Deposits in Death Valley, California   总被引:1,自引:0,他引:1  
Uranium-series dating on a 186-m core (DV93-1) drilled from Badwater Basin in Death Valley, California, and on calcareous tufas from nearby strandlines shows that Lake Manly, the lake that periodically flooded Death Valley during the late Pleistocene, experienced large fluctuations in depth and chemistry over the last 200,000 yr. Death Valley has been occupied by a long-standing deep lake, perennial shallow saline lakes, and a desiccated salt pan similar to the modern valley floor. The average sedimentation rate of about 1 mm/yr for core DV93-1 was punctuated by episodes of more-rapid accumulation of halite. Arid conditions similar to the modern conditions prevailed during the entire Holocene and between 120,000 and 60,000 yr B.P. From 35,000 yr B.P. to the beginning of the Holocene, a perennial saline lake existed, over 70 m at its deepest. A much deeper and longer lasting perennial Lake Manly existed from about 185,000 to 128,000 yr B.P., with water depths reaching about 175 m, if not 330 m. This lake had two significant “dry” excursions of 102–103yr duration about 166,000 and 146,000 yr B.P., and it began to shrink to the point of halite precipitation between 128,000 and 120,000 yr B.P. The two perennial lake periods correspond to marine oxygen isotopic stages (OIS) 2 and 6. Based on the shoreline tufa ages, we do not rule out the possible existence 200,000 yr ago of yet a third perennial lake comparable in size to the OIS 6 lake. The234U/238U data suggest that U in tufa owes its origin mainly to Ca-rich springs fed by groundwater that emanated along lake shorelines in southern Death Valley, and that an increase of this spring-water input relative to the river-water input apparently occurred during OIS 6.  相似文献   

18.
Clay mineral assemblages of a soil chrono-association comprising five fluvial surface members (QGH1 to QGH5) of the Indo-Gangetic Plains between the Ramganga and Rapti rivers, north-central India, demonstrate that pedogenic interstratified smectite–kaolin (Sm/K) can be considered as a potential indicator for paleoclimatic changes during the Holocene from arid to humid climates. On the basis of available radiocarbon dates, thermoluminescence dates, and historical evidence, tentative ages assigned to QGH1 to QGH5 are <500 yr B.P., >500 yr B.P., >2500 yr B.P., 8000 TL yr B.P., and 13,500 TL yr B.P., respectively. During pedogenesis two major regional climatic cycles are recorded: relatively arid climates between 10,000–6500 yr B.P. and 3800–? yr B.P. were punctuated by a warm and humid climate. Biotite weathered to trioctahedral vermiculite and smectite in the soils during arid conditions, and smectite was unstable and transformed to Sm/K during the warm and humid climatic phase (7400–4150 cal yr B.P.). When the humid climate terminated, vermiculite, smectite, and Sm/K were preserved to the present day. The study suggests that during the development of soils in the Holocene in alluvium of the Indo-Gangetic Plains, climatic fluctuations appear to be more important than realized hitherto. The soils older than 2500 yr B.P. are relict paleosols, but they are polygenetic because of their subsequent alterations.  相似文献   

19.
Diatom assemblages and organic carbon records from two sediment cores located within an estuarian bay of the inner Kara Sea trace changes in Yenisei River runoff and postglacial depositional environments. Paleosalinity and sea-ice reconstructions are based on modern relationships of local diatom assemblages and summer surface-water salinity. Approximately 15,500 cal yr B.P., rivers and bogs characterized the study area. When sea level reached the 38- to 40-m paleo-isobath approximately 9300 cal yr B.P., the coring site was flooded. From 9300–9100 cal yr B.P., estuarine conditions occurred proximal to the depocenter of fluvially derived material, and salinity was <7–8. Paleosalinity increased to 11–13 by 7500 cal yr B.P., following postglacial sea-level rise and the southward shift of the Siberian coast. Sharp decreases in diatom accumulation rates, total sediment, and organic carbon also occurred, suggesting the presence of brackish conditions and greater distance between the coast and study site. Maximum paleosalinity (up to 13) was recorded between 7500 and 6000 cal yr B.P., which was likely caused by the enhanced penetration of Atlantic waters to the Kara Sea. Stepwise decreases to modern salinity levels happened over the last 6000 cal yr.  相似文献   

20.
Topographic and climatic influences have controlled thick loess accumulation at the southern margin of the Palouse loess in northern Oregon. Juniper and Cold Springs Canyons, located on the upwind flank of the Horse Heaven Hills, are oriented perpendicular to prevailing southwesterly winds. These canyons are topographic traps that separate eolian sand on the upwind side from thick accumulations (nearly 8 m) of latest Pleistocene to Holocene L1 loess on the downwind side. Silt- and sand-rich glacial outburst flood sediment in the Umatilla Basin is the source of eolian sand and loess for the region. Sediment from this basin also contributes to loess accumulations across much of the Columbia Plateau to the northeast. Downwind of Cold Springs Canyon, Mt. St. Helens set S and Glacier Peak tephras bracket 4 m of loess, demonstrating that approximately 2500 g m−2 yr−1 of loess accumulated between about 15,400–13,100 cal yr B.P. Mass accumulation rates decreased to approximately 250 g m−2 yr−1 from 13,100 cal yr B.P. to the present. Tephrochronology suggests that the bulk of near-source Palouse loess accumulated in one punctuated interval in the latest Pleistocene characterized by a dry and windy climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号