首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an analytical model for describing the tidal effects in a two‐dimensional leaky confined aquifer system in an estuarine delta where ocean and river meet. This system has an unconfined aquifer on top and a confined aquifer on the bottom with an aquitard in between the two. The unconfined and confined aquifers interact with each other through leakage. It was assumed that the aquitard storage was negligible and that the leakage was linearly proportional to the head difference between the unconfined and confined aquifers. This model's solution was based on the separation of variables method. Two existing solutions that deal with the head fluctuation in one‐dimensional or two‐dimensional leaky confined aquifers are shown as special cases in the present solution. Based on this new solution, the dynamic effect of the water table's fluctuations can be clearly explored, as well as the influence of leakage on the behaviour of fluctuations in groundwater levels in the leaky aquifer system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Groundwater in coastal areas is commonly disturbed by tidal fluctuations. A two‐dimensional analytical solution is derived to describe the groundwater fluctuation in a leaky confined aquifer system near open tidal water under the assumption that the groundwater head in the confined aquifer fluctuates in response to sea tide whereas that of the overlying unconfined aquifer remains constant. The analytical solution presented here is an extension of the solution by Sun for two‐dimensional groundwater flow in a confined aquifer and the solution by Jiao and Tang for one‐dimensional groundwater flow in a leaky confined aquifer. The analytical solution is compared with a two‐dimensional finite difference solution. On the basis of the analytical solution, the groundwater head distribution in a leaky confined aquifer in response to tidal boundaries is examined and the influence of leakage on groundwater fluctuation is discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents an analytical solution to tide‐induced head fluctuations in a two‐dimensional estuarine‐coastal aquifer system that consists of an unconfined aquifer and a heterogeneous confined aquifer extending under a tidal river with a semipermeable layer between them. This study considers the joint effects of tidal‐river leakage, inland leakage, dimensionless transmissivity between the tidal‐river and inland confined aquifer, and transmissivity anisotropic ratios. The analytical solution for this model is obtained via the separation of variables method. Three existing solutions related to head fluctuation in one‐ or two‐dimensional leaky confined aquifers are considered as special cases in the present solution. This study shows that there is a threshold of tidal‐river confined aquifer length. When the tidal‐river length is greater than the threshold length, the inland head fluctuations remain sensitive to the leakage effect but become insensitive to the tidal‐river width and dimensionless transmissivity. Considering leakage and transmissivity anisotropy, this study also demonstrates that at a location farther from the river–inland boundary, head fluctuations increase with increasing leakage and transmissivity anisotropy; the maximum head fluctuation occurs when leakage and transmissivity anisotropy are both at their maximum values. The combined action of the 3 effects of loading, tidal‐river aquifer leakage, and inland aquifer leakage differs significantly according to various aquifer parameters. The analytical solution in this paper can be applied to demonstrate the behaviours of the head fluctuations of an estuarine‐coastal aquifer system, and the head fluctuations can be clearly described when the tidal and hydrogeological parameters are derived from field measurement data or hypothetical cases.  相似文献   

4.
This article investigates the quantity of submarine groundwater discharge (SGD) from a coastal multi‐layered aquifer system in response to constant rainfall infiltration. The system comprises an unconfined aquifer, a leaky confined aquifer and an aquitard between them and terminates at the coastline. An approximate analytical solution is derived based on the following assumptions: (i) flow is horizontal in the aquifers and vertical in the aquitard, and (ii) flow in the unconfined aquifer is described by nonlinear Boussinesq equation. The analytical solution is compared with numerical solutions of the strictly two‐dimensional nonlinear model to validate the model assumptions used for the analytical solution. The SGD from the leaky confined aquifer increases with the inland rainfall infiltration recharge and the specific leakage of aquitard. The maximum SGD ranges from 1·87 to 10·37 m3 per day per meter of shoreline when rainfall infiltration ranges from 18·2 to 182 mm/year and the specific leakage of aquitard varies from 10?9 to 10?1 l/day. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Reply     
Abstract

This paper develops a new analytical solution for the aquifer system, which comprises an unconfined aquifer on the top, a semi-confined aquifer at the bottom and an aquitard between them. This new solution is derived from the Boussinesq equation for the unconfined aquifer and one-dimensional leaky confined flow equation for the lower aquifer using the perturbation method, considering the water table over-height at the remote boundary. The head fluctuation predicted from this solution is generally greater than the one solved from the linearized Boussinesq equation when the ratio of the tidal amplitude to the thickness of unconfined aquifer is large. It is found that both submarine groundwater discharges from upper and lower aquifers increase with tidal amplitude–aquifer thickness ratio and may be underestimated if the discharge is calculated based on the average head fluctuation. The effects of the aquifer parameters and linearization of the Boussinesq equation on the normalized head fluctuation are also investigated.

Editor D. Koutsoyiannis; Associate editor J. Simunek

Citation Chuang, M.-H., Mahdi, A.-A. and Yeh, H.-D., 2012. A perturbation solution for head fluctuations in a coastal leaky aquifer system considering water table over-height. Hydrological Sciences Journal, 57 (1), 162–172.  相似文献   

6.
This study presents analytical solutions of the three‐dimensional groundwater flow to a well in leaky confined and leaky water table wedge‐shaped aquifers. Leaky wedge‐shaped aquifers with and without storage in the aquitard are considered, and both transient and steady‐state drawdown solutions are derived. Unlike the previous solutions of the wedge‐shaped aquifers, the leakages from aquitard are considered in these solutions and unlike similar previous work for leaky aquifers, leakage from aquitards and from the water table are treated as the lower and upper boundary conditions. A special form of finite Fourier transforms is used to transform the z‐coordinate in deriving the solutions. The leakage induced by a partially penetrating pumping well in a wedge‐shaped aquifer depends on aquitard hydraulic parameters, the wedge‐shaped aquifer parameters, as well as the pumping well parameters. We calculate lateral boundary dimensionless flux at a representative line and investigate its sensitivity to the aquitard hydraulic parameters. We also investigate the effects of wedge angle, partial penetration, screen location and piezometer location on the steady‐state dimensionless drawdown for different leakage parameters. Results of our study are presented in the form of dimensionless flux‐dimensionless time and dimensionless drawdown‐leakage parameter type curves. The results are useful for evaluating the relative role of lateral wedge boundaries and leakage source on flow in wedge‐shaped aquifers. This is very useful for water management problems and for assessing groundwater pollution. The presented analytical solutions can also be used in parameter identification and in calculating stream depletion rate and volume. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Pumping wells are common in coastal aquifers affected by tides. Here we present analytical solutions of groundwater table or head variations during a constant rate pumping from a single, fully-penetrating well in coastal aquifer systems comprising an unconfined aquifer, a confined aquifer and semi-permeable layer between them. The unconfined aquifer terminates at the coastline (or river bank) and the other two layers extend under tidal water (sea or tidal river) for a certain distance L. Analytical solutions are derived for 11 reasonable combinations of different situations of the L-value (zero, finite, and infinite), of the middle layer’s permeability (semi-permeable and impermeable), of the boundary condition at the aquifer’s submarine terminal (Dirichlet describing direct connection with seawater and no-flow describing the existence of an impermeable capping), and of the tidal water body (sea and tidal river). Solutions are discussed with application examples in fitting field observations and parameter estimations.  相似文献   

8.
The study on the hydraulic properties of coastal aquifers has significant implications both in hydrological sciences and environmental engineering. Although many analytical solutions are available, most of them are based on the same basic assumption that assumes aquifers extend landward semi‐infinitely, which does not necessarily reflect the reality. In this study, the general solutions for a leaky confined coastal aquifer have been developed that consider both finitely landward constant‐head and no‐flow boundaries. The newly developed solutions were then used to examine theoretically the joint effects of leakage and aquifer length on hydraulic head fluctuations within the leaky confined aquifer, and the validity of using the simplified solution, which assumes the aquifer is semi‐infinite. The results illustrated that the use of the simplified solution may cause significant errors, depending on joint effects of leakage and aquifer length. A dimensionless characteristic parameter was then proposed as an index for judging the applicability of the simplified solution. In addition, practical application of the general solution for the constant‐head inland boundary was used to characterize the hydraulic properties of a leaky confined aquifer using the data collected from a field site at the Seine River estuary, France, and the versatility of the general solution was further justified.  相似文献   

9.
We present an analytical solution of groundwater head response to tidal fluctuation in a coastal multilayered aquifer system consisting of an unconfined aquifer, a leaky confined aquifer and a semi‐permeable layer between them. The submarine outcrop of the confined aquifer is covered by a thin silt layer. A mathematical model and the analytical solution of this model are given. The silt layer reduces the amplitude of the hydraulic head fluctuation by a constant factor, and shifts the phase by a positive constant (time lag), both of which depend on the leakances of the silt layer and the semi‐permeable layer. The time lag is less than 1·5 h and 3·0 h for semi‐diurnal and diurnal sea tides respectively. When the leakance of the semi‐permeable layer or the silt layer assumes certain special values, the solution becomes the existing solutions derived by previous researchers. The amplitude of the hydraulic head fluctuation in the confined aquifer increases with the leakance of the silt layer and decreases with the leakance of the semi‐permeable layer, whereas the phase shift of the fluctuation decreases with both of them. A hypothetical example shows that neglecting the silt layer may result in significant parameter estimation discrepancy between the amplitude attenuation and the time‐lag fittings. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Xun Zhou 《水文研究》2008,22(16):3176-3180
Measurements of the tide and groundwater levels in coastal zones are of importance in determining the properties of coastal aquifers. The solution to a one‐dimensional unsteady groundwater flow model in a coastal confined aquifer with sinusoidal fluctuation of the tide shows that the tidal efficiency decreases exponentially with distance and the time lag increases linearly with distance from the coast. The aquifer property described by the ratio of storage coefficient to transmissivity is determined if the damping constant of the tidal efficiency or the slope of the time lag with distance are obtained on the basis of tidal measurements. Hourly observations of the tide and groundwater levels at 10 wells on the northern coast near Beihai, China show that with distance from the coast, tidal efficiency decreases roughly exponentially and the time lag increases roughly linearly. The estimated ratio of storage coefficient to transmissivity of the confined aquifer ranges from 1·169 × 10?6 d m?2 to 1·83 × 10?7 d m?2. For a given transmissivity of 750 m2 d?1, the storage coefficient of the aquifer is 8·7675 × 10?4 with the tidal efficiency method and 1·3725 × 10?4 with the time lag method. The damping constant of the tidal efficiency with distance can be defined as the tidal propagation coefficient. The value of the confined aquifer is determined as 0·0018892 m?1. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

Submarine springs play an important role in submarine groundwater discharge (SGD). To investigate the effects of these springs on the propagation of tidal signals in coastal confined aquifers, this paper considers a general coastal aquifer system with a submarine spring on the seabed where the length of the aquifer's offshore extent is finite and its submarine outlet is covered by an impermeable outlet-capping. An approximate analytical solution is obtained for describing the tidal head fluctuations in the aquifer. Solution analyses indicate that the error of the approximate analytical solution is negligible when both distances from the spring hole to the coastline and to the submarine outlet-capping are much greater than the radius of the spring hole. Sensitivity tests are conducted to investigate the effects of hydraulic properties, tidal and spring geometric configuration parameters on the tidal signal propagation in the inland aquifer. For aquifers with infinite offshore length, or without submarine springs, existing solutions in the literature are obtained. The comparison of groundwater head fluctuations for the cases with and without a submarine spring demonstrate the enhancing effect of the submarine spring on tidal signal propagation in the inland aquifer. Three situations that fit our model assumptions are given for future potential applications. A hypothetical example is used to show the possibility of identifying a spring's location using the present analytical solution together with tidal signals observed from inland wells.

Editor D. Koutsoyiannis; Associate editor Y. Guttmann

Citation Xia, Y.Q., Li, H.L., Yang, Y., and Huang, W., 2012. Enhancing effect on tidal signals of a submarine spring related to a semi-infinite confined aquifer. Hydrological Sciences Journal, 57 (6), 1231–1248.  相似文献   

12.
In alluvial coastal aquifers, finer sediments are preferentially deposited along the downstream direction, so the hydraulic conductivity is generally heterogeneous and changes with distance from the coastline. To investigate the influence of aquifer heterogeneity on seawater‐groundwater interaction, a new two‐dimensional model characterising groundwater flow in an aquifer‐aquitard system was developed assuming that the hydraulic conductivity of the aquifer linearly increases with the distance from the coastline along the inland direction. A closed‐form analytical solution was derived using the separation‐of‐variables method. Comparing the new solution with the numerical solution by comsol Multiphysics (Sweden) based on the finite‐element method, one can see that the new solution agreed with the numerical solution very well except at the early time. We found that both aquitard leakance and the heterogeneity factor (b) could result in the propagation bias. The propagation bias represents the inconsistency between the theoretical calculation and the observed strong attenuation and small time lag between the head and tide fluctuations. The attenuation decreased with perpendicular distance from the coastline (x‐axis), whereas the time lag increased with distance along the x‐axis. The relationship between the time lag and the distance along the x‐axis seemed to be linear when b was 0.001 m?1, whereas it obeyed a power function when b was greater than 0.01 m?1. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
《Advances in water resources》2007,30(4):1046-1052
Submarine springs discharge offshore groundwater from confined aquifers extending under the sea. The effects of these springs on the propagation of tidal oscillations in coastal confined aquifers are not known. This paper presents an approximate analytical solution of tidal head fluctuations in a confined aquifer with one submarine spring. The aquifer is assumed to extend in all directions infinitely. The spring is represented by a permeable round column on the seabed, which penetrates completely the impermeable layer overlying the confined aquifer. The error of the approximate solution is negligible if the distance from the spring to the coastline is much greater than the radius of the permeable column representing the spring. Through a hypothetical example, we demonstrate that it is possible to identify the spring’s location using tidal signals observed from inland wells. Tidal groundwater head fluctuations from three inland observation wells at least are needed to determine the 5 model parameters, including the location (2 parameters), the radius of the permeable column representing the spring, the diffusivity of the aquifer, and the tidal loading efficiency of the system.  相似文献   

14.
This paper considered the tide-induced head fluctuations in two coastal multi-layered aquifer systems. Model I comprises two semi-permeable layers and a confined aquifer between them. Model II is a four-layered aquifer system including an unconfined aquifer, an upper semi-permeable layer, a confined aquifer and a lower semi-permeable layer. In each model, the submarine outlet of the confined aquifer is covered with a skin layer (“outlet-capping”). Analytical solutions of the two models are derived. In both models, leakages of the semi-permeable layers decrease the tidal head fluctuations. The outlet-capping reduces the aquifer’s head fluctuation by a constant factor and shifts the phase by a positive constant. The solution to Model II explains the inconsistency between the relatively small lag time and the strong amplitude damping effect of the tidal head fluctuations reported by Trefry and Johnston [Ground Water 1998;36:427–33] near the Port Adelaide River, Australia.  相似文献   

15.
In this study, we use a linearization procedure and a finite difference method to solve non-Darcian flow to a well in an aquifer–aquitard system. The leakage effect is considered. Flow in the aquifer is assumed to be non-Darcian and horizontal, whereas flow in the aquitard is assumed to be Darcian and vertical. The Izbash equation [Izbash SV. O filtracii V Kropnozernstom Materiale. USSR: Leningrad; 1931 [in Russian]] is employed to describe the non-Darcian flow. The wellbore storage is also considered in this study. An approximate semi-analytical solution has been obtained by the linearization procedure, and a numerical solution has been obtained by using a finite difference method. The previous solutions for Darcian flow case and non-Darcian flow case without leakage can be described as special cases of the new solutions. The error caused by the linearization procedure has also been analyzed. The relative error caused by the linearization procedure is nearly 100% at early times, and decreases to zero at late times. We have also compared the results in this study with Wen et al. [Wen Z, Huang G, Zhan H. A numerical solution for non-Darcian flow to a well in a confined aquifer using the power law function. J Hydrol, 2008d [in revision]] in which the leakage effect is not considered, and Hantush and Jacob [Hantush MS, Jacob CE. Non-steady radial flow in an infinite leaky aquifer. Trans Am Geophys Union 1955;36(1):95–100] who investigated a similar problem in Darcian flow case. The comparison of this study and Wen et al. (2008d) indicates the dimensionless drawdown in the aquifer with leakage is less than that without leakage, and the leakage has little effect at early times. The comparison between the results of this study and that of Hantush and Jacob (1955) indicates that the dimensionless drawdown in the aquifer for non-Darcian flow is larger at early times and smaller at late times, than their counterparts for Darcian flow. A larger dimensionless non-Darcian conductivity kD results in a smaller dimensionless drawdown in the aquifer at late times, and leads to a larger dimensionless drawdown in the aquifer at early times. A smaller dimensionless leakage parameter BD results in a smaller drawdown at late times, and the leakage does not affect the early-time drawdown. The analysis of the dimensionless drawdown inside the well has also been included in this study when the wellbore storage is considered.  相似文献   

16.
A new solution of transient confined–unconfined flow driven by a pumping well is developed and compared to previous approximate solutions of Moench and Prickett [Moench AF, Prickett TA. Radial flow in an infinite aquifer undergoing conversion from artesian to water table conditions. Water Resour Res 1972;8:494–9] and Hu and Chen [Hu L, Chen C. Analytical methods for transient flow to a well in a confined–unconfined aquifer. Ground Water 2008;46(4):642–6]. The problem is rewritten in dimensionless form with the Boltzmann transform. The nonlinear equation for flow in the unconfined zone is solved with the Runge–Kutta method. Position of the conversion interface is determined with an iteration scheme. This study shows that the confined–unconfined flow depends on three dimensionless parameters that represent the confined–unconfined storativity ratio (aD), the ratio of the initial hydraulic head over the aquifer thickness (fi), and the dimensionless pumping rate (qD). The rate of expansion of the unconfined zone increases with qD, but decreases with aD and fi. Differences between the two previous approximate solutions and the new solution of this study are observable in the estimated position of the conversion interface and the drawdown–time curves. The new solution can be applied to estimate the time for confined–unconfined conversion to occur (critical conversion time), and the time when the pumping well becomes dry (critical drying time). The critical conversion time is found to be very sensitive to the initial hydraulic head. The critical drying time is often much larger than the critical conversion time and may never be observed during a finite pumping period.  相似文献   

17.
Studies investigating the effects of inland recharge on coastal groundwater dynamics were carried out typically in unconfined aquifers, with few in confined aquifers. This study focused on the groundwater dynamics in confined aquifers with seasonally sinusoidally fluctuated inland groundwater head and constant sea level by numerical simulations. It is known that the mixing zone (MZ) of saltwater wedge in response to the seasonal oscillations of inland groundwater head swings around the steady-state MZ. However, our simulation results indicate that even the most landward freshwater-saltwater interface over a year is seaward from the steady-state location when the hydraulic conductivity K is ≤10−4 m/s under certain boundary conditions with given parameter values. That is, seasonal oscillations of inland groundwater head may reduce seawater intrusion in confined coastal aquifers when K ≤ 10−4 m/s. Sensitivity analysis indicates that for aquifers of K ≤ 10−4 m/s, the larger the inland head fluctuation amplitude is, the less the seawater intrudes. This is probably due to the reason that the seawater intrusion time decreases with the increase of fluctuation amplitude when K ≤ 10−4 m/s. Numerical simulations demonstrate that seasonal inland groundwater head oscillations promote the annual averaged recirculated seawater discharge across the seaward boundary.  相似文献   

18.
A mathematical model that describes the drawdown due to constant pumpage from a finite radius well in a two‐zone leaky confined aquifer system is presented. The aquifer system is overlain by an aquitard and underlain by an impermeable formation. A skin zone of constant thickness exists around the wellbore. A general solution to a two‐zone leaky confined aquifer system in Laplace domain is developed and inverted numerically to the time‐domain solution using the modified Crump (1976) algorithm. The results show that the drawdown distribution is significantly influenced by the properties and thickness of the skin zone and aquitard. The sensitivity analyses of parameters of the aquifer and aquitard are performed to illustrate their effects on drawdowns in a two‐zone leaky confined aquifer system. For the negative‐skin case, the drawdown is very sensitive to the relative change in the formation transmissivity. For the positive‐skin case, the drawdown is also sensitive to the relative changes in the skin thickness, and both the skin and formation transmissivities over the entire pumping period and the well radius and formation storage coefficient at early pumping time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The standard practice for assessing aquifer parameters is to match groundwater drawdown data obtained during pumping tests against theoretical well function curves specific to the aquifer system being tested. The shape of the curve derived from the logarithmic time derivative of the drawdown data is also very frequently used as a diagnostic tool to identify the aquifer system in which the pumping test is being conducted. The present study investigates the incremental area method (IAM) to serve as an alternative diagnostic tool for the aquifer system identification as well as a supplement to the aquifer parameter estimation procedure. The IAM based diagnostic curves for ideal confined, leaky, bounded and unconfined aquifers have been derived as part of this study, and individual features of the plots have been identified. These features were noted to be unique to each aquifer setting, which could be used for rapid evaluation of the aquifer system. The effectiveness of the IAM methodology was investigated by analyzing field data for various aquifer settings including leaky, unconfined, bounded and heterogeneous conditions. The results showed that the proposed approach is a viable method for use as a diagnostic tool to identify the aquifer system characteristics as well as to support the estimation of the hydraulic parameters obtained from standard curve matching procedures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Water level changes in wells provide a direct measure of the impact of groundwater development at a scale of relevance for management activities. Important information about aquifer dynamics and an aquifer's future is thus often embedded in hydrographs from continuously monitored wells. Interpretation of those hydrographs using methods developed for pumping‐test analyses can provide insights that are difficult to obtain via other means. These insights are demonstrated at two sites in the High Plains aquifer in western Kansas. One site has thin unconfined and confined intervals separated by a thick aquitard. Pumping‐induced responses in the unconfined interval indicate a closed (surrounded by units of relatively low permeability) system that is vulnerable to rapid depletion with continued development. Responses in the confined interval indicate that withdrawals are largely supported by leakage. Given the potential for rapid depletion of the unconfined interval, the probable source of that leakage, it is likely that large‐scale irrigation withdrawals will not be sustainable in the confined interval beyond a decade. A second site has a relatively thick unconfined aquifer with responses that again indicate a closed system. However, unlike the first site, previously unrecognized vertical inflow can be discerned in data from the recovery periods. In years of relatively low withdrawals, this inflow can produce year‐on‐year increases in water levels, an unexpected occurrence in western Kansas. The prevalence of bounded‐aquifer responses at both sites has important ramifications for modeling studies; transmissivity values from pumping tests, for example, must be used cautiously in regional models of such systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号