首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents a novel mathematical model for analysis of non-axisymmetrical solute transport in a radially convergent flow field with scale-dependent dispersion. A two-dimensional, scale-dependent advection–dispersion equation in cylindrical coordinates is derived based on assuming that the longitudinal and transverse dispersivities increase linearly with the distance of the solute transported from its injected source. The Laplace transform finite difference technique is applied to solve the two-dimensional, scale-dependent advection–dispersion equation with variable-dependent coefficients. Concentration contours for different times, breakthrough curves of average concentration over concentric circles with a fixed radial distance, and breakthrough curves of concentration at a fixed observation point obtained using the scale-dependent dispersivity model are compared with those from the constant dispersivity model. The salient features of scale-dependent dispersion are illustrated during the non-axisymmetrical transport from the injection well into extraction well in a convergent flow field. Numerical tests show that the scale-dependent dispersivity model predicts smaller spreading than the constant-dispersivity model near the source. The results also show that the constant dispersivity model can produce breakthrough curves of averaged concentration over concentric circles with the same shape as those from the proposed scale-dependent dispersivity model at observation point near the extraction well. Far from the extracting well, the two models predict concentration contours with significantly different shapes. The breakthrough curves at observation point near the injection well from constant dispersivity model always produce lesser overall transverse dispersion than those from scale-dependent dispersivity model. Erroneous dimensionless transverse/longitudinal dispersivity ratio may result from parametric techniques which assume a constant dispersivity if the dispersion process is characterized by a distance-dependent dispersivity relationship. A curve-fitting method with an example is proposed to evaluate longitudinal and transverse scale-proportional factors of a field with scale-dependent dispersion.  相似文献   

2.
Matheron and de Marsily [Matheron M, de Marsily G. Is the transport in porous media always diffusive? A counter-example. Water Resour Res 1980;16:901–17] studied transport in a perfectly stratified infinite medium as an idealized aquifer model. They observed superdiffusive solute spreading quantified by anomalous increase of the apparent longitudinal dispersion coefficient with the square root of time. Here, we investigate solute transport in a vertically bounded stratified random medium. Unlike for the infinite medium at asymptotically long times, disorder-induced mixing and spreading is uniquely quantified by a constant Taylor dispersion coefficient. Using a stochastic modeling approach we study the effective mixing and spreading dynamics at pre-asymptotic times in terms of effective average transport coefficients. The latter are defined on the basis of local moments, i.e., moments of the transport Green function. We investigate the impact of the position of the initial plume and the initial plume size on the (highly anomalous) pre-asymptotic effective spreading and mixing dynamics for single realizations and in average. Effectively, the system “remembers” its initial state, the effective transport coefficients show so-called memory effects, which disappear after the solute has sampled the full vertical extent of the medium. We study the impact of the intrinsic non-ergodicity of the confined medium on the validity of the stochastic modeling approach and study in this context the transition from the finite to the infinite medium.  相似文献   

3.
Solute discharge moments (mean and variance) are computed using numerical modeling of flow and advective transport in two-dimensional heterogeneous aquifers and are compared to theoretical results. The solute discharge quantifies the temporal evolution of the total contaminant mass crossing a certain compliance boundary. In addition to analyzing the solute discharge moments within a classical absolute dispersion framework, we also analyze relative dispersion formulation, whereby plume meandering (deviation from mean flow path caused by velocity variations at scales larger than plume size) is removed. This study addresses some important issues related to the computation of solute discharge moments from random walk particle tracking experiments, and highlights some of the important differences between absolute and relative dispersion frameworks. Relative dispersion formulation produces maximum uncertainty that coincides with the peak mean discharge. Absolute dispersion, however, results in earlier arrival of the uncertainty peak as compared to the first moment peak. Simulations show that the standard deviation of solute discharge in a relative dispersion framework requires increasingly large temporal sampling windows to smooth out some of the large fluctuations in breakthrough curves associated with advective transport. Using smoothing techniques in particle tracking to distribute the particle mass over a volume rather than at a point significantly reduces the noise in the numerical simulations and removes the need to use large temporal windows. Same effect can be obtained by adding a local dispersion process to the particle tracking experiments used to model advective transport. The effect of the temporal sampling window bears some relevance and important consequences for evaluating risk-related parameters. The expected value of peak solute discharge and its standard deviation are very sensitive to this sampling window and so will be the risk distribution relying on such numerical models.  相似文献   

4.
An empirical hyperbolic scale-dependent dispersion model, which predicts a linear growth of dispersivity close to the origin and the attainment of an asymptotic dispersivity at large distances, is presented for deterministic modelling of field-scale solute transport and the analysis of solute transport experiments. A simple relationship is derived between local dispersivity, which is used in numerical simulations of solute transport, and effective dispersivity, which is estimated from the analysis of tracer breakthrough curves. The scale-dependent dispersion model is used to interpret a field tracer experiment by nonlinear least-squares inversion of a numerical solution for unsaturated transport. Simultaneous inversion of concentration-time data from several sampling locations indicates a linear growth of the dispersion process over the scale of the experiment. These findings are consistent with the results of an earlier analysis based on the use of a constant dispersion coefficient model at each of the sampling depths.  相似文献   

5.
Modeling dispersion in homogeneous porous media with the convection–dispersion equation commonly requires computing effective transport coefficients. In this work, we investigate longitudinal and transverse dispersion coefficients arising from the method of volume averaging, for a variety of periodic, homogeneous porous media over a range of particle Péclet (Pep) numbers. Our objective is to validate the upscaled transverse dispersion coefficients and concentration profiles by comparison to experimental data reported in the literature, and to compare the upscaling approach to the more common approach of inverse modeling, which relies on fitting the dispersion coefficients to measured data. This work is unique in that the exact microscale geometry is available; thus, no simplifying assumptions regarding the geometry are required to predict the effective dispersion coefficients directly from theory. Transport of both an inert tracer and non-chemotactic bacteria is investigated for an experimental system that was designed to promote transverse dispersion. We highlight the occurrence of transverse dispersion coefficients that (1) depart from power-law behavior at relatively low Pep values and (2) are greater than their longitudinal counterparts for a specific range of Pep values. The upscaling theory provides values for the transverse dispersion coefficient that are within the 98% confidence interval of the values obtained from inverse modeling. The mean absolute error between experimental and upscaled concentration profiles was very similar to that between the experiments and inverse modeling. In all cases the mean absolute error did not exceed 12%. Overall, this work suggests that volume averaging can potentially be used as an alternative to inverse modeling for dispersion in homogeneous porous media.  相似文献   

6.
It has been known for many years that dispersivity increases with solute travel distance in a subsurface environment. The increase of dispersivity with solute travel distance results from the significant variation of hydraulic properties of heterogeneous media and was identified in the literature as scale-dependent dispersion. This study presents an analytical solution for describing two-dimensional non-axisymmetrical solute transport in a radially convergent flow tracer test with scale-dependent dispersion. The power series technique coupling with the Laplace and finite Fourier cosine transform has been applied to yield the analytical solution to the two-dimensional, scale-dependent advection–dispersion equation in cylindrical coordinates with variable-dependent coefficients. Comparison between the breakthrough curves of the power series solution and the numerical solutions shows excellent agreement at different observation points and for various ranges of scale-related transport parameters of interest. The developed power series solution facilitates fast prediction of the breakthrough curves at any observation point.  相似文献   

7.
Abstract

The impact of pollution incidents on rivers and streams may be predicted using mathematical models of solute transport. Practical applications require an analytical or numerical solution to a governing solute mass balance equation together with appropriate values of relevant transport coefficients under the flow conditions of interest. This paper considers two such models, namely those proposed by Fischer and by Singh and Beck, and compares their performances using tracer data from a small stream in Edinburgh, UK. In calibrating the models, information on the magnitudes and the flow rate dependencies of the velocity and the dispersion coefficients was generated. The dispersion coefficient in the stream ranged between 0.1 and 0.9 m2/s for a flow rate range of 13–437 L/s. During calibration it was found that the Singh and Beck model fitted the tracer data a little better than the Fischer model in the majority of cases. In a validation exercise, however, both models gave similarly good predictions of solute transport at three different flow rates.  相似文献   

8.
Transport of sorbing solutes in 2D steady and heterogeneous flow fields is modeled using a particle tracking random walk technique. The solute is injected as an instantaneous pulse over a finite area. Cases of linear and Freundlich sorption isotherms are considered. Local pore velocity and mechanical dispersion are used to describe the solute transport mechanisms at the local scale. This paper addresses the impact of the degree of heterogeneity and correlation lengths of the log-hydraulic conductivity field as well as negative correlation between the log-hydraulic conductivity field and the log-sorption affinity field on the behavior of the plume of a sorbing chemical. Behavior of the plume is quantified in terms of longitudinal spatial moments: center-of-mass displacement, variance, 95% range, and skewness. The range appears to be a better measure of the spread in the plumes with Freundlich sorption because of plume asymmetry. It has been found that the range varied linearly with the travelled distance, regardless of the sorption isotherm. This linear relationship is important for extrapolation of results to predict behavior beyond simulated times and distances. It was observed that the flow domain heterogeneity slightly enhanced the spreading of nonlinearly sorbing solutes in comparison to that which occurred for the homogeneous flow domain, whereas the spreading enhancement in the case of linear sorption was much more pronounced. In the case of Freundlich sorption, this enhancement led to further deceleration of the solute plume movement as a result of increased retardation coefficients produced by smaller concentrations. It was also observed that, except for plumes with linear sorption, correlation between the hydraulic conductivity and the sorption affinity fields had minimal effect on the spatial moments of solute plumes with nonlinear sorption.  相似文献   

9.
We study solute transport in a periodic channel with a sinusoidal wavy boundary when inertial flow effects are sufficiently large to be important, but do not give rise to turbulence. This configuration and setup are known to result in large recirculation zones that can act as traps for solutes; these traps can significantly affect dispersion of the solute as it moves through the domain. Previous studies have considered the effect of inertia on asymptotic dispersion in such geometries. Here we develop an effective spatial Markov model that aims to describe transport all the way from preasymptotic to asymptotic times. In particular we demonstrate that correlation effects must be included in such an effective model when Péclet numbers are larger than O(100) in order to reliably predict observed breakthrough curves and the temporal evolution of second centered moments. For smaller Péclet numbers correlation effects, while present, are weak and do not appear to play a significant role. For many systems of practical interest, if Reynolds numbers are large, it may be typical that Péclet numbers are large also given that Schmidt numbers for typical fluids and solutes can vary between 1 and 500. This suggests that when Reynolds numbers are large, any effective theories of transport should incorporate correlation as part of the upscaling procedure, which many conventional approaches currently do not do. We define a novel parameter to quantify the importance of this correlation. Next, using the theory of CTRWs we explain a to date unexplained phenomenon of why dispersion coefficients for a fixed Péclet number increase with increasing Reynolds number, but saturate above a certain value. Finally we also demonstrate that effective preasymptotic models that do not adequately account for velocity correlations will also not predict asymptotic dispersion coefficients correctly.  相似文献   

10.
A Eulerian analytical method is developed for nonreactive solute transport in heterogeneous, dual-permeability media where the hydraulic conductivities in fracture and matrix domains are both assumed to be stochastic processes. The analytical solution for the mean concentration is given explicitly in Fourier and Laplace transforms. Instead of using the fast fourier transform method to numerically invert the solution to real space (Hu et al., 2002), we apply the general relationship between spatial moments and concentration (Naff, 1990; Hu et al., 1997) to obtain the analytical solutions for the spatial moments up to the second for a pulse input of the solute. Owing to its accuracy and efficiency, the analytical method can be used to check the semi-analytical and Monte Carlo numerical methods before they are applied to more complicated studies. The analytical method can be also used during screening studies to identify the most significant transport parameters for further analysis. In this study, the analytical results have been compared with those obtained from the semi-analytical method (Hu et al., 2002) and the comparison shows that the semi-analytical method is robust. It is clearly shown from the analytical solution that the three factors, local dispersion, conductivity variation in each domain and velocity convection flow difference in the two domains, play different roles on the solute plume spreading in longitudinal and transverse directions. The calculation results also indicate that when the log-conductivity variance in matrix is 10 times less than its counterpart in fractures, it will hardly influence the solute transport, whether the conductivity field is matrix is treated as a homogeneous or random field.  相似文献   

11.
I. Haltas 《水文研究》2012,26(22):3448-3458
Recognizing the spatial heterogeneity of hydraulic parameters, many researchers have studied the solute transport by both groundwater and channel flow in a stochastic framework. One of the methodologies used to up‐scale the stochastic solute transport equation, from a point‐location scale to a grid scale, is the cumulant expansion method combined with the calculus for the time‐ordered exponential and the calculus for the Lie operator. When the point‐location scale transport equation is scaled up to the grid scale, using the cumulant expansion method, a new dispersion coefficient emerges in the dispersive term of the solute transport equation in addition to the molecular dispersion coefficient. This velocity driven dispersion is called ‘macrodispersion’. The macrodispersion coefficient is the integral function of the time‐ordered covariance of the random velocity field. The integral is calculated over a Lagrangian trajectory of the flow. The Lagrangian trajectory depends on the following: (i) the spatial origin of the particle; (ii) the time when the macrodispersion is calculated; and (iii) the mean velocity field along the trajectory itself. The Lagrangian trajectory is a recursive function of time because the location of the particle along the trajectory at a particular time depends on the location of the particle at the previous time. This recursive functional form of the Lagrangian trajectory makes the calculation of the macrodispersion coefficient difficult. Especially for the unsteady, spatially non‐stationary, non‐uniform flow field, the macrodispersion coefficient is a highly complex expression and, so far, calculated using numerical methods in the discrete domains. Here, an analytical method was introduced to calculate the macrodispersion coefficient in the discrete domain for the unsteady and steady, spatially non‐stationary flow cases accurately and efficiently. This study can fill the gap between the theory of the ensemble averaged solute transport model and its numerical implementations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

One-dimensional solute transport, originating from a continuous uniform point source, is studied along unsteady longitudinal flow through a heterogeneous medium of semi-infinite extent. Velocity is considered as directly proportional to the linear spatially-dependent function that defines the heterogeneity. It is also assumed temporally dependent. It is expressed in both the independent variables in degenerate form. The dispersion parameter is considered to be proportional to square of the velocity. Certain new independent variables are introduced through separate transformations to reduce the variable coefficients of the advection–diffusion equation to constant coefficients. The Laplace Transformation Technique (LTT) is used to obtain the desired solution. The effects of heterogeneity and unsteadiness on the solute transport are investigated.

Editor D. Koutsoyiannis; Associate editor F.F. Hattermann

Citation Kumar, A., Jaiswal, D.K., and Kumar, N., 2012. One-dimensional solute dispersion along unsteady flow through a heterogeneous medium, dispersion being proportional to the square of velocity. Hydrological Sciences Journal, 57 (6), 1223–1230.  相似文献   

13.
Kotrehov  E. P. 《Water Resources》2004,31(3):256-265
A simple and efficient technique is proposed for use in combination with a known method for solving the Saint-Venant equation and the equation of advection–diffusion transport of a solute. This technique allows an overall calculation when there are several hydropower plant dams in a river channel. Practical calculations have been made for the upper reach of the Vuoksa River for the most realistic scenarios. The results of the calculations supplement the scarce field data on water level elevations, water flow, and mean flow velocities for quasi-steady-state conditions and for cases of water releases spreading downriver. The effect of water releases on the distribution of solute concentration along the river is assessed and the dependence of the pattern of a conventional pollutant spreading along the river channel after an impulse discharge on the coefficient of longitudinal dispersion is examined.  相似文献   

14.
Transverse dispersion, or tracer spreading orthogonal to the mean flow direction, which is relevant e.g, for quantifying bio-degradation of contaminant plumes or mixing of reactive solutes, has been studied in the literature less than the longitudinal one. Inferring transverse dispersion coefficients from field experiments is a difficult and error-prone task, requiring a spatial resolution of solute plumes which is not easily achievable in applications. In absence of field data, it is a questionable common practice to set transverse dispersivities as a fraction of the longitudinal one, with the ratio 1/10 being the most prevalent. We collected estimates of field-scale transverse dispersivities from existing publications and explored possible scale relationships as guidance criteria for applications. Our investigation showed that a large number of estimates available in the literature are of low reliability and should be discarded from further analysis. The remaining reliable estimates are formation-specific, span three orders of magnitude and do not show any clear scale-dependence on the plume traveled distance. The ratios with the longitudinal dispersivity are also site specific and vary widely. The reliability of transverse dispersivities depends significantly on the type of field experiment and method of data analysis. In applications where transverse dispersion plays a significant role, inference of transverse dispersivities should be part of site characterization with the transverse dispersivity estimated as an independent parameter rather than related heuristically to longitudinal dispersivity.  相似文献   

15.
We study transport through heterogeneous media. We derive the exact large scale transport equation. The macro dispersion coefficients are determined by additional partial differential equations. In the case of infinite Peclet numbers, we present explicit results for the transverse macro dispersion coefficients. In two spatial dimensions, we demonstrate that the transverse macro dispersion coefficient is zero. The result is not limited on lowest order perturbation theory approximations but is an exact result. However, the situation in three spatial dimensions is very different: The transverse macro dispersion coefficients are finite – a result which is confirmed by numerical simulations we performed.  相似文献   

16.
The migration of contaminants in heterogeneous aquifers involves dispersive processes that act at different scales. The interaction of these processes as a plume evolves can be studied by micro-scale modelling whereby two scales, a local- or micro-scale and an aquifer- or macro-scale, are covered simultaneously. Local-scale dispersive processes are represented through the local dispersion coefficient in the transport equation, while large-scale dispersion due to heterogeneities is represented through the resolution of the flow field and the diffusive exchange between streamtubes. The micro-scale model provides both the high degree of resolution compatible with local-scale processes, and the extent required for the approach to asymptotic conditions, using grids of up to a million nodal points. The model is based on the dual potential-streamfunction formulation for flow, and the transport problem is formulated in a natural coordinate system provided by the flownet. Simulations can be used to verify stochastic theories of dispersion, without the restrictive assumptions inherent in the theory. For the two-dimensional case, results indicate convergence of the effective dispersivity to the theoretical macrodispersivity value. Convergence takes place within a travel distance of about 50 correlation lengths of the hydraulic conductivity field. However, the approach taken to asymptotic conditions, as well as the macrodispersivity value, may differ for different realizations of the same medium. The influence of early-time events such as plume splitting on the asymptotic convergence remains to be investigated.  相似文献   

17.
Modelling pollutant transport in water is one of the core tasks of computational hydrology, and various physical models including especially the widely used nonlocal transport models have been developed and applied in the last three decades. No studies, however, have been conducted to systematically assess the applicability, limitations and improvement of these nonlocal transport models. To fill this knowledge gap, this study reviewed, tested and improved the state-of-the-art nonlocal transport models, including their physical background, mathematical formula and especially the capability to quantify conservative tracers moving in one-dimensional sand columns, which represents perhaps the simplest real-world application. Applications showed that, surprisingly, neither the popular time-nonlocal transport models (including the multi-rate mass transfer model, the continuous time random walk framework and the time fractional advection-dispersion equation), nor the spatiotemporally nonlocal transport model (ST-fADE) can accurately fit passive tracers moving through a 15-m-long heterogeneous sand column documented in literature, if a constant dispersion coefficient or dispersivity is used. This is because pollutant transport in heterogeneous media can be scale-dependent (represented by a dispersion coefficient or dispersivity increasing with spatiotemporal scales), non-Fickian (where plume variance increases nonlinearly in time) and/or pre-asymptotic (with transition between non-Fickian and Fickian transport). These different properties cannot be simultaneously and accurately modelled by any of the transport models reviewed by this study. To bypass this limitation, five possible corrections were proposed, and two of them were tested successfully, including a time fractional and space Hausdorff fractal model which minimizes the scale-dependency of the dispersion coefficient in the non-Euclidean space, and a two-region time fractional advection-dispersion equation which accounts for the spatial mixing of solute particles from different mobile domains. Therefore, more efforts are still needed to accurately model transport in non-ideal porous media, and the five model corrections proposed by this study may shed light on these indispensable modelling efforts.  相似文献   

18.
The transport of instantaneously injected conservative solute through a well in the formation of random conductivity is analyzed. The solute is advected by the recharging well flow with the uniform background gradient. The longitudinal trajectory variance is derived for the central mean streamline. It is shown that the solute is spread as in a radial flow at small travel distances and as in a uniform flow far from the well. Closed form expressions of the longitudinal trajectory variance and macrodispersivity are derived for the case of small scale heterogeneity. It is shown that the macrodispersivity is bounded between the asymptotic macrodispersivities pertinent to the well and uniform flows.  相似文献   

19.
The problem of one-dimensional transport of passive solute by a random steady velocity field is investigated. This problem is representative of solute movement in porous media, for example, in vertical flow through a horizontally stratified formation of variable porosity with a constant flux at the soil surface. Relating moments of particle travel time and displacement, exact expressions for the advection and dispersion coefficients in the Focker-Planck equation are compared with the perturbation results for large distances. The first- and second-order approximations for the dispersion coefficient are robust for a lognormal velocity field. The mean Lagrangian velocity is the harmonic mean of the Eulerian velocity for large distances. This is an artifact of one-dimensional flow where the continuity equation provides for a divergence free fluid flux, rather than a divergence free fluid velocity.  相似文献   

20.
The problem of one-dimensional transport of passive solute by a random steady velocity field is investigated. This problem is representative of solute movement in porous media, for example, in vertical flow through a horizontally stratified formation of variable porosity with a constant flux at the soil surface. Relating moments of particle travel time and displacement, exact expressions for the advection and dispersion coefficients in the Focker-Planck equation are compared with the perturbation results for large distances. The first- and second-order approximations for the dispersion coefficient are robust for a lognormal velocity field. The mean Lagrangian velocity is the harmonic mean of the Eulerian velocity for large distances. This is an artifact of one-dimensional flow where the continuity equation provides for a divergence free fluid flux, rather than a divergence free fluid velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号