首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kankan diamonds (Guinea) II: lower mantle inclusion parageneses   总被引:3,自引:2,他引:1  
Frequent inclusions of ferropericlase, some coexisting with phases of MgSiO3, CaSiO3 and SiO2 composition, suggest that a large proportion of diamonds from Guinea are derived from the lower mantle. Low aluminium contents in MgSiO3 inclusions indicate derivation from the uppermost lower mantle, where Al solubility in perovskite is low. Trace element analyses (SIMS) of CaSiO3 inclusions reveal extreme degrees of LREE (200–2000 times chondritic) and Sr enrichment (70–1000 times chondritic) together with negative and positive Eu anomalies. This implies a highly enriched lower mantle source, possibly a product of a subducted oceanic slab. A number of phases that are only stable in the upper mantle are found to coexist with lower mantle phases and thereby indicate retrograde equilibration during slow exhumation within a rising plume or convection cell. In one case, however, an inclusion paragenesis of ferropericlase and olivine can be shown to have formed within the upper mantle, indicating that the occurrence of ferropericlase inclusions alone is an unreliable indicator of lower mantle origin. Received: 26 January 2000 / Accepted: 18 May 2000  相似文献   

2.
Diamonds containing ferropericlase (Mg,Fe)O and other silicate (enstatite [(Mg,Fe)SiO3], in particular) assemblages are generally believed to be derived from the Earth's lower mantle. On the basis of the observed ratio between ferropericlase and enstatite inclusions and the FeO content of these ferropericlases, it is concluded that most of these minerals entrapped in diamonds may not represent the lithology of the lower mantle itself as has been suggested by many investigators. Instead, ferropericlases in these diamonds represent most likely the disproportionate product of ferromagnesite [(Mg,Fe)CO3], which underwent a decarbonation reaction to form both diamond and ferropericlase simultaneously in the lower mantle. The wide variation in the Mg# of ferropericlase inclusions in diamonds is attributed to the decarbonation "loop" of the MgCO3-FeCO3 solid solutions. Some of the enstatite inclusions coexisting with these ferropericlases in the same diamond may represent the most abundant mineral species of (Mg,Fe)SiO3-perovskite in the lower mantle. The latter mineral phase experienced a retrogressive transition into enstatite during the transport of diamonds to the Earth's surface.  相似文献   

3.
Carbonation and decarbonation of eclogites: the role of garnet   总被引:3,自引:0,他引:3  
Carbonates are potentially significant hosts for primordial and subducted carbon in the Earth's mantle. In addition, the coexistence of carbonate with silicates and reduced carbon (diamond or graphite), allows constraints to be placed on the oxidation state of the mantle. Carbonate-silicate-vapor reactions control how carbonate + silicate assemblages may form from carbon-bearing vapor + silicate assemblages with increasing pressure. In olivine-bearing rocks such as peridotite, considered the dominant rock type in the upper mantle, the lowest-pressure carbonate-forming reactions involve olivine (±clinopyroxene) reacting with CO2 (e.g., Wyllie et al. 1983). In eclogitic rocks, the essential mineral assemblage is omphacitic clinopyroxene + garnet, without olivine. Therefore, alternative carbonate-forming reactions must be sought. The carbonation of clinopyroxene via the reaction dolomite + 2 coesite = diopside + 2 CO2 was studied experimentally by Luth (1995). The alternative possibility that garnet reacts with CO2 is explored here by determining the location of the reaction 3 magnesite + kyanite + 2 coesite = pyrope + 3 CO2 between 5 and 11 GPa in multi-anvil apparatus. At the temperatures ≥1200 °C, carbonation of eclogitic rocks with increasing pressure will proceed initially by reaction with clinopyroxene, because the pyrope-carbonation reaction lies at higher pressures for a given temperature than does the diopside-carbonation reaction. Diluting the pyrope component of garnet and the diopside component of clinopyroxene to levels appropriate for mantle eclogites does not change this conclusion. At lower temperatures, appropriate for “cold” slabs, it is possible that the converse situation will hold, with initial carbonation proceeding via reaction with garnet, but this possibility awaits experimental confirmation. Decarbonation of an eclogite under “normal mantle” geothermal conditions by a decrease in pressure, as in an ascending limb of a mantle convection cell, would be governed by the formation of clinopyroxene + CO2. At higher pressure than this reaction, any CO2 produced by the breakdown of magnesite reacting with kyanite and coesite would react with clinopyroxene to produce dolomite + coesite. Release of CO2 from eclogite into mantle peridotite would form carbonate at sub-solidus conditions and produce a dolomitic carbonate melt if temperatures are above the peridotite-CO2 solidus. Received: 4 May 1998 / Accepted: 23 December 1998  相似文献   

4.
Three new mineral associations have been discovered within diamonds from the Juina district of Brazil. These include a previously unrecorded Na-Al-(Mg, Fe)SiO3 phase associated with ferropericlase and the tetragonal almandine pyrope phase, TAPP. Also reported are an association of corundum with aluminous-pyroxene and an olivine composition phase associated with ferropericlase. The minerals in each association often occurred within the same diamonds in addition to being recovered from individual diamonds in different combinations. High-pressure experimental data indicate that these associations formed at different depths within a region ca. 60 km on either side of the upper-mantle/lower-mantle boundary. Mineral compositions show that for the regions sampled, the deep transition zone and lower mantle are chemically distinct and inhomogeneous. Importantly, in the shallow lower mantle, Al is not solely accommodated within perovskite-structured (Mg, Fe)SiO3 as some recent experimental studies have suggested.  相似文献   

5.
Mineral inclusions in pyrope crystals from Garnet Ridge in the Navajo Volcanic Field on the Colorado Plateau are investigated in this study with emphasis on the oxide minerals. Each pyrope crystal is roughly uniform in composition except for diffusion halos surrounding some inclusions. The pyrope crystals have near constant Ca:Fe:Mg ratios, 0.3 to 5.7 wt% Cr2O3, and 20 to 220 ppm H2O. Thermobarometric calculations show that pyrope crystals with different Cr contents formed at different depths ranging from 50 km (where T ≈ 600 °C and P = 15 kbar) to 95 km (where T ≈ 800 °C and P = 30 kbar) along the local geotherm. In addition to previously reported inclusions of rutile, spinel and ilmenite, we discovered crichtonite series minerals (AM21O38, where A = Sr, Ca, Ba and LREE, and M mainly includes Ti, Cr, Fe and Zr), srilankite (ZrTi2O6), and a new oxide mineral, carmichaelite (MO2−x(OH)x, where M = Ti, Cr, Fe, Al and Mg). Relatively large rutile inclusions contain a significant Nb (up to 2.7 wt% Nb2O5), Cr (up to ∼6 wt% Cr2O3), and OH (up to ∼0.9 wt% H2O). The Cr and OH contents of rutile inclusions are positively related to those of pyrope hosts, respectively. Needle- and blade-like oxide inclusions are commonly preferentially oriented. Composite inclusions consisting mainly of carbonate, amphibole, phlogopite, chlorapatite, spinel and rutile are interpreted to have crystallized from trapped fluid/melt. These minerals in composite inclusions commonly occur at the boundaries between garnet host and large silicate inclusions of peridotitic origin, such as olivine, enstatite and diopside. The Ti-rich oxide minerals may constitute a potential repository for high field strength elements (HFSE), large ion lithophile elements and light rare earth elements (LREE) in the upper mantle. The composite and exotic oxide inclusions strongly suggest an episode of metasomatism in the depleted upper mantle beneath the Colorado Plateau, contemporaneous with the formation of pyrope crystals. Our observations show that mantle metasomatism may deplete HFSE in metasomatic fluids/melts. Such fluids/melts may subsequently contribute substantial trace elements to island arc basalts, providing a possible mechanism for HFSE depletion in these rocks. Received: 20 December 1997 / Accepted: 15 October 1998  相似文献   

6.
An experimental method of melt inclusion synthesis within olivine crystals has been developed to determine the composition of the melt present in a partially molten peridotite assemblage. Trace element doped peridotite was equilibrated with 5 wt% of a C-O-H volatile source at 20 kbar/1175 °C in a piston-cylinder apparatus under buffered oxygen and sulphur fugacity conditions [log(f O2) ∼ IW +1 log unit, log (f S2) ∼ Fe/FeS > +1 log unit]. A single crystal of olivine, which had been cut to a disc shape, was included in the sample capsule. At run conditions the peridotite charge formed olivine, orthopyroxene, clinopyroxene, Fe-Ni sulphide and a volatile-bearing melt. The melt phase is preserved as homogeneous glass inclusions up to 50 μm in size, trapped in situ in the olivine disc. The major element composition of the glass inclusions showed them to be of broadly basaltic character, but with a low Mg/(Mg + ΣFe), which is associated with precipitation of olivine from the melt inclusion onto the walls of the olivine disc during quenching. Thus the equilibrium melt composition has been calculated from the glass inclusion composition by addition of olivine component using the Fe/Mg exchange coefficient of Roeder and Emslie (1970); the desired Mg/(Mg + ΣFe) being determined from the composition of olivine formed at run conditions in the peridotite section of the charge. The melt composition obtained is close to the trend for dry melting established by Falloon and Green (1988), and it is evident that although the reduced volatiles in this case have induced a liquidus depression of some 250 °C, there has been only a small shift in melt composition. Trace element, carbon and hydrogen contents of thirteen melt inclusions have been determined by secondary ion mass spectrometry (SIMS). The trace element signature is consistent with ∼29% melting in equilibrium with a lherzolitic assemblage. The equilibrium melt has a C/H of 0.48 by weight. Carbon solubility in partial melts is thus significant under reducing conditions in the presence of dissolved “water components” and establishes a major melt fluxing role for carbon in the upper mantle. The ubiquitous presence of carbon and hydrogen in basaltic magmas underscores the importance of determining both the position of vapour-present solidi and the composition of melts generated, when developing petrogenetic models. Received: 1 July 1996 / Accepted: 25 June 1997  相似文献   

7.
The influence of water on melting of mantle peridotite   总被引:47,自引:8,他引:39  
This experimental study examines the effects of variable concentrations of dissolved H2O on the compositions of silicate melts and their coexisting mineral assemblage of olivine + orthopyroxene ± clinopyroxene ± spinel ± garnet. Experiments were performed at pressures of 1.2 to 2.0 GPa and temperatures of 1100 to 1345 °C, with up to ∼12 wt% H2O dissolved in the liquid. The effects of increasing the concentration of dissolved H2O on the major element compositions of melts in equilibrium with a spinel lherzolite mineral assemblage are to decrease the concentrations of SiO2, FeO, MgO, and CaO. The concentration of Al2O3 is unaffected. The lower SiO2 contents of the hydrous melts result from an increase in the activity coefficient for SiO2 with increasing dissolved H2O. The lower concentrations of FeO and MgO result from the lower temperatures at which H2O-bearing melts coexist with mantle minerals as compared to anhydrous melts. These compositional changes produce an elevated SiO2/(MgO + FeO) ratio in hydrous peridotite partial melts, making them relatively SiO2 rich when compared to anhydrous melts on a volatile-free basis. Hydrous peridotite melting reactions are affected primarily by the lowered mantle solidus. Temperature-induced compositional variations in coexisting pyroxenes lower the proportion of clinopyroxene entering the melt relative to orthopyroxene. Isobaric batch melting calculations indicate that fluid-undersaturated peridotite melting is characterized by significantly lower melt productivity than anhydrous peridotite melting, and that the peridotite melting process in subduction zones is strongly influenced by the composition of the H2O-rich component introduced into the mantle wedge from the subducted slab. Received: 7 April 1997 / Accepted: 9 January 1998  相似文献   

8.
Several precious metal-bearing, low sulfidation epithermal veins occur in the rolling topography of the Osilo area, northern Sardinia. The Sa Pala de Sa Fae and the Sa Pedra Bianca veins were subject to intense diamond drilling exploration in the mid 1990 s. The veins extend for 1–3 km, dip steeply, and range from 1 to 10 m in width. High K-calc-alkaline volcanic deposits containing plagioclase phenocrysts (along with lesser pyroxene, amphibole, magnetite, olivine and sanidine) form the main host rocks. Gold grades in drill intersections range from <0.1 to <20 ppm, with silver-gold ratios of around 4 to 7. Mineralogical studies show a systematic distribution of three hydrothermal mineral assemblages. At distances >50 m from the vein, the assemblage albite + Fe-chlorite + illite + pyrite (± montmorillonite ± calcite ± K-feldspar) prevails regionally, and its formation is attributed to minor metasomatism of the country rock involving the addition of water, carbon dioxide and hydrogen sulfide. At distances <10 m from the vein, the assemblage quartz + K-feldspar + pyrite ± illite dominates, forming an alteration envelope that cross cuts regional alteration. Quartz and K-feldspar increase in abundance towards the vein. Quartz is the main vein mineral, and it displays a range of morphologies and textures including crustiform colloform banding, quartz pseudomorphs of platy calcite, breccias and coarse euhedral crystals. Electrum and argentite which are the main gold and silver minerals deposited during the early stages of vein mineralization with rhomb-shaped crystals of K-feldspar (adularia). Pyrite, plus lesser marcasite, arsenopyrite, stibnite and sphalerite, are the other sulfide phases in veins. Kaolinite ± halloysite ± jarosite form a late assemblage overprinting earlier hydrothermal alteration. It is mostly restricted to shallow depths of a few meters, except near veins. Most of this assemblage likely formed from weathering and oxidation of sulfides. Microthermometric measurements were made on quartz-hosted, two-phase (liquid + vapor) inclusions, containing ∼75% liquid; mean homogenization temperatures (∼750 measurements) range from 220 to 250 °C, and ice-melting temperatures (∼550 measurements) range from 0.0 to −2.3 °C. The presence of co-existing vapor-rich and liquid rich inclusions, with quartz pseudomorphs of platy calcite, indicate that boiling conditions existed. Slight vapor-bubble expansion of a few fluid inclusions subjected to crushing experiments indicates inclusion fluids contained variable but low concentrations of dissolved gas. This study shows that gold-silver mineralization formed in subvertical channels from ascending solutions at 250 °C at around 300 to 450 m below the paleo-water table in a typical low-sulfidation epithermal environment. Hydrothermal solutions that produced vein mineralization and related alteration were dilute (<4.1 equivalent wt.% NaCl and <4 wt.% CO2), near neutral pH, reduced and, at times, boiling. Received: 19 May 1998 / Accepted: 8 March 1999  相似文献   

9.
Mafic rocks dominate the lower crustal and upper mantle xenolith suites within the Jurassic Delegate basaltic diatremes in the Paleozoic Lachlan Fold Belt, SE Australia. Two upper mantle mafic xenoliths from the Delegate pipes, a garnet pyroxenite and a garnet granulite (equilibrated at 1060 and 1140 °C, and 40–50 km), yield garnet-clinopyroxene Sm-Nd ages of 160 ± 4 Ma and 153 ± 10 Ma, respectively. Both ages are indistinguishable from the time of eruption of the diatremes, and are interpreted as showing continuous isotopic equilibrium within the mantle of Sm and Nd between garnet + clinopyroxene at temperatures ≥ 1050 °C. A lower crustal, 2-pyroxene granulite xenolith (equilibrated at 810–850 °C and ca. 25 km) yields a clinopyroxene + plagioclase + whole rock Sm-Nd isochron ages of 283 ± 26 Ma. This age probably reflects partial resetting of the isotopic systems of much older granulite during slow cooling, or after a heating event in the lower crust associated with the Jurassic magmatic activity represented by the basaltic host rock. Metamorphic zircons from the 2-pyroxene granulite xenolith were dated by the U-Pb method at 398±2 and 391 ± 2 Ma. These ages are considered to date granulite facies metamorphic events in the lower crust of the region. The age gap between the granulite facies metamorphism and granitoid plutonism in the region (420–410 Ma) indicates that the dated granulite is unlikely to represent residue after partial melting and magma extraction that generated the regional granitoids. It is suggested that these ages may record a relatively slow cooling following the cessation of mafic magmatic intrusion that formed the xenolith protoliths and that was probably the heat source responsible for granite production. At about 25 km, this thermal relaxation accounts for the change from an olivine + plagioclase + 2-pyroxene gabbroic assemblage into the granulite facies 2-pyroxene + plagioclase + spinel field. Received: 17 May 1995 / Accepted: 24 March 1997  相似文献   

10.
Lower mantle diamonds from Rio Soriso (Juina area,Mato Grosso,Brazil)   总被引:4,自引:2,他引:2  
The morphology, colour, fluorescence, cathodoluminescence, nitrogen content and aggregation state, internal structure and mineral inclusions have been studied for 69 alluvial diamonds from the Rio Soriso (Juina area, Mato Grosso State, Brazil). Nitrogen in most diamonds (53%) is fully aggregated as B centres, but there is also a large proportion of N-free stones (38%). A strong positive correlation between nitrogen and IR-active hydrogen concentrations is observed. The diamonds contain (in order of decreasing abundance) ferropericlase, CaSi-perovskite, magnetite, MgSi-perovskite, pyrrhotite, olivine, SiO2, perovskite, tetragonal almandine-pyrope phase and some other minerals represented by single grains. The Rio Soriso diamond suite is subdivided into several subpopulations that originated in upper and lower mantle of ultramafic and mafic compositions, with the largest subgroup forming in the ultramafic lower mantle. Analysed ferropericlase grains are enriched in Fe (Mg#=0.43–0.89), which is ascribed to their origin in the lowermost mantle. The Juina kimberlites may be unique in sampling the material from depths below 1,700 km that ascended in a plume formed at the core–mantle boundary.Electronic Supplementary Material  Supplementary material is available for this article at
Maya G. KopylovaEmail: Phone: +1-604-8220865Fax: +1-604-8226088
  相似文献   

11.
Thermodynamic analysis of equilibria involving minerals of the lower mantle of pyrolite composition and crystalline carbon-bearing compounds indicates that the range of oxygen fugacity values at which diamond can be formed is separated from the region in which Fe-rich metallic alloy is generated by a field in which Fe carbides are stable. This implies that diamond can be formed in the lower mantle under more oxidizing conditions than those thought to be dominant in this geosphere. The absence of a metallic phase from the lower-mantle diamond-bearing mineral assemblage is consistent with the high (approximately 1%) Ni concentration in the ferropericlase found as inclusions in diamonds (Fe-rich metallic alloy is able to intensely extract Ni). An elevated redox potential also follows from the occurrence of carbonate phases found among mineral inclusions in lower-mantle diamonds. The main reason for a local increase in oxygen fugacity in the lower mantle may be shifts of redox equilibria toward a decrease in the amount, and then the disappearance of the Fe-Ni alloy with increasing temperature. An important role in the formation of diamond may be played by the generation of carbonate-phosphate and silicate melts in high-temperature zones and the migration of these melts and their interaction with wall rocks.  相似文献   

12.
The water-pressure and temperature stability fields of clinohumite-OH, chondrodite-OH and phase A were determined in reversed equilibrium experiments up to 100 kbar within the system MgO–SiO2–H2O. Their PT-fields differ from results from former synthesis experiments. Bracketing experiments on the reaction phase A + low P-clinoenstatite ⇆ forsterite + water resulted in a slightly steeper dP/dT-slope compared to earlier experiments for this equilibrium. Clinohumite-OH and chondrodite-OH both have large stability fields which extend over pressure ranges of more than 80 kbar. However, they are hardly relevant as hydrous minerals within the subducted oceanic lithosphere. Both are too Mg-rich for a typical mantle bulk composition. In addition, the dehydration of subducted oceanic lithosphere – due to (forsterite + water)-forming reactions – will occur before the two humite-group phases even become stable. Restricted to the cool region of cold subducting slabs, phase A, however, might be formed via the reactions phase A + low P-/high P-clinoenstatite ⇆ forsterite + water or antigorite + brucite ⇆ phase A + water, before dehydration of the oceanic lithosphere occurs. Received: 22 July 1997 / Accepted: 12 March 1998  相似文献   

13.
Hydrothermal experiments combined with petrologic observations form the basis for a new two-stage model for the evolution of the pre-eruption Minoan magma chamber at Santorini, Greece. Ninety-nine percent of the erupted volume is two-pyroxene, rhyodacitic magma that had been stored at a temperature of ∼885 °C, based on magnetite-ilmenite and QUILF geothermometry. The rest of the volume is basaltic to andesitic magma, which occurs as <10 cm scoria clasts and as small inclusions in rhyodacite pumices. Petrologic observations show that these magmas mixed at different scales and at different times (i.e., multiple batches of mafic magma). Hydrothermal experiments were carried out on samples of rhyodacite and a mafic scoria in order to determine magma storage conditions and the mixing history of the two magmas. At 885 °C, the rhyodacite must have been stored at water-saturated pressures of ∼50 MPa, based on its phase assemblage, matrix-glass composition, and crystal content. However, glass inclusions inside rhyodacitic plagioclase phenocrysts contain more than 6 wt% H2O, indicating they formed at pressures >200 MPa. In addition, the composition of the plagioclase hosts (An56 ± 6) of the inclusions require temperatures of 825 ± 25 °C at pressures >200 MPa. This demonstrates that the Minoan rhyodacitic magma underwent a two-stage evolution, first crystallizing at ∼825C and >200 MPa, and then rinsing to a shallow ∼50 MPa storage region with a concomitant rise in temperature to ∼885 °C. We suggest that the episodic intrusion of mafic magmas provided the necessary heat and perhaps contributed to the ascent of the magma to shallow crustal depths where it reequilibrated before the cataclysmic eruption. Phase equilibria suggest that much of the heating of the rhyodacite occurred in the shallow storage region. Thermal budget calculations suggest that the rhyodacite magma could have been heated by intrusions of basalt rising at reasonable upwelling rates and injected into the storage zone over several hundred years. Preservation of amphibole in the mafic scoria indicate that injection of mafic magma continued up until days before the cataclysmic eruption, perhaps triggering the event. Received: 30 September 1997 / Accepted: 5 October 1998  相似文献   

14.
We present a detailed mineralogical, petrological and melt inclusion study of unusually fresh, primitive olivine + clinopyroxene phyric Lower Pillow Lavas (LPL) found near Analiondas village in the northeastern part of the Troodos ophiolite (Cyprus). Olivine phenocrysts in these primitive LPL show a wide compositional range (Fo82–92) and have higher CaO contents than those from the Upper Pillow Lavas (UPL). Cr-spinel inclusions in olivine are significantly less Cr-rich (Cr/Cr + Al = 28–67 mol%) compared to those from the UPL (Cr# = 70–80). These features reflect differences in melt compositions between primitive LPL and the UPL, namely higher CaO and Al2O3 and lower FeO* compared to the UPL at a given MgO. LPL parental melts (in equilibrium with Fo92) had ∼10.5 wt% MgO and crystallization temperatures ∼1210 °C, which are significantly lower than those previously published for the UPL (14–15 wt% MgO and ∼1300 °C for Fo92). The fractionation path of LPL parental melts is also different from that of the UPL. It is characterized initially by olivine + clinopyroxene cotectic crystallization joined by plagioclase at ∼9 wt% MgO, whereas UPL parental melts experienced a substantial interval of olivine-only crystallization. Primitive LPL melts were formed from a mantle source which was more fertile than that of tholeiites from well-developed intra-oceanic arcs, but broadly similar in its fertility to that of Mid-Ocean Ridge Basalt (MORB) and Back Arc Basin Basalts (BABB). The higher degrees of melting during formation of the LPL primary melts compared to average MORB were caused by the presence of subduction-related components (H2O). Our new data on the LPL coupled with existing data for the UPL support the existing idea that the LPL and UPL primary melts originated from distinct mantle sources, which cannot be related by progressive source depletion. Temperature differences between these sources (∼150 °C), their position in the mantle (∼10 kbar for the colder LPL source vs 15–18 kbar for the UPL source), and temporal succession of Troodos volcanism, all cannot be reconciled in the framework of existing models of mantle wedge processes, thermal structure and evolution, if a single mantle source is invoked. Possible tectonic settings for the origin of the Troodos ophiolite (forearc regions of intra-oceanic island arc, propagation of backarc spreading into arc lithosphere) are discussed. Received: 20 May 1996 / Accepted: 25 March 1997  相似文献   

15.
More than 99% of mineral inclusions in diamonds from the River Ranch pipe in the Late Archean Limpopo Mobile Belt (Zimbabwe), are phases of harzburgitic paragenesis, namely olivine (Fo92–93), orthopyroxene (Mg# = 93), G10 garnets and chromites. The diamond inclusion (DI) chemistry demonstrates a limited overlap with River Ranch kimberlite macrocrysts: the DI garnets are more Ca-undersaturated, and DI spinel and garnet are more Mg-rich. Most River Ranch diamond inclusions were equilibrated at T = 1080–1320 °C, P = 47–61 kbar, and f O2 between IW and WM buffers. The P/T profile beneath the Limpopo Mobile Belt (LMB) is consistent with a paleo-heat flow of 41–42 mW/m2, similar to calculations for Roberts Victor, but hotter than for the Finsch, Kimberley, Koffiefontein and Premier Mines. This is ascribed to the younger tectonothermal age of the LMB and its proximity to Late Archean oceans. Like diamond inclusions from all other kimberlites studied, the River Ranch DI have a lithospheric affinity and therefore indicate that an ancient, chemically depleted, thick (at least 200 km) mantle root existed beneath the Limpopo Mobile Belt 530–540 Ma ago. The mantle root might have developed beneath the continental Central Zone of the LMB as early as the Archean, and could be alien to the overthrust allochthonous sheet of the Limpopo Belt. Oxygen fugacity estimates for diamond inclusions at River Ranch are similar to other diamondiferous harzburgites beneath the Kaapvaal craton, indicating that the Kaapvaal mantle as a whole was well buffered and homogeneous with respect to f O2 at the time of peridotitic diamond crystallization. Received: 11 January 1995 / Accepted: 10 June 1997  相似文献   

16.
The composition and thermal evolution of the upper mantle lithosphere beneath the central Archean Slave Province has been studied using mineral chemical and petrographic data from mantle xenoliths entrained in the Torrie kimberlite pipe. Coarse-, granuloblastic-, and porphyroclastic- textured harzburgite, lherzolite, and pyroxenite xenoliths yield equilibration temperatures ranging between 850 and 1350 °C. Thermobarometry of these samples requires a minimum lithospheric thickness of approximately 180 km at the time of kimberlite magmatism. The distribution of pressures and temperatures of equilibration for the xenoliths lie on a calculated 42 mWm−2 paleogeotherm, ∼10 mWm−2 lower than the present heat flow measured at Yellowknife, near the SW margin of the Slave Province. The Mg# [Mg/(Mg + Fe)] of olivine in peridotites varies between 0.906 and 0.938 with an average of 0.920. The Torrie xenolith suite shows variable degrees of serpentinization and/or carbonation with the rim compositions of many clinopyroxene grains showing Ca enrichment, but in general, the xenoliths are homogeneous at all scales. The Torrie xenoliths are rich in orthopyroxene similar to low temperature (<1100 °C) peridotites from southern Africa, and Siberia. Estimates of bulk rock composition based on mineral chemical and modal data reveal a negative correlation between Si and Fe, similar to peridotite xenoliths from Udachnaya. The similarity of olivine Mg#s with other cratons combined with the negative correlation of Fe and Si suggest that the lithosphere beneath the Slave craton has experienced a evolution similar to other cratons globally. Received: 22 January 1998 / Accepted: 27 August 1998  相似文献   

17.
Summary High-grade blocks in the Franciscan complex at Tiburon, California, record relatively low temperature eclogite-facies metamorphism and blueschist-facies overprinting. The eclogite-facies mineral assemblage contains prograde-zoned garnet + omphacite + epidote ± hornblende (katophoritic and barroisitic Ca–Na amphibole) ± glaucophane + phengite (∼3.5 Si p.f.u.) ± paragonite + rutile + quartz. The blueschist-facies mineral assemblage contains chlorite + titanite + glaucophane + epidote ± albite ± phengite (∼3.3 Si p.f.u.). Albite is not stable in the eclogite stage. New calculations based on garnet-omphacite-phengite thermobarometry and THERMOCALC average-PT calculations yield peak eclogite-facies PT conditions of P = 2.2–2.5 GPa and T = 550–620 °C; porphyroclastic omphacite with inclusions of garnet and paragonite yields an average-PT of 1.8 ± 0.2 GPa at 490 ± 70 °C for the pre-peak stage. The inferred counterclockwise hairpin PT trajectory suggests prograde eclogitization of a relatively “cold” subducting slab, and subsequent exhumation and blueschist-facies recrystallization by a decreasing geotherm. Although an epidote-garnet amphibolitic assemblage is ubiquitous in some blocks, PT pseudosection analyses imply that the epidote-garnet amphibolitic assemblage is stable during prograde eclogite-facies metamorphism. Available geochronologic data combined with our new insight for the maximum pressure suggest an average exhumation rate of ∼5 km/Ma, as rapid as those of some ultrahigh pressure metamorphic terranes.  相似文献   

18.
With an age of ca. 2.7 Ga, greenschist facies volcaniclastic rocks and lamprophyre dikes in the Wawa area (Superior Craton) host the only diamonds emplaced in the Archean available for study today. Nitrogen aggregation in Wawa diamonds ranges from Type IaA to IaB, suggesting mantle residence times of tens to hundreds of millions of years. The carbon isotopic composition (δ13C) of cube diamonds is similar to the accepted mantle value (− 5.0‰). Octahedral diamonds show a slight shift (by + 1.5‰) to isotopically less negative values suggesting a subduction-derived, isotopically heavy component in the diamond-forming fluids. Syngenetic inclusions in Wawa diamonds are exclusively peridotitic and, similar to many diamond occurrences worldwide, are dominated by the harzburgitic paragenesis. Compositionally they provide a perfect match to inclusions from diamonds with isotopically dated Paleo- to Mesoarchean crystallization ages. Several high-Cr harzburgitic garnet inclusions contain a small majorite component suggesting crystallization at depth of up to 300 km. Combining diamond and inclusion data indicates that Wawa diamonds formed and resided in a very thick package of chemically depleted lithospheric mantle that predates stabilization of the Superior Craton. If late granite blooms are interpreted as final stages of cratonization then a similar disconnect between Paleo- to Mesoarchean diamondiferous mantle lithosphere and Neoarchean cratonization is also apparent in other areas (e.g., the Lac de Gras area of the Slave Craton) and may suggest that early continental nuclei formed and retained their own diamondiferous roots.  相似文献   

19.
Summary A suite of clinopyroxene and amphibole megacrysts and mafic–ultramafic xenoliths are present in ignimbritic rocks of trachybasaltic–andesitic composition from the Sirwa volcanic district, Morocco. The stumpy prismatic and sometimes euhedral clinopyroxene megacrysts are Ti–Al-rich diopsides with mg values in the range 0.82–0.87 and Ca/(Ca + Mg) ratios in the range 0.53–0.54. The prismatic, elongated amphibole megacrysts are calcic kaersutites–kaersutites with a narrow mg range (0.66–0.68). The xenoliths are represented by gabbroic and pyroxenitic types. In the gabbroic xenoliths two distinct textural types can be distinguished: medium-sized granular and banded. The granular type is characterized by the mineral assemblage Pl + Amph + Spl + Ilm + Ap. The banded type is distinct for the absence of Ilm and the presence of Cpx and Opx and shows alternating bands enriched in Pl and Amph, respectively. The megacrysts and, probably, the xenoliths are considered not cognate with the present host rocks since the calculated liquids in equilibrium with clinopyroxene and amphibole megacrysts over a wide range of physical conditions have different trace and rare earth element contents. The observed phase relations and thermobarometric calculations indicate that the megacrysts and xenoliths crystallized from their parent melts at P ≥ 10 kbar and T ≤ 1160 °C, i.e., in the upper mantle or near the crust-mantle boundary. A deep ( ≥ 30 km) magmatic chamber, where the megacrysts and xenoliths originated, and a shallow volcanic chamber, energetically activated up to explosive conditions by injection of deep-originated melts, is suggested to explain the occurrence of high-pressure megacrysts and xenoliths in the Sirwa volcanic explosive products. Received October 8, 2000; revised version accepted September 9, 2001  相似文献   

20.
In the Port Edward area of southern Kwa-Zulu Natal, South Africa, charnockitic aureoles up to 10 m in width in the normally garnetiferous Nicholson's Point Granite, are developed adjacent to intrusive contacts with the Port Edward Enderbite and anhydrous pegmatitic veins. Mineralogical differences between the country rock and charnockitic aureole suggest that the dehydration reaction Bt + Qtz → Opx + Kfs + H2O and the reaction of Grt + Qtz → Opx + Pl were responsible for the charnockitization. The compositions of fluid inclusions show systematic variation with: (1) the Port Edward Enderbite being dominated by CO2 and N2 fluid inclusions; (2) the non-charnockitized granite by saline aqueous inclusions with 18–23 EqWt% NaCl; (3) the charnockitic aureoles by low-salinity and pure water inclusions (<7 EqWt% NaCl); (4) the pegmatites by aqueous inclusions of various salinity with minor CO2. As a result of the thermal event the homogenization temperatures of the inclusions in charnockite show a much larger range (up to 390 °C) compared to the fluid inclusions in granite (mostly <250 °C). Contrary to fluid-controlled charnockitization (brines, CO2) which may have taken place along shear zones away from the intrusive body, the present “proximal” charnockitized granite formed directly at the contact with enderbite. The inclusions indicate contact metamorphism induced by the intrusion of “dry” enderbitic magma into “wet” granite resulting in local dehydration. This was confirmed by cathodoluminescence microscopy showing textures indicative for the local reduction of structural water in the charnockite quartz. Two-pyroxene thermometry on the Port Edward Enderbite suggests intrusion at temperatures of ∼1000–1050 °C into country rock with temperature of <700 °C. The temperature of aureole formation must have been between ∼700 °C (breakdown of pyrite to form pyrrhotite) and ∼1000 °C. Charnockitization was probably controlled largely by heat related to anhydrous intrusions causing dehydration reactions and resulting in the release and subsequent trapping of dehydration fluids. The salinity of the metamorphic fluid in the contact zones is supposed to have been higher at an early stage of contact metamorphism, but it has lost its salt content by K-metasomatic reactions and/or the preferential migration of the saline fluids out of the contact zones towards the enderbite. The low water activity inhibited the localized melting of the granite. Mineral thermobarometry suggests that after charnockite aureole genesis, an isobaric cooling path was followed during which reequilibration of most of the aqueous inclusions occurred. Received: 8 November 1998 / Accepted: 21 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号