首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrogen and oxygen isotope studies were carried out on high and ultrahigh pressure metamorphic rocks in the eastern Dabie Mountains, China. The δ18O values of eclogites cover a wide range of −4.2 to +8.8‰, but the δD values of micas from the eclogites fall within a narrow range of −87 to −71‰. Both equilibrium and disequilibrium oxygen isotope fractionations were observed between quartz and the other minerals, with reversed fractionations between omphacite and garnet in some eclogite samples. The δ18O values of −4 to −1‰ for some of the eclogites represent the oxygen isotope compositions of their protoliths which underwent meteoric water–rock interaction before the high to ultrahigh pressure metamorphism. Heterogeneous δ18O values for the eclogite protoliths implies not only the varying degrees of the water–rock interaction before the metamorphism at different localities, but also the channelized flow of fluids during progressive metamorphism due to rapid plate subduction. Retrograde metamorphism caused oxygen and hydrogen isotope disequilibria between some of the minerals, but the fluid for retrograde reactions was internally buffered in the stable isotope compositions and could be derived from structural hydroxyls dissolved in nominally anhydrous minerals.  相似文献   

2.
There are two types of gneisses, biotite paragneiss and granitic orthogneiss, to be closely associated with UHP eclogite at Shuanghe in the Dabie terrane. Both concentration and isotope composition of bulk carbon in apatite and host gneisses were determined by the EA-MS online technique. Structural carbonate within the apatite was detected by the XRD and FTIR techniques. Significant 13C-depletion was observed in the apatite with δ13C values of −28.6‰ to −22.3‰ and the carbon concentrations of 0.70–4.98 wt.% CO2 despite a large variation in δ18O from −4.3‰ to +10.6‰ for these gneisses. There is significant heterogeneity in both δ13C and δ18O within the gneisses on the scale of several tens meters, pointing to the presence of secondary processes after the UHP metamorphism. Considerable amounts of carbonate carbon occur in some of the gneisses that were also depleted in 13C primarily, but subjected to overprint of 13C-rich CO2-bearing fluid after the UHP metamorphism. The 13C-depleted carbon in the gneisses is interpreted to be inherited from their precursors that suffered meteoric–hydrothermal alteration before plate subduction. Both low δ13C values and structural carbonate in the apatite suggest the presence of 13C-poor CO2 in the UHP metamorphic fluid. The 13C-poor CO2 is undoubtedly derived from oxidation of organic matter in the subsurface fluid during the prograde UHP metamorphism.

Zircons from two samples of the granitic orthogneiss exhibit low δ18O values of −4.1‰ to −1.1‰, demonstrating that its protolith was significantly depleted in 18O prior to magma crystallization. U–Pb discordia datings for the 18O-depleted zircons yield Neoproterozoic ages of 724–768 Ma for the protolith of the granitic orthogneiss, consistent with protolith ages of most eclogites and orthogneisses from the other regions in the Dabie–Sulu orogen. Therefore, the meteoric–hydrothermal alteration is directly dated to occur at mid-Neoproterozoic, and may be correlated with the Rodinia supercontinental breakup and the snowball Earth event. It is thus deduced that the igneous protolith of the granitic orthogneiss and some eclogites would intrude into the older sequences composing the sedimentary protoliths of the biotite paragneiss and some eclogites along the northern margin of the Yangtze plate at mid-Neoproterozoic, and drove local meteoric–hydrothermal circulation systems in which both 13C- and 18O-depleted fluid interacted with the protoliths of these UHP rocks now exposed in the Dabie terrane.  相似文献   


3.
The Maowu eclogite–pyroxenite body is a small (250×50 m) layered intrusion that occurs in the ultra-high-pressure (UHP) metamorphic terrane of Dabieshan, China. Like the adjacent Bixiling complex, the Maowu intrusion was initially emplaced at a crustal level, then subducted along with the country gneisses to mantle depths and underwent UHP metamorphism during the collision of the North and South China Blocks in the Triassic. This paper presents the results of a geochemical and isotopic investigation on the metamorphosed Maowu body. The Maowu intrusion has undergone open system chemical and isotopic behavior three times. Early crustal contamination during magmatic differentiation is manifested by high initial 87Sr/86Sr ratios (0.707–0.708) and inhomogeneous negative Nd(T) values of −3 to −10 at 500 Ma (probable protolith age). Post-magmatic and pre-UHP metamorphic metasomatism is indicated by sinusoidal REE patterns of garnet orthopyroxenites, lack of whole-rock (WR) Sm–Nd isochronal relationship, low δ18O values and an extreme enrichment of Th and REE in a clinopyroxenite. Finally, K and Rb depletion during UHP metamorphism is deduced from the high initial 87Sr/86Sr ratios unsupported by in situ Rb/Sr ratios. Laser ICP-MS spot analyses on mineral grains show that (1) Grt and Cpx attained chemical equilibrium during UHP metamorphism, (2) Cpx/Grt partition coefficients for REE correlate with Ca, and (3) LREE abundances in whole rocks are not balanced by that of the principal phases (Grt and Cpx), implying that the presence of LREE-rich accessory phases, such as monazite and apatite, is required to account for the REE budget.

Sm–Nd isotope analyses of minerals yielded three internal isochrons with ages of 221±5 Ma and (T)=−5.4 for an eclogite, 231±16 Ma and (T)=−6.2 for a garnet websterite, and 236±19 Ma and (T)=−6.9 for a garnet clinopyroxenite. The Cpx/Grt chemical equilibrium and the consistent mineral isochron ages indicate that the metasomatic processes mentioned above must have occurred prior to the UHP metamorphism. These Sm–Nd ages agree with published zircon and monazite U–Pb ages and constrain the time of UHP metamorphism to 220–236 Ma. The Maowu and Bixiling layered intrusions are similar in their in situ tectonic relationship with their country gneisses, but the two bodies are distinguished by their magma-chamber processes. The Bixiling magmas were contaminated by the lower crust, whereas the Maowu magmas were contaminated by the upper crustal rocks during their emplacement and differentiation. The two complexes represent two distinct suites of magmatic rocks, which have resided in the continental crust for about 300–400 Ma before their ultimate subduction to mantle depths, UHP metamorphism and return to the crustal level.  相似文献   


4.
大别—苏鲁超高压变质带内部的浅变质岩   总被引:16,自引:3,他引:16  
大别苏鲁超高压变质带内部零星出露有若干呈构造残片状产出的浅变质岩,主要以变质碎屑岩-千枚岩-大理岩组合为代表,遭受过低绿片岩相变质和脆-韧性变形作用的改造,与围岩均为构造接触(断层或韧性剪切带)。微古生物化石研究表明,其原岩为震旦纪前后扬子板块北缘的浅海相沉积。同位素年代学研究指示,它们经历过加里东期和印支期构造热事件的影响,与区域超高压岩石经受的构造热事件时间一致;氧同位素研究得到,部分浅变质岩原岩曾遭受过高温大气降水热液蚀变,与区域超高压岩石经受的构造热事件时间一致;氧同位素研究得到,部分浅变质岩原岩曾遭受过高温大气降水热液蚀变,与区域超高压岩石的同位素特征一致。这些浅变质岩的原岩为扬子板块北缘震旦系沉积岩及其中的火山碎屑岩,构造上具有板块俯冲过程中的刮削岩片-构造加积楔的产状和形成机制,因此可以是大陆板块俯冲加积楔的一部分。  相似文献   

5.
Laser Raman spectroscopy and cathodoluminescence (CL) images show that zircon from Sulu‐Dabie dolomitic marbles is characterized by distinctive domains of inherited (detrital), prograde, ultrahigh‐pressure (UHP) and retrograde metamorphic growths. The inherited zircon domains are dark‐luminescent in CL images and contain mineral inclusions of Qtz + Cal + Ap. The prograde metamorphic domains are white‐luminescent in CL images and preserve a quartz eclogite facies assemblage of Qtz + Dol + Grt + Omp + Phe + Ap, formed at 542–693 °C and 1.8–2.1 GPa. In contrast, the UHP metamorphic domains are grey‐luminescent in CL images, retain the UHP assemblage of Coe + Grt + Omp + Arg + Mgs + Ap, and record UHP conditions of 739–866 °C and >5.5 GPa. The outermost retrograde rims have dark‐luminescent CL images, and contain low‐P minerals such as calcite, related to the regional amphibolite facies retrogression. Laser ablation ICP‐MS trace‐element data show striking difference between the inherited cores of mostly magmatic origin and zircon domains grown in response to prograde, UHP and retrograde metamorphism. SHRIMP U‐Pb dating on these zoned zircon identified four discrete 206Pb/238U age groups: 1823–503 Ma is recorded in the inherited (detrital) zircon derived from various Proterozoic protoliths, the prograde domains record the quartz eclogite facies metamorphism at 254–239 Ma, the UHP growth domains occurred at 238–230 Ma, and the late amphibolite facies retrogressive overprint in the outermost rims was restricted to 218–206 Ma. Thus, Proterozoic continental materials of the Yangtze craton were subducted to 55–60 km depth during the Early Triassic and recrystallized at quartz eclogite facies conditions. Then these metamorphic rocks were further subducted to depths of 165–175 km in the Middle Triassic and experienced UHP metamorphism, and finally these UHP metamorphic rocks were exhumed to mid‐crustal levels (about 30 km) in the Late Triassic and overprinted by regional amphibolite facies metamorphism. The subduction and exhumation rates deduced from the SHRIMP data and metamorphic P–T conditions are 9–10 km Myr?1 and 6.4 km Myr?1, respectively, and these rapid subduction–exhumation rates may explain the obtained P–T–t path. Such a fast exhumation suggests that Sulu‐Dabie UHP rocks that returned towards crustal depths were driven by buoyant forces, caused as a consequence of slab breakoff at mantle depth.  相似文献   

6.
大别—苏鲁超高压变质带内的块状榴辉岩及其构造意义   总被引:13,自引:1,他引:12  
大别—苏鲁超高压(> 27× 108Pa) 变质带内的榴辉岩, 在大陆深俯冲、碰撞和折返剥露过程中, 大都遭受了强烈的变形和变质作用的重置与再造.但是, 大型榴辉岩体核部以及包裹于大理岩和石榴橄榄岩体内部的块状榴辉岩, 往往保留其初始简单的矿物组合、中-细粒状变晶结构和块状构造.详细地分析了块状榴辉岩的几何学、岩相学及变质作用特征, 指出它们是超高压榴辉岩递进及多期变质变形分解作用的残留体, 位于尺度不同的弱应变域内, 是大陆深俯冲及碰撞作用的真正记录.   相似文献   

7.
Five kinds of UHP metamorphic rocks, including eclogite, orthogneiss, paragneiss, schist and quartzite are exposed in the Qinglongshan roadcut, southern Sulu orogenic belt of eastern central China. They comprise metamorphic supracrustal rocks with bimodal volcanic characteristics and continental affinity, and granitic intrusive associations. The preservation of coesite inclusions and/or its pseudomorphs in eclogite and other rocks indicate that they have been subjected to in-situ UHP metamorphism. Four stages of metamorphism were recognized by combining petrographic observations and compositions of minerals from various UHP rocks. Prograde epidote-amphibolite facies, UHP coesite–eclogite facies, post UHP quartz–eclogite facies, and retrograde amphibolite facies assemblages delineate an inferred PT path with a clockwise trajectory and a retrograde event characterized by the coupling of decompression with a temperature decrease. Garnet porphyroblasts in UHP eclogites display a complex growth zoning and mineral distribution, and record a crucial segment of the prograde and retrograde metamorphic evolution. The preservation of growth zoning in eclogitic and gneissic garnets suggests that the UHP rocks had a short residence time before retrograde metamorphism and a very high uplift rate in order to preserve the prograde growth zoning.  相似文献   

8.
The Chinese Continental Scientific Drilling (CCSD) main drill hole (0–3000 m) in Donghai, southern Sulu orogen, consists of eclogite, paragneiss, orthogneiss, schist and garnet peridotite. Detailed investigations of Raman, cathodoluminescence, and microprobe analyses show that zircons from most eclogites, gneisses and schists have oscillatory zoned magmatic cores with low-pressure mineral inclusions of Qtz, Pl, Kf and Ap, and a metamorphic rim with relatively uniform luminescence and eclogite-facies mineral inclusions of Grt, Omp, Phn, Coe and Rt. The chemical compositions of the UHP metamorphic mineral inclusions in zircon are similar to those from the matrix of the host rocks. Similar UHP metamorphic PT conditions of about 770 °C and 32 kbar were estimated from coexisting minerals in zircon and in the matrix. These observations suggest that all investigated lithologies experienced a joint in situ UHP metamorphism during continental deep subduction. In rare cases, magmatic cores of zircon contain coesite and omphacite inclusions and show patchy and irregular luminescence, implying that the cores have been largely altered possibly by fluid–mineral interaction during UHP metamorphism.

Abundant H2O–CO2, H2O- or CO2-dominated fluid inclusions with low to medium salinities occur isolated or clustered in the magmatic cores of some zircons, coexisting with low-P mineral inclusions. These fluid inclusions should have been trapped during magmatic crystallization and thus as primary. Only few H2O- and/or CO2-dominated fluid inclusions were found to occur together with UHP mineral inclusions in zircons of metamorphic origin, indicating that UHP metamorphism occurred under relatively dry conditions. The diversity in fluid inclusion populations in UHP rocks from different depths suggests a closed fluid system, without large-scale fluid migration during subduction and exhumation.  相似文献   


9.
南苏鲁超高压变质地体中罗迪尼亚超大陆裂解事件的记录   总被引:14,自引:11,他引:14  
通过苏鲁超高压变质地体南部不同类型超高压变质岩石的原岩重塑.揭示超高压变质岩的原岩形成于由大陆玄武质岩石、辉长岩、表壳岩和花岗岩组成的被动陆缘拉伸构造环境。中国大陆科学钻探主孔中不同类型超高压变质岩石的锆石SHRIMP U-Pb定年表明。花岗质片麻岩原岩年龄为780~680Ma;榴辉岩、石榴角闪岩的原岩年龄为765~730Ma,副片麻岩中包含了730Ma、680Ma、621Ma和较年轻的继承性碎屑锆石和结晶锆石年龄。结合前人的研究成果表明,苏鲁超高压变质地体南部正片麻岩类和榴辉岩的原岩所代表的花岗岩浆和基性岩浆活动为罗迪尼亚超大陆形成后的新元古代裂解事件的产物.而副片麻岩的原岩为新元古代.古生代时期形成的扬子被动陆缘的沉积-火山表壳盖层,它们与结晶基底一起在240~220Ma期间经历了超高压变质作用。  相似文献   

10.
In the Dabieshan, the available models for exhumation of ultrahigh-pressure (UHP) rocks are poorly constrained by structural data. A comprehensive structural and kinematic map and a general cross-section of the Dabieshan including its foreland fold belt and the Northern Dabieshan Domain (Foziling and Luzenguang groups) are presented here. South Dabieshan consists from bottom to top of stacked allochtons: (1) an amphibolite facies gneissic unit, devoid of UHP rocks, interpreted here as the relative autochton; (2) an UHP allochton; (3) a HP rock unit (Susong group) mostly retrogressed into greenschist facies micaschists; (4) a weakly metamorphosed Proterozoic slate and sandstone unit; and (5) an unmetamorphosed Cambrian to Early Triassic sedimentary sequence unconformably covered by Jurassic sandstone. All these units exhibit a polyphase ductile deformation characterized by (i) a NW–SE lineation with a top-to-the-NW shearing, and (ii) a southward refolding of early ductile fabrics.

The Central Dabieshan is a 100-km scale migmatitic dome. Newly discovered eclogite xenoliths in a Cretaceous granitoid dated at 102 Ma by the U–Pb method on titanite demonstrate that migmatization post-dates HP–UHP metamorphism. Ductile faults formed in the subsolidus state coeval to migmatization allow us to characterize the structural pattern of doming. Along the dome margins, migmatite is gneissified under post-solidus conditions and mylonitic–ultramylonitic fabrics commonly develop. The north and west boundaries of the Central Dabieshan metamorphics, i.e. the Xiaotian–Mozitan and Macheng faults, are ductile normal faults formed before Late Jurassic–Early Cretaceous. A Cretaceous reworking is recorded by synkinematic plutons.

North of the Xiaotian–Mozitan fault, the North Dabieshan Domain consists of metasediments and orthogneiss (Foziling and Luzenguang groups) metamorphosed under greenschist to amphibolite facies which never experienced UHP metamorphism. A rare N–S-trending lineation with top-to-the-south shearing is dated at 260 Ma by the 40Ar/39Ar method on muscovite. This early structure related to compressional tectonics is reworked by top-to-the-north extensional shear bands.

The main deformation of the Dabieshan consists of a NW–SE-stretching lineation which wraps around the migmatitic dome but exhibits a consistently top-to-the-NW sense of shear. The Central Dabieshan is interpreted as an extensional migmatitic dome bounded by an arched, top-to-the-NW, detachment fault. This structure may account for a part of the UHP rock exhumation. However, the abundance of amphibolite restites in the Central Dabieshan migmatites and the scarcity of eclogites (found only in a few places) argue for an early stage of exhumation and retrogression of UHP rocks before migmatization. This event is coeval to the N–S extensional structures described in the North Dabieshan Domain. Recent radiometric dates suggest that early exhumation and subsequent migmatization occurred in Triassic–Liassic times. The main foliation is deformed by north-verging recumbent folds coeval to the south-verging folds of the South Dabieshan Domain. An intense Cretaceous magmatism accounts for thermal resetting of most of the 40Ar/39Ar dates.

A lithosphere-scale exhumation model, involving continental subduction, synconvergence extension with inversion of southward thrusts into NW-ward normal faults and crustal melting is presented.  相似文献   


11.
大别山北部超高压变质大理岩及其地质意义   总被引:3,自引:2,他引:3  
岩石学研究表明 ,大别山北部镁铁 超镁铁质岩带中白云质大理岩至少经历过三期变质阶段 :(1)榴辉岩相峰期变质阶段 ,矿物组合主要为方解石 +白云石 +金红石 +镁橄榄石 +钛 斜硅镁石 +富镁的钛铁矿±文石±石榴子石 ;(2 )麻粒岩相退变质阶段 ,矿物组合主要为方解石 +白云石 +金云母 +镁橄榄石 +透辉石 +钛铁矿 +尖晶石±斜方辉石等 ;(3)角闪岩相退变质阶段 ,主要矿物组合为方解石 +白云石 +磷灰石 +磁铁矿+榍石等。它的峰期变质矿物组合 ,类似于苏 鲁超高压大理岩 ,形成压力至少大于 2 .5GPa。这进一步证明 ,大别山北部大多数高级变质岩 (包括大理岩等 )都曾经过超高压变质作用 ,应属于印支期扬子俯冲陆壳的一部分。  相似文献   

12.
Although ultrahigh‐pressure (UHP) metamorphic rocks are present in many collisional orogenic belts, almost all exposed UHP metamorphic rocks are subducted upper or felsic lower continental crust with minor mafic boudins. Eclogites formed by subduction of mafic lower continental crust have not been identified yet. Here an eclogite occurrence that formed during subduction of the mafic lower continental crust in the Dabie orogen, east‐central China is reported. At least four generations of metamorphic mineral assemblages can be discerned: (i) hypersthene + plagioclase ± garnet; (ii) omphacite + garnet + rutile + quartz; (iii) symplectite stage of garnet + diopside + hypersthene + ilmenite + plagioclase; (iv) amphibole + plagioclase + magnetite, which correspond to four metamorphic stages: (a) an early granulite facies, (b) eclogite facies, (c) retrograde metamorphism of high‐pressure granulite facies and (d) retrograde metamorphism of amphibolite facies. Mineral inclusion assemblages and cathodoluminescence images show that zircon is characterized by distinctive domains of core and a thin overgrowth rim. The zircon core domains are classified into two types: the first is igneous with clear oscillatory zonation ± apatite and quartz inclusions; and the second is metamorphic containing a granulite facies mineral assemblage of garnet, hypersthene and plagioclase (andesine). The zircon rims contain garnet, omphacite and rutile inclusions, indicating a metamorphic overgrowth at eclogite facies. The almost identical ages of the two types of core domains (magmatic = 791 ± 9 Ma and granulite facies metamorphic zircon = 794 ± 10 Ma), and the Triassic age (212 ± 10 Ma) of eclogitic facies metamorphic overgrowth zircon rim are interpreted as indicating that the protolith of the eclogite is mafic granulite that originated from underplating of mantle‐derived magma onto the base of continental crust during the Neoproterozoic (c. 800 Ma) and then subducted during the Triassic, experiencing UHP eclogite facies metamorphism at mantle depths. The new finding has two‐fold significance: (i) voluminous mafic lower continental crust can increase the average density of subducted continental lithosphere, thus promoting its deep subduction; (ii) because of the current absence of mafic lower continental crust in the Dabie orogen, delamination or recycling of subducted mafic lower continental crust can be inferred as the geochemical cause for the mantle heterogeneity and the unusually evolved crustal composition.  相似文献   

13.
苏鲁地体超高压矿物的三维空间分布   总被引:31,自引:9,他引:31       下载免费PDF全文
刘福来  张泽明  许志琴 《地质学报》2003,77(1):T004-T006
采用激光拉曼技术,配备电子探针和阴极发光测试,确认苏鲁地体大多数花岗质片麻岩,所有类型片麻岩、斜长角闪岩、蓝晶石英岩和大理岩的锆石中均隐藏以柯石英为代表的超高压包体矿物组合。其中花岗质片麻岩典型超高压包体矿物为柯石英±多硅白云母;副片麻岩为柯石英+石榴子石+绿辉石、柯石英±石榴子石+硬玉+多硅白云母+磷灰石、柯石英+多硅白云母±磷灰石;斜长角闪岩为柯石英+石榴子石+绿辉石±金红石;蓝晶石英岩为柯石英+蓝晶石+金红石+磷灰石、柯石英+蓝晶石+多硅白云母+金红石;大理岩为柯石英+透辉石、柯石英+橄榄石。表明苏鲁地体由榴辉岩及其围岩所组成的巨量陆壳物质曾普遍发生深俯冲,并经历了超高压变质作用。锆石的矿物包体分布特征及相应的阴极发光图像研究表明,在同一样品中,锆石的成因特征存在明显差异。有的锆石显示继承性(碎屑)锆石的核(core)、超高压变质的幔(mantle)和退变质的边(rim);有的锆石则具有超高压的核、幔和退变质的边;而有的锆石却记录了深俯冲的核、超高压的幔和退变质的边。标志着苏鲁超高压变质带各类岩石副矿物锆石均具有十分复杂的结晶生长演化历史。因此,在充分研究锆石中矿物包体性质、分布特征以及相应阴极发光图像的基础上,采用SHRIMP离子探针技术,在锆石晶体的不同  相似文献   

14.
In order to better understand the role of fluids during subduction and subsequent exhumation, we have investigated whole-rock and mineral chemistry (major and trace elements) and Li, B as well as O, Sr, Nd, Pb isotopes on selected continuous drill-core profiles through contrasting lithological boundaries from the Chinese Continental Scientific Drilling Program (CCSD) in Sulu, China. Four carefully selected sample sets have been chosen to investigate geochemical changes as a result of fluid mobilization during dehydration, peak metamorphism, and exhumation of deeply subducted continental crust. Our data reveal that while O and Sr-Nd-Pb isotopic compositions remain more or less unchanged, significant Li and/or B isotope fractionations occur between different lithologies that are in close contact during various metamorphic stages. Samples that are supposed to represent prograde dehydration as indicated by veins formed at high pressures (HP) are characterized by element patterns of highly fluid-mobile elements in the veins that are complementary to those of the host eclogite. A second sample set represents a UHP metamorphic crustal eclogite that is separated from a garnet peridotite by a thin transitional interface. Garnet peridotite and eclogite are characterized by a >10% difference in MgO, which, together with the presence of abundant hydroxyl-bearing minerals and compositionally different clinopyroxene grains demonstrate that both rocks have been derived from different sources that have been tectonically juxtaposed during subduction, and that hydrous silicate-rich fluids have been added from the subducting slab to the mantle. Two additional sample sets, comprising retrograde amphibolite and relatively fresh eclogite, demonstrate that besides external fluids, internal fluids can be responsible for the formation of amphibolite. Li and B concentrations and isotopic compositions point to losses and isotopic fractionation during progressive dehydration. On the other hand, fluids with isotopically heavier Li and B are added during retrogression. On a small scale, mantle-derived rocks may be significantly metasomatized by fluids derived from the subducted slab. Our study indicates that during high-grade metamorphism, Li and B may show different patterns of enrichment and of isotopic fractionation.  相似文献   

15.
Recently, a huge ultrahigh‐pressure (UHP) metamorphic belt of oceanic‐type has been recognized in southwestern (SW) Tianshan, China. Petrological studies show that the UHP metamorphic rocks of SW Tianshan orogenic belt include mafic eclogites and blueschists, felsic garnet phengite schists, marbles and serpentinites. The well‐preserved coesite inclusions were commonly found in eclogites, garnet phengite schists and marbles. Ti‐clinohumite and Ti‐chondrodite have been identified in UHP metamorphic serpentinites. Based on the PT pseudosection calculation and combined U‐Pb zircon dating, the P‐T‐t path has been outlined as four stages: cold subduction to UHP conditions before ~320 Ma whose peak ultrahigh pressure is about 30 kbar at 500oC, heating decompression from the Pmax to the Tmax stage before 305 Ma whose peak temperature is about 600oC at 22kbar, then the early cold exhumation from amphibolite eclogite facies to epidote‐amphibolite facies metamorphism characterized by ITD PT path before 220 Ma and the last tectonic exhumation from epidote amphibolite facies to greenschist facies metamorphism. Combining with the syn‐subduction arc‐like 333‐326 Ma granitic rocks and 280‐260 Ma S‐type granites in the coeval low‐pressure and high‐temperature (LP‐HT) metamorphic belt, the tectonic evolution of Tianshan UHP metamorphic belt during late Cambrian to early Triassic has been proposed.  相似文献   

16.
北秦岭松树沟榴辉岩的确定及其地质意义   总被引:9,自引:8,他引:1  
陈丹玲  任云飞  宫相宽  刘良  高胜 《岩石学报》2015,31(7):1841-1854
松树沟石榴石角闪岩(榴闪岩)呈透镜状产于松树沟超镁铁岩旁侧的斜长角闪岩中,一直以来被认为是形成于接触交代变质或麻粒岩相变质过程。详细岩相学及矿物元素分析,在榴闪岩的基质矿物、石榴石幔部及锆石包体中发现残留的绿辉石,而且石榴石也保存了明显的进变质主、微量元素成分环带,表明松树沟榴闪岩为榴辉岩退变质的产物,至少经历了从角闪岩相到榴辉岩相再到角闪岩相的三阶段顺时针PT演化过程。锆石定年结果得到榴辉岩的变质年龄为500±8Ma,原岩结晶时代为796±16Ma,与秦岭岩群北侧官坡超高压榴辉岩的变质年龄和原岩年龄完全一致,也与北秦岭区域高压-超高压变质时代和原岩的结晶时代一致。表明松树沟榴辉岩与北秦岭造山带已发现的高压-超高压变质岩石一起都应是古生代大陆深俯冲作用的结果,而松树沟超镁铁岩可能是俯冲的大陆板片在折返过程中携带的俯冲隧道中的交代地幔岩。  相似文献   

17.
A.S. Gaab  M. Jank  U. Poller  W. Todt 《Lithos》2006,87(3-4):261-275
Magmatic protoliths of Ordovician age have been identified in the metamorphic rocks of the Muráñ Gneiss Complex, Veporic Unit (Central Western Carpathians). Vapor digestion single zircon U–Pb dating yields an intrusion age of 464 ± 35 Ma (upper intercept) for the granite protolith. A lower intercept age of 88 ± 40 Ma records amphibolite-facies metamorphic overprint in the Cretaceous, during the Alpine orogeny. Geochemical and isotopic data suggest crustal origin of the orthogneiss. Ndinitial are between − 2.6 and − 5.0 and TDMNd between 1.3 and 1.5 Ga (two-step approach). 87Sr / 86Srinitial ratios vary between 0.7247 and 0.7120, and a steep REE pattern further constrains the crustal affinity of these rocks. Associated amphibolite bodies have Ndinitial values of 6.5, 87Sr / 86Srinitial ratio of 0.7017, and a flat REE pattern. They are interpreted as MORB derived metabasites. Whole-rock Pb isotope analyses define a linear array in a 206Pb / 204Pb vs. 207Pb / 204Pb diagram with an age of ca. 134 Ma, consistent with intense Alpine metamorphism and deformation.

These basement rocks of the Central Western Carpathians are interpreted as Ordovician magmatic rocks intruded at an active margin of Gondwana. They represent the eastern prolongation of Cambro–Ordovician units of the European Variscides, which were part of the peri-Gondwana superterrane and accreted to Laurussia during the Variscan orogeny. Variscan metamorphic overprint is not recorded by the isotopic data of the Muráñ Gneiss Complex. Alpine metamorphism is the most dominant overprint.  相似文献   


18.
大别超高压变质地体四道河地区岩石学研究   总被引:3,自引:0,他引:3       下载免费PDF全文
对四道河地区超高压变质岩剖面的研究分析显示,该剖面有3种岩石类型:榴辉岩类、片麻岩和面理化含榴花岗岩。榴辉岩具不同程度的退变质现象,呈透镜体状产出于斜长角闪岩、片麻岩和面理化含榴花岗岩中,原生矿物组合为石榴石、绿辉石、柯石英和金红石。榴辉岩退变为斜长角闪岩近于等化学系列;片麻岩在主量成分上与榴辉岩及其退变产物(斜长角闪岩)存在突变关系,但微量元素与榴辉岩有一定的相似性;面理化含榴花岗岩主量元素和微量元素地球化学特点为:富SiO2 、K2 O Na2 O和高价阳离子Ga、Y以及REE ,K2 O/Na2 O值低,贫Al、Ca、Mg、Ti、P ,结合构造环境、同位素及年代学资料分析,其应属于后碰撞造山A型花岗岩。基于以上认识推断:大陆板片俯冲至上地幔经历了超高压变质作用,表壳岩变质形成榴辉岩;当超高压变质岩石折返至中下地壳时发生了强烈的减压退变质作用形成斜长角闪岩,随后,与片麻岩及面理化含榴花岗岩一道从中下地壳向地表进一步折返,并一同经历了后期的变质变形作用。  相似文献   

19.
苏鲁高压—超高压变质地体的陆—陆碰撞深俯冲剥蚀模式   总被引:21,自引:4,他引:17  
中国苏鲁高压—超高压变质地体由2个不同时代的变质基底组成.南苏鲁(临沭—连云港地区)中不同类型高压—超高压变质岩石的原岩形成于由大陆玄武质岩石、辉长岩、表壳岩和花岗岩组成的被动大陆边缘拉伸构造环境.研究表明南苏鲁高压—超高压变质岩石的原岩所代表的花岗岩浆和基性岩浆作用为罗迪尼亚超大陆形成后的新元古代(780-700Ma)裂解事件的响应.北苏鲁(青岛—威海)超高压变质地区的花岗质片麻岩锆石SHRIMPU-Pb定年表明,变质基底的年龄是2400Ma(或 & 2400 Ma),并经历了1800-1700Ma和-200Ma的变质事件,研究表明苏鲁高压—超高压变质地体由2个不同时代变质基底组成,北苏鲁的变质基底属于北中国板块胶辽朝地块的一部分,形成时代比南苏鲁基底老得多,其与南苏鲁地块之间的界限位于五莲以北到海阳所以南一线.由于在北苏鲁含柯石英的透辉石石英岩锆石SHRIMPU-Pb定年获得精确超高压峰期变质年龄为(234.1±4.2)Ma,退变质年龄为(218.2±1.5)Ma,表明南、北苏鲁2个不同时代基底地块同时经历了超高压变质作用.根据上述事实,提出苏鲁高压—超高压变质地体的陆—陆碰撞俯冲剥蚀新模式,即扬子板片在240-220Ma的深俯冲作用中拽动上部胶辽朝板片的—部分老变质基底岩石向下俯冲至大于100km的深度,并形成楔形俯冲剥蚀体,之后又与南苏鲁俯冲板片一起快速折返上来。   相似文献   

20.
陈丹玲  刘良 《地学前缘》2011,18(2):158-169
在岩相学观察和锆石CL图像研究的基础上,利用LA ICP MS原位分析方法,对北秦岭官坡超高压榴辉岩和伴生的石榴石角闪岩(榴闪岩)进行了详细的锆石微区微量元素和U Th Pb同位素分析,在榴辉岩样品中得到变质年龄为(502±11)Ma,原岩结晶年龄>(657±18)Ma;在榴闪岩样品中得到原岩结晶年龄为(791±6)Ma,变质年龄为487~503 Ma,角闪岩相退变质年龄为(366±4)Ma。岩石地球化学研究显示,北秦岭官坡地区的榴闪岩具有低Si(SiO2质量分数为4916%~5078%),高Ti(TiO2质量分数为228%~283%)、富集LREE、LILE和大部分的HFSE元素,不显Nb、Ta负异常的板内玄武岩特征,与北秦岭超高压榴辉岩地球化学特征一致。结合两者的野外产状、岩相学特征、锆石形貌和年代学研究结果,表明本文研究的官坡地区的榴闪岩是超高压榴辉岩在抬升过程中在角闪岩相条件下退变质的产物。综合两者的年代学研究结果,得到北秦岭地区超高压榴辉岩的变质年龄为(502±11)Ma,原岩结晶年龄为(791±6)Ma,角闪岩相退变质年龄为(366±4)Ma。研究得到的(502±11)Ma的榴辉岩相变质年龄与前人得到的该榴辉岩围岩超高压泥质片麻岩的变质年龄(507±38)Ma以及北秦岭松树沟地区的超高压长英质片麻岩的变质年龄485~514 Ma一致,表明它们经历了同期超高压变质作用。而且,榴辉岩(502±11)Ma的变质年龄与其原岩的结晶年龄(791±6)Ma存在近300 Ma的时间间隔,表明原岩具有板内玄武岩性质的北秦岭官坡超高压榴辉岩不可能是秦岭古生代大洋板块深俯冲的产物,而可能是已构造就位的古洋壳或裂谷火山岩在古生代随陆壳一起发生大陆深俯冲作用的产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号