首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 586 毫秒
1.
Acid deposition during the 20th century led to the gradual elimination of fish in Brooktrout Lake (Adirondack Mountains, New York State). Thereafter, the lake was colonized by Chaoborus americanus, a dipteran with an aquatic larval stage that typically resides in the pelagic zone in fishless lakes. During subsequent chemical recovery from acidification, the lake was stocked with Brook Trout (Salvelinus fontinalis). For seven years following this reintroduction we examined the re-adaptation of the food chain. The C. americanus abundance and distribution was quantified utilizing a combination of hydroacoustics, traditional vertical net tows and Schindler-Patalas trap collections. Hydroacoustic backscattering signals were repeatable and correlated (r = 0.86, p = 0.003) with C. americanus abundance. Backscattering, depth, month and year were used to develop a random forest model that predicted the C. americanus density (r2 = 0.67,  p< 0.05). The hydroacoustic signal revealed a clear but limited diurnal vertical migration of C. americanus. The signal continued in the presence of the fish population beginning with reintroduction in 2005 and extending through 2011. In 2012, the hydroacoustic signal no longer was present in the lake, suggesting that the fish had eliminated the C. americanus population, which was verified with net tows. Using novel and traditional survey methods, we demonstrate that the reintroduction of fish can alter the lake community structure significantly through the extirpation of the major component of the pelagic zone.  相似文献   

2.
Observations of lake ice at the shore, complete ice cover, ice duration, ice thickness and other measures for 18 Polish lakes were collected for the 50 year period (1961–2010). Average ice dates in early winter became later: first appearance of ice along shore 2.3 days decade−1 and complete ice cover 1.2 days decade−1 while complete ice cover disappeared earlier (5.6 days decade−1) as did last ice at the shore (4.3 days decade−1). The duration of ice cover decreased by 5.6 days decade−1 and average ice thickness declined by 6.1 cm decade−1. The magnitude of these values for individual lakes decreased from eastern to western Poland. This geographic gradient is likely related to regional atmospheric circulation because in winter this part of Europe is strongly affected by continental air, an influence that is greater in the east. A multivariate redundancy analysis (RDA), used in order to examine the dependence of ice measures on lake physical properties and location, indicated longitude and altitude as key factors explaining lake ice dynamics such as the disappearance of ice and ice cover, ice cover duration and thickness. Lake volume and average depth influenced mostly the appearance of ice and ice cover.  相似文献   

3.
This study investigated two mining lakes located in the north of Lower Austria. These lakes arose 45 years ago when open cast lignite mining ceased. The lakes are separated by a 7-m wide dam. Due to the oxidation of pyrite, both lakes have been acidified and exhibit iron, sulphate, and heavy metal concentrations several orders of magnitude higher than in circumneutral lakes. The water column of both lakes is divided into two layers by a pronounced chemocline. The smaller mining lake (AML), with pH close to of 2.6, is the most acidic lake in Austria, whereas flooding with stream water and by drainage from the surrounding fields neutralized the adjacent larger pit lake. The goal of our study was to investigate the effect of flooding on its physical, chemical and biological properties, in comparison to the pristine AML. Even relative to other extremely acidic lakes, the flora and fauna in the AML was reduced and composed of only two flagellate, one ciliate, and one rotifer species. The simplified pelagic food web in the mixolimnion consisted of heterotrophic bacteria, the mixotrophic flagellates Chlamydomonas acidophila and Ochromonas sp., the ciliate Oxytricha sp., and the rotifer Cephalodella sp. The latter two are as yet undescribed new species. The heliozoan Actinophrys sp. that may act as top predator occurred only in low abundance. The euglenid Lepocinclis buetschlii formed a stable deep chlorophyll maximum (DCM) at 7 m depth. Highest cell numbers of L. buetschlii in the DCM exceeded 108 L?1. The neutralized mining lake harboured higher plankton diversity similar to that of natural circumneutral lakes. A peak of at least 16 different phytoplankton taxa was observed during summer. The zooplankton consisted of several copepod species, daphnids and other cladocerans, and at least six different rotifer species. Several fish species occurred in the neutralized lake. Although the effect of non-permanent flooding was largely sustainable, interannual fluctuations of the pH affected the plankton community and reduced its species diversity.  相似文献   

4.
The lake monitoring programme compliant with the Water Framework Directive has been implemented in Poland since 2007. Currently, the methods for three biological quality elements (BQEs): phytoplankton (the Phytoplankton Multimetric for Polish Lakes, PMPL), macrophytes (the Ecological State Macrophyte Index, ESMI) and phytobenthos (the Diatom Index for Lakes, IOJ) are officially applied and internationally intercalibrated. Based on the monitoring data from 256 lakes surveyed in 2010–2013 and assessed for all the three BQEs, we tested whether the assessment results obtained by the three biological methods were consistent and we searched for the causes of inconsistencies which we found. The lake classifications obtained from the PMPL and ESMI were highly consistent and the relationship between these metrics was relatively strong (R = 0.66, p < 0.001). Both metrics correlated equally strongly with water quality indicators. However, the PMPL and ESMI indicated systematic dissimilarities in the sensitivity to eutrophication between shallow and deep lakes. In shallow lakes, the alarming symptoms of macrophyte community deterioration (lower values of ESMI) occurred at lower nutrient and Chla concentrations and were accompanied by a better status of phytoplankton (higher values of PMPL) than in deep lakes that can be explained by a synergistic effect of inorganic suspended solids and algal growth on water transparency. As a consequence, the positions of phytoplankton and macrophytes as early warning indicators in the eutrophication gradient in shallow lakes were inverted compared to those in deep lakes. Compared to the PMPL and ESMI, the IOJ method gave the least stringent assessment results, with 22% of lakes failing to meet the environmental objectives. The relationships between IOJ and PMPL, and ESMI were relatively weak (R = 0.17, p = 0.008 and R = 0.17, p = 0.007, respectively). Moreover, the phytobenthos index IOJ correlated significantly more weakly with all the water quality indicators than either PMPL or ESMI did. The poor performance of the phytobenthos method in this study may suggest a limited indicator value of this BQE for lake assessment or inappropriate sampling design.  相似文献   

5.
The optical properties and light climate in the deep and extremely acid Lake Caviahue have been studied in order to better understand its characteristics and the possible influence upon the phytoplankton community. The absorption coefficients for the dissolved fraction were maximal in the ultraviolet (UV) region and the water absorption spectra showed a shoulder around 300 nm, which was attributed to the concentration of Fe(III). No radiation was detected in the water column below 360 nm. The depth of the 1% incident radiation was dependent of wavelength, showing its maximum of 13.3 m at 565 nm, compared to 1.7 m and 4.8 m at 400 nm and 700 nm, respectively. Phytoplankton biomass was low and showed an almost constant profile with depth despite the relative darkness of the water column. Optical climate of Lake Caviahue is not typical of high elevation lakes but is more similar to low elevation shallow lakes of the Andean region. The chemical composition of the water, mainly Fe oxidation state and concentration, is the responsible for the high attenuation of the UV radiation (UVR). Living organisms are protected of UVR because Lake Caviahue waters are a shield against UV-B.  相似文献   

6.
《Journal of Hydrology》2006,316(1-4):290-300
The Ethiopian Rift is characterized by a chain of lakes varying in size, hydrological and hydrogeological settings. The rift lakes and feeder rivers are used for irrigation, soda extraction, commercial fish farming and recreation, and support a wide variety of endemic birds and wild animals. The level of some lakes shows dramatic changes in the last few decades. Lakes Abiyata and Beseka, both heavily impacted by human activities, show contrasting lake level trends: the level of Abiyata has dropped by about 5 m over three decades while Beseka has expanded from an area of 2.5–40 km2 over the same span of time. Changes in lake levels are accompanied by dilution in ionic concentration of lake Beseka and increase in salinity of lake Abiyata. Although the principal hydrogeochemical process in the rift lakes is controlled by the input and output conditions and carbonate precipitation, anthropogenic factors such as water diversion for irrigation and soda ash extraction played important role. The recent changes appear to have grave environmental consequences on the fragile rift ecosystem, which demands an integrated basin-wide water management practice. This paper demonstrates the drastic changes of lake levels and associated changes in lake chemistry of the two studied lakes. It also gives the regional hydrogeochemical picture of the other rift lakes that do not show significant response due to climate change and human impact.  相似文献   

7.
Although Unionidae mussels produce large biomass and reach high density in freshwater habitats, little is known about their ecology. We studied the distribution of 5 species of freshwater unionids in a eutrophic floodplain lake, on transects, along the lake shore and across the depth gradient. The clam distribution within the water body was not random: all species form a crowded zone along the lake shore, showing the highest density at ca. 0.5 m depth. The distribution of the most numerous species changed along the shore in Anodonta anatina and Unio pictorum but not in A. cygnea, whose numbers remained constant. The population numbers of the most numerous species showed a positive correlation with silt layer thickness. The generalized model of all the analyzed factors influencing the unionids’ distribution confirmed this relation and indicated a trade-off between water depth and distance from bank, which might be responsible for the occurrence of the zone at some optimum depth. Unionids have an important influence on freshwater ecosystem functions, thus their zonation implies that their functions are also spatially structured.  相似文献   

8.
Three large rivers have their headwaters in the Patagonian Ice Fields (PIFs) in the Andes Mountains, the largest mid-latitude ice masses on Earth: Santa Cruz, Baker and Pascua. They are the last large free flowing rivers in Patagonia, but plans are advanced for building dams for hydroelectric power generation. The three PIF rivers, with a discharge dominated by ice melt, share a common, unique hydrograph compared to that of the other eight large rivers in the region: a distinct seasonal cycle, and an extremely stable discharge, with much lower variability than other rivers. In this study we present the first extensive survey of habitats and benthic macroinvertebrates in the least studied system, the Santa Cruz River. We assess how much of the natural capital provided and sustained by benthic invertebrates are expected to be lost by flooding and discuss how dams would affect riverine habitat and biota. In the Santa Cruz River, we conducted an intensive field survey during September 2010; a total of 52 sites located at regular 6 km intervals were sampled along the 310 river-km for macroinvertebrates and seventeen habitat variables. Although some habitat structure is apparent at the local scale, the Santa Cruz River could be described as very homogeneous. Macroinvertebrate density and the richness (38 genera) found in the Santa Cruz River resulted to be one of the lowest in comparison with 42 other Patagonian rivers. Albeit weak, the structure of the macroinvertebrates assemblages was successfully described by a reduced set of variables. The reduced flow variation and the lack of bed scouring flows have a direct and negative effect on the heterogeneity of riverbeds and banks. The high turbidity of the Santa Cruz River may also contribute to shorter food webs, by affecting autotrophic production, general trophic structure, and overall macroinvertebrate productivity and diversity. Dams will obliterate 51% of the lotic environment, including the most productive sections of the river according to our macroinvertebrate data. Since Santa Cruz River has a naturally homogeneous flow cycle, dams may provide more variable flows and more diverse habitat. Our data provide critically valuable baseline information to understand the effects of dams on the unique set of glacial driven large rivers of Patagonia.  相似文献   

9.
Rivers and streams are unstable environments in which estimation of energetic costs and benefits of habitat utilization are the daunting exercise. Empirical models of food consumption may be used to estimate energetic benefits based on abiotic and biotic conditions in patches of habitat. We performed thirty daily surveys of fish stomach contents to estimate the consumption rates for juvenile Atlantic salmon (Salmo salar) in a river. The data were used to assess whether variations of daily consumption rates existed within the river, and to develop empirical models that could predict fish consumption rates using abiotic and biotic conditions as independent variables. Daily consumption rates based on stomach content surveys in the field (range: 0.15–1.49 g dry/(100 g wet day)) varied significantly depending on habitat patch (500–1000 m2), summer period, and sampling year. Variables such as water temperature, numerical density of salmon, water depth and moon phase explained 83–93% of the variations in daily food consumption rates. Daily consumption rates tended to increase with water temperature and depth, and were also higher near a full moon. However, they tended to decrease with the numerical density of salmon. Our work suggests that empirical models based on independent variables that are relatively simple to estimate in the field may be developed to predict fish consumption rates in different habitat patches in a river.  相似文献   

10.
The present paper analyses predation patterns, of Percichthys trucha and salmonid fish upon Galaxias maculatus in five lakes of northern Patagonia with differing community and environmental characteristics. Tank experiments were performed to evaluate relative efficiency of native and exotic predators of G. maculatus under treatments with and without cover (aquatic vegetation). Important differences were found between predators with regards to distribution and consumption of G. maculatus. Salmonids are more efficient than P. trucha in consuming G. maculatus in deep environments with scarcely vegetation; in contrast to native species they frequently use the pelagic environment. Although pelagic habitat might have served in the past as a refuge from native predators in the past, G maculatus now experiences intense predation in the pelagic zone by exotic salmonids. It is suggested that the widespread distribution of G. maculatus in Patagonian lakes may have facilitated the success of salmonids throughout Patagonia.  相似文献   

11.
Knowing the aquatic resources, such as emerging insects, that are entering terrestrial systems is important for food web and conservation studies, especially when water availability or quality is limited. Even though studies concerning benthic macroinvertebrates are numerous, insect emergence from lakes is less studied.To understand if water parameters (e.g., water temperature, oxygen concentration etc) determine insect emergence and the possible seasonal differences, we collected emergent insects from three different lakes in South Germany, during three seasons. We searched for common patterns of insect emergence at the three lakes. Moreover, the relative contribution of insects of aquatic origin to aerial flying arthropods was assessed, with collecting aerial flying arthropods at the shore.Chironomidae constituted the highest number of emerged insects in all lakes, however different patterns of emergence occurred in each lake (unimodal vs. bimodal) with different season-dependent times for the emergence peaks (spring, summer, beginning of autumn). Aquatic insects constituted a considerable proportion (at least 17%) of the aerial flying arthropods at the shore. The variation in insect emergence was explained by water temperature, however not by other water parameters or the nutrient values. Seasonal and spatial differences in insect emergence, should be considered when investigating aquatic-terrestrial interactions and designing conservation plans. A total biomass of up to 1.8 g m−2 of emerging insects from the littoral zone of Lake Constance can enter the terrestrial system in a year. We also provide length-dry weight relationships for emerged (adult) Chironomidae. These equations are useful to estimate the dry insect biomass from length data and currently such data lack for adult aquatic insects.  相似文献   

12.
Trophic cascade hypotheses predict that fish will affect the structure and biomass of pelagic plankton communities. In order to investigate trophic cascade effects from fish down to phytoplankton, whole-lake studies were performed in five hypertrophic (mean total phosphorus (TP) concentrations higher than 1000 mg m−3) shallow lakes located in the Pampa Plain. The main climatic characteristic of this region is the alternation between periods of drought and flood, with corresponding changes of lake depth and conductivity of lake water. All lakes were studied from April to December 2000. Samples were taken of their physical and chemical characteristics and biotic communities, focusing on the zooplankton community. Fish were manipulated in four lakes (Capurro, Longinotti, Vedia 1, Vedia 2), while the fifth (Lake Vedia 3) was left undisturbed as a reference system. High abundance of planktivorous minnows (Jenynsia multidentata and Cheirodon interruptus) dominated the fish community in the reference lake. In the manipulated lakes, fish stocks were largely reduced in late autumn (May). During winter, Capurro, Longinotti and Vedia 1 were stocked with a visual planktivore, the pampean silverside (Odontesthes bonariensis, Atherinidae). Fish stocking was 24, 33 and 19 kg ha−1, respectively. In contrast, no fish were stocked in Lake Vedia 2. Following fish removal, large Daphnia appeared in these lakes and grazed intensively on the phytoplankton. In contrast, no Daphnia were found in the reference lake (Vedia 3). The stocking of O. bonariensis in lakes Capurro, Longinotti and Vedia 1 led to a decrease in the percentage of large cladocerans and a rise in the phytoplankton biomass:TP ratio. Moreover, the lakes mentioned were stocked with different quantities of silversides over different periods of time. These differences were reflected temporarily in the plankton dynamics, affecting mainly larger sized zooplankton. Nevertheless, the presence of Daphnia was short lived in the lake where fish had been removed and no O. bonariensis were stocked. Competition for resources and recruitment of remaining fish probably caused a collapse in the zooplankton biomass. Our results support the idea that fish predation on zooplankton and its effect on phytoplankton is very intense in small pampean lakes. Fish removal was short lived, however. This could be because in small pampean lakes fish recolonization is favored, and minnows are highly prolific. Moreover, if manipulation of the trophic structure of lakes is undertaken in the pampean region, high nutrient loading from the watershed, climate and hydrology should also be taken into account.  相似文献   

13.
The Oligocene to present evolution of the North Patagonian Andes is analyzed linking geological and geophysical data in order to decipher the deformational processes that acted through time and relate them to basin formation processes. Seismic reflection profiles reveal the shallow structure of the retroarc area where contractional structures, associated with Oligocene to early Miocene inverted extensional depocenters, are partially onlapped by early to late Miocene synorogenic deposits. From the construction of five structural cross sections along the retroarc area between 40° and 43°30′ S, constrained by surface, gravity and seismic data, a shortening gradient is observed along Andean strike. The highest shortening of 18.7 km (15.34%) is determined near 41°30′ S coincidentally with maximum mean topographic values on the eastern Andean slope, where basement blocks were uplifted in the orogenic front area, and the deepest and broadest synorogenic depocenters were formed towards the foreland. Additionally, eastward shifting of Miocene calc-alkaline rocks occurred at these latitudes, which is interpreted as indicative of a change in the subduction parameters at this time. Deep crustal retroarc structure is evaluated through inversion of gravity models that made possible to infer Moho attenuated zones. These coincide with the occurrence of younger than 5 Ma within-plate volcanics as well as with crustal thermal anomalies suggested by shallowing of the Curie isotherm calculated from magnetic data. Younger volcanism and thermal anomalies are explained by slab steepening since early Pliocene, after a mild-shallow subduction setting in the middle to late Miocene, age of the main compressive event.  相似文献   

14.
We elucidate the ecology of Recent Ostracoda from a deep brackish lake, Tangra Yumco (30°45′—31°22′N and 86°23′—86°49′E, 4595 m a.s.l.) and adjacent waters on the southern Tibetan Plateau. Ostracod associations (living and empty valves) in sixty-six sediment samples collected from diverse aquatic habitats (lakes, estuary-like water and lagoon-like water waters, rivers, ponds and springs) were quantitatively assessed.Eleven Recent Ostracoda were found (nine living and two as empty valves only). Cluster analysis established two significant (p < 0.05) habitat specific associations; (i) Leucocytherella sinensis, Limnocythere inopinata, Leucocythere? dorsotuberosa, Fabaeformiscandona gyirongensis and Candona xizangensis are lacustrine fauna. (ii) Tonnacypris gyirongensis, Candona candida, Ilyocypris sp., Heterocypris incongruens and Heterocypris salina are temporary water species.Ostracod distribution and abundance are significantly (p < 0.05) correlated to physico-chemical variables. The first two axes of a canonical correspondence analysis (CCA) explain 30.9% of the variation in the species abundance data. Conductivity and habitat types are the most influential ecological factors explaining the presence and abundance of ostracods. Spearman correlation analysis reveals that: (i) Two species, L.? dorsotuberosa (r = 0.25) and L. inopinata (r = 0.36) have a significant positive correlation with conductivity while one species, T. gyirongensis (r = −0.68) displays a significant negative correlation with conductivity. Limnocythere inopinata correlates significantly positive (r = 0.37) with alkalinity. Fabaeformiscandona gyirongensis correlates significantly positive (r = 0.28) with water depth.Key indicator living assemblages are: (i) L. sinensis dominates Ca-depleted brackish waters although ubiquitously distributed; (ii) L.? dorsotuberosa dwells in fresh to brackish waters; (iii) L. inopinata predominates in mesohaline to polyhaline waters; (iv) F. gyirongensis inhabits exclusively brackish-lacustrine deeper waters; (v) C. candida populates freshwaters; (vi) T. gyirongensis and Ilyocypris sp. are restricted to shallow temporary waters; (vii) H. incongruens occurs in ponds.Water depth indicators are F. gyirongensis and L.? dorsotuberosa, useful in ostracod assemblages for palaeo-water depth reconstruction.Our results expand the knowledge of the ecological significance of Recent Tibetan Ostracoda ecology. This is a new insight on habitat chacteristics of both living assemblages and sub-Recent associations of ostracods in mountain aquatic ecosystems. The new modern ostracod dataset can be used for the quantitative reconstruction of past environmental variables (e.g., conductivity) and types of water environment. The key indicator ostracods are relevant in palaeolimnological and climate research on the Tibetan Plateau.  相似文献   

15.
Excessive macrophyte biomass and cyanobacterial blooms associated with eutrophication and possibly exotic fish frequently compromise freshwater systems. In this study, 20 large (∼3.2 m3), replicated enclosures were used to investigate the effects of piscivorous Australian bass (Macquaria novemaculeata), planktivorous gambusia (Gambusia holbrooki (Girard)), benthivorous carp (Cyprinus carpio), and macrophyte removal on water quality, as well as trophic interactions within the enclosures. Fish effects on reservoir water quality were carp > gambusia > bass. Cryptomonads spp. (54,083 cells/mL) and Anabaena spp. (47,983 cells/mL) increased significantly (63 and 23 fold, respectively) in carp enclosures, possibly because of physiological adaptation to low light, high turbidity, total phosphorus concentrations (TP) and low TN: TP ratios (N-limitation); a consequence of carp benthic grazing. Carp and gambusia caused an unconventional shift from smaller to medium sized zooplankton (e.g. Boeckella sp., Bosmina meridionalis), possibly a result of copepod nauplius grazing. In the subtropical system studied, fish-induced nutrient recycling appears more important to the outcome of bio-manipulation than grazing impacts. Macrophyte harvesting unexpectedly decreased phytoplankton biomass linked to declines in Euglenophyta and diatoms (Asterionella spp.). Cyanophyta (Oscillatoriales spp./Anabaena spp.) increased in response to macrophyte harvesting and was consistent with findings on European lakes that Cyanophyta abundance tends to be higher in the absence of macrophytes. Results indicate exotic fish removal, nutrient loading control and macrophyte conservation is important in these aquatic systems to maintain high water quality.  相似文献   

16.
The horizontal and vertical distribution of jellyfish was assessed in the Chiloé Inland sea, in the northern area of the Chilean Patagonia. A total of 41 species of cnidarians (8 siphonophores, 31 hydromedusae, 2 scyphomedusae) were collected. Eleven jellyfish species were recorded for the first time in the area. Species richness was higher in spring than in winter (37 vs. 25 species, respectively). Species such as Muggiaea atlantica, Solmundella bitentaculata, and Clytia simplex were extremely abundant in spring. The total abundance (408,157 ind 1000 m?3) was 18 times higher in spring than in winter (22,406 ind 1000 m?3).The horizontal distribution of the most abundant species (four in winter, five in spring) showed decreasing abundances in the north–south direction in winter and spring. Peak abundances occurred in the northern microbasins (Reloncaví Fjord, Reloncaví and Ancud gulfs), where the water column stability, phytoplankton and zooplankton abundance were higher, compared with the southern microbasins (Corcovado Gulf, Boca del Guafo). During the spring higher jellyfish abundance season, the vertical distribution of the dominant species (except M. atlantica) showed peak values at mid-depth (30–50 m) and in the deepest sampled layer (50–200 m). This vertical distribution pattern reduced seaward transport in the shallowest layer through estuarine circulation and also limited mortality by predation in the more illuminated shallow layers. Thus, jellyfish were able to remain in the interior waters during the season of maximum biological production.  相似文献   

17.
We studied the apparently old radiocarbon ages from lakes in the dry valleys of Antarctica. The radiocarbon reservoir effect in these lakes results from two components: the inherited age and the residence age. The inherited age is derived from input of old carbon, primarily from subsurface melt of adjacent glaciers. The residence age comes from in situ aging of lake water in an environment sealed from the atmosphere. Our results indicate that surface melt of glaciers introduces little ancient carbon to the lake system, because of rapid gas equilibration with the atmosphere. Subsurface melt in lakes with large glacier cross-sectional areas at the grounding line, however, can contribute a significant amount of ancient carbon, leading to lake-bottom reservoir effects in excess of ∼ 2700 yr. This value can increase to ∼ 20,000 yr immediately at the grounding line. In most lakes, however, surface melt far exceeds that from the subsurface and dilutes the effect of ancient carbon, making the inherited age relatively low. Residence ages generally are on the order of a few thousand years, but can be as much as ∼ 10,000 yr. Because a residence age is reset when the lake loses its ice cover and is exposed to wind-driven mixing, its magnitude can provide important information about lake history.  相似文献   

18.
We investigated the importance of meteorological and lake physical conditions for temporal, horizontal and vertical differences in the concentration of dissolved oxygen (DO) and water temperature, and the derived daily estimates of gross primary production (GPP), ecosystem respiration (R) and net ecosystem production (NEP). Our study was conducted in a subtropical and polymictic lake in Southern Brazil, during a spring–summer transition. Metabolic rates were determined from two sites using the open water oxygen technique. At the central deep site, oxygen sondes were deployed at three depths to assess patterns in vertical variability. During 10 days, an additional DO and temperature sonde was placed near the shoreline allowing us to compare metabolic differences in the surface layers between the central pelagic and littoral site. While GPP was similar, R was significantly higher at the shallower littoral site, causing NEP to be lower, although NEP was still positive. The littoral site had less diel changes in DO and higher daily variability in all metabolic rates. Variability in GPP and R at the littoral site was related to temperature, wind speed and rainfall suggesting that short-term variability in metabolic rates in shallow areas are sensitive to resuspension of sediments caused by a less stable water column. A clear vertical gradient was furthermore found for the metabolic rates at the central deep part of the lake, related to the light extinction, with highest GPP around 0.3 m and decreasing with depth, while respiration showed the inverse pattern. Below subsurface, respiration prevailed at 5.0 m depth and was uncoupled to primary production. Under conditions with high light and temperature, and low wind speeds, the mixing depth became shallower, in turn increasing the water column stability at the deep pelagic site, which resulted in higher mean light available and higher GPP in the water column. Our results confirm that deployment of sensors in different sites and depths allows for spatially, as well as temporally more representative estimates of lake metabolism.  相似文献   

19.
Tuff layers are vital stratigraphic tools that allow correlations to be made between widely dispersed exposures. Despite their widespread occurrence in the central Andes, tuffs from both natural exposures and sedimentary cores extracted from the region's extensive salars (salt pans) are relatively unstudied. Here we lay the foundation for a tephrostratigraphic framework in the central Andes (14–28°S) by chemically and morphologically characterizing ash shards, and in some cases dating 36 Neogene distal tuffs. These tuffs occur in lacustrine and alluvial deposits from the southern Bolivian Altiplano and adjacent Atacama Desert. All tuffs are calc-akaline rhyolites, consistent with their setting in the Central Andean Volcanic Zone. Five of the older tuffs were 40Ar/39Ar dated and yield an age range of 6.63–0.75 Ma. Organic material associated with tuffs deposited into paleolake sediments, paleowetland deposits, or urine-encrusted rodent middens provide constraints on the age of several Late Pleistocene and Holocene tuffs.These tuffs provide key stratigraphic markers and ages for lake cycles and archeological sites on the Bolivian Altiplano and for assessing rates of surficial processes and archeology in both the Atacama and Altiplano. While modern climate, and consequently questions about geomorphic processes and climate change, differs in the hyperarid Atacama and the semi-arid Altiplano, the most extensive air-fall tuffs covered both regions, placing the Atacama and the Bolivian Altiplano in the same tephrostratigraphic province. For example, the Escara B tuff (~1.85 Ma), can be securely identified in both the Altiplano and Atacama. On the Altiplano, dates from the Escara B and E tuffs securely establish the age of the Escara Formation—representing the oldest expansive lake documented on the Bolivian Altiplano. By contrast, the presence of the Escara B tuff below ~6 m of alluvial sediment at the Blanco Encalado site in the Atacama desert yields information about sedimentation rates in this hyperarid region. Indeed, most tuffs from the Atacama Desert are older than 600,000 years, even though they occur within fluvial terraces immediately adjacent to the alluvial fans that are still active. Most of these geomorphic surfaces in the Atacama also possess well-developed saline soils that, when combined with the radiometric ages of the distal tuffs, suggest slow rates of geomorphic change and exceptional landscape stability for this area during the Quaternary.In contrast, younger tuffs are more abundant in the more recent lake records of the Altiplano. The Chita tuff was deposited at ~15,650 cal yr B.P., during the regressive phase of the region's deepest late Quaternary lake cycle—the “Tauca lake cycle”—which spanned 18.1–14.1 cal yr B.P. Two Holocene tuffs, the Sajsi tuff and the Cruzani Cocha tuff, are widespread. The Sajsi tuff was deposited just before 1700 cal yr B.P., whereas the Cruzani Cocha tuff appears to be mid-Holocene in age and shows some chemical affinities to a Holocene tuff (202B) deposited between 4420 and 5460 cal yr B.P. in a urine-encased rodent midden in the Atacama Desert.  相似文献   

20.
The study analyses the long-term biophysical and demographic changes in Dal lake, located in the heart of Srinagar city, Kashmir India, using a repository of historical, remote sensing, socio-economic and water quality data supported by the extensive field observations. The lake faces multiple pressures from the unplanned urbanization, high population growth, nutrient load from intensive agriculture and tourism. The data showed that the lake has shrunk from 31 km2 in 1859–24 km2 in 2013. Significant changes were observed in the land use and land cover (LULC) within the lake (1859–2013) and in the vicinity of the lake (1962–2013). Analysis of the demographic data indicates that the human population within the lake has shown more than double the national growth rate. Additionally, 7 important water quality parameters from 82 well distributed sites across the lake were analyzed and compared with the past data to determine the historical changes in the water quality from 1971 to 2014. The changes in the LULC and demography have adversely affected the pollution status of this pristine lake. Ortho-phosphate phosphorous concentration has increased from 16.75 μg L−1 in 1977–45.78 μg L−1 in 2014 and that of the nitrate-nitrogen from 365 μg L−1 to 557 μg L−1, indicating nutrient enrichment of the lake over the years. Built-up area within the lake has increased 40 times since 1859, which, together with the changes in the population and settlements, have led to the high discharge of untreated nutrient-rich sewage into the lake. Similarly the expansion of floating gardens within the lake and agriculture lands in the catchment has contributed to the increased nutrient load into the lake due to the increasing use of fertilizers. The information about the existing land cover, demography and water quality was integrated and analyzed in GIS environment to identify the trophic status of the lake. The analysis indicated that 32% of the lake falls under sever degradation, 48% under medium degradation while as 20% of the lake waters are relatively clean. It is believed that the results provide improved knowledge and insights about the lake health and causal factors of its degradation necessary for effectively restoring its ecological and hydrological functionality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号