首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Desorption is one of the most critical processes affecting the effectiveness of soil and ground water remediation. None of the currently adopted desorption models can accurately quantify desorption of low-hydrophobicity organic chemicals, and thus could potentially mislead remediation design and decision-making. A recently developed dual-equilibrium desorption (DED) model was found to be much more accurate in quantifying desorption. A screening-level transport model, DED-Transport, was developed to simulate the DED effect on behaviors of organic contaminant plumes during remediation. DED-Transport requires only simple parameters, but is applicable to many remediation scenarios. DED-Transport can be used as a decision-support tool in site remediation to more precisely predict the time required for cleanup.  相似文献   

2.
Wellfield management is a multiobjective optimization problem. One important objective has been energy efficiency in terms of minimizing the energy footprint (EFP) of delivered water (MWh/m3). However, power systems in most countries are moving in the direction of deregulated markets and price variability is increasing in many markets because of increased penetration of intermittent renewable power sources. In this context the relevant management objective becomes minimizing the cost of electric energy used for pumping and distribution of groundwater from wells rather than minimizing energy use itself. We estimated EFP of pumped water as a function of wellfield pumping rate (EFP‐Q relationship) for a wellfield in Denmark using a coupled well and pipe network model. This EFP‐Q relationship was subsequently used in a Stochastic Dynamic Programming (SDP) framework to minimize total cost of operating the combined wellfield‐storage‐demand system over the course of a 2‐year planning period based on a time series of observed price on the Danish power market and a deterministic, time‐varying hourly water demand. In the SDP setup, hourly pumping rates are the decision variables. Constraints include storage capacity and hourly water demand fulfilment. The SDP was solved for a baseline situation and for five scenario runs representing different EFP‐Q relationships and different maximum wellfield pumping rates. Savings were quantified as differences in total cost between the scenario and a constant‐rate pumping benchmark. Minor savings up to 10% were found in the baseline scenario, while the scenario with constant EFP and unlimited pumping rate resulted in savings up to 40%. Key factors determining potential cost savings obtained by flexible wellfield operation under a variable power price regime are the shape of the EFP‐Q relationship, the maximum feasible pumping rate and the capacity of available storage facilities.  相似文献   

3.
This study investigates stochastic optimization of dense nonaqueous phase liquid (DNAPL) remediation design at Dover Air Force Base Area 5 using emulsified vegetable oil (EVO) injection. The Stochastic Cost Optimization Toolkit (SCOToolkit) is used for the study, which couples semianalytical DNAPL source depletion and transport models with parameter estimation, error propagation, and stochastic optimization modules that can consider multiple sources and remediation strategies. Model parameters are calibrated to field data conditions on prior estimates of parameters and their uncertainty. Monte Carlo simulations are then performed to identify optimal remediation decisions that minimize the expected net present value (NPV) cleanup cost while maintaining concentrations at compliance wells under the maximum contaminant level (MCL). The results show that annual operating costs could be reduced by approximately 50% by implementing the identified optimal remediation strategy. We also show that recalibration and reoptimization after 50 years using additional monitoring data could lead to a further 60% reduction in annual operating cost increases the reliability of the proposed remediation actions.  相似文献   

4.
Funnel-and-Gate Performance in a Moderately Heterogeneous Flow Domain   总被引:1,自引:0,他引:1  
The funnel-and-gate ground water remediation technology (Starr and Cherry 1994) has received increased attention and application as an in situ alternative to the typical pump-and-treat system. Understanding the effects of heterogeneity on system performance can mean the difference between a successful remediation project and one that fails to meet its cleanup goals.
In an attempt to characterize and quantify the effects of heterogeneity on funnel-and-gate system performance, a numerical modeling study of 15 simulated heterogeneous flow domains was conducted. Each realization was tested to determine if the predicted capture width met the capture width expected for a homogeneous flow domain with the same hulk properties. This study revealed that the capture width of the funnel-and-gate system varied significantly with the level of heterogeneity of the aquifer.
Two possible remedies were investigated for bringing systems with less than acceptable capture widths to acceptable levels of performance. First, it was determined that enlarging the funnel and gate via a factor of safety applied to the design capture width could compensate for the capture width variation in the heterogeneous flow domains. In addition, it was shown that the use of a pumping well downstream of the funnel and gate could compensate for the effects of aquifer heterogeneity on the funnel-and-gate capture width. However, if a pumping well is placed downstream of the funnel and gate to control the hydraulic gradient through the gate, consideration should be given to the gate residence time in relation to the geochemistry of the contaminant removal or destruction process in the gate.  相似文献   

5.
Effective long‐term operation of soil vapor extraction (SVE) systems for cleanup of vadose‐zone sources requires consideration of the likelihood that remediation activities over time will alter the subsurface distribution and configuration of contaminants. A method is demonstrated for locating and characterizing the distribution and nature of persistent volatile organic contaminant (VOC) sources in the vadose zone. The method consists of three components: analysis of existing site and SVE‐operations data, vapor‐phase cyclic contaminant mass‐discharge testing, and short‐term vapor‐phase contaminant mass‐discharge tests conducted in series at multiple locations. Results obtained from the method were used to characterize overall source zone mass‐transfer limitations, source‐strength reductions, potential changes in source‐zone architecture, and the spatial variability and extent of the persistent source(s) for the Department of Energy's Hanford site. The results confirmed a heterogeneous distribution of contaminant mass discharge throughout the vadose zone. Analyses of the mass‐discharge profiles indicate that the remaining contaminant source is coincident with a lower‐permeability unit at the site. Such measurements of source strength and size as obtained herein are needed to determine the impacts of vadose‐zone sources on groundwater contamination and vapor intrusion, and can support evaluation and optimization of the performance of SVE operations.  相似文献   

6.
Remediation of subsurface contamination requires an understanding of the contaminant (history, source location, plume extent and concentration, etc.), and, knowledge of the spatial distribution of hydraulic conductivity (K) that governs groundwater flow and solute transport. Many methods exist for characterizing K heterogeneity, but most if not all methods require the collection of a large number of small‐scale data and its interpolation. In this study, we conduct a hydraulic tomography survey at a highly heterogeneous glaciofluvial deposit at the North Campus Research Site (NCRS) located at the University of Waterloo, Waterloo, Ontario, Canada to sequentially interpret four pumping tests using the steady‐state form of the Sequential Successive Linear Estimator (SSLE) ( Yeh and Liu 2000 ). The resulting three‐dimensional (3D) K distribution (or K‐tomogram) is compared against: ( 1 ) K distributions obtained through the inverse modeling of individual pumping tests using SSLE, and ( 2 ) effective hydraulic conductivity (Keff) estimates obtained by automatically calibrating a groundwater flow model while treating the medium to be homogeneous. Such a Keff is often used for designing remediation operations, and thus is used as the basis for comparison with the K‐tomogram. Our results clearly show that hydraulic tomography is superior to the inversions of single pumping tests or Keff estimates. This is particularly significant for contaminated sites where an accurate representation of the flow field is critical for simulating contaminant transport and injection of chemical and biological agents used for active remediation of contaminant source zones and plumes.  相似文献   

7.
Zheng C  Wang PP 《Ground water》2002,40(3):258-266
While significant progress has been made in the theoretical development of the simulation/optimization (S/O) approach for ground water remediation design, its application to large, field-scale problems has remained limited. To demonstrate the applicability and usefulness of the S/O approach under real field conditions, an optimization demonstration project was conducted at the Massachusetts Military Reservation in Cape Cod, Massachusetts, involving the design of a pump-and-treat system for the containment and cleanup of a large trichloroethylene (TCE) plume. The optimization techniques used in this study are based on evolutionary algorithms coupled with a response function approach for greater computational efficiency. The S/O analysis was performed parallel to a conventional trial-and-error analysis based on simulation alone. The results of this study demonstrate that not only would it be possible to remove more TCE mass under the same amount of pumping assumed in the trial-and-error design, but also substantial cost savings could be achieved by reducing the number of wells needed and adapting dynamic pumping. In spite of the large model size of more than 500,000 nodes and a long planning horizon of 30 years, the optimization modeling was carried out successfully on desktop PCs. This field demonstration project clearly illustrates the potential benefits of applying optimization techniques in remediation system design.  相似文献   

8.
Soil and groundwater contamination are often managed by establishing on‐site cleanup targets within the context of risk assessment or risk management measures. Decision‐makers rely on modeling tools to provide insight; however, it is recognized that all models are subject to uncertainty. This case study compares suggested remediation requirements using a site‐specific numerical model and a standardized analytical tool to evaluate risk to a downgradient wetland receptor posed by on‐site chloride impacts. The base case model, calibrated to observed non‐pumping and pumping conditions, predicts a peak concentration well above regulatory criteria. Remediation scenarios are iteratively evaluated to determine a remediation design that adheres to practical site constraints, while minimizing the potential for risk to the downgradient receptor. A nonlinear uncertainty analysis is applied to each remediation scenario to stochastically evaluate the risk and find a solution that meets the site‐owner risk tolerance, which in this case required a risk‐averse solution. This approach, which couples nonlinear uncertainty analysis with a site‐specific numerical model provides an enhanced level of knowledge to foster informed decision‐making (i.e., risk‐of‐success) and also increases stakeholder confidence in the remediation design.  相似文献   

9.
In situ bioreclamation is a proven technology that cost-effectively treats organic contamination in subsurface environments. As a remediation strategy, it reduces both the contamination dissolved in ground water, as well as residual soil-bound contamination.
To maximize biodegradation, the technology is applied after conducting laboratory studies. Application of the technology involves infiltrating necessary nutrients to the contaminated subsurface.
Results of a specific case study indicate excellent performance with rapid cleanup of petroleum hydrocarbon contamination from soils and ground water.
Costs associated with in situ bioreclamation technology showed a savings of approximately 50 percent over simple pump-and-treat technology. Time frame for cleanup was shown to be approximately 30 percent of the projected time frame of simple pump-and-treat technology.  相似文献   

10.
A general method for estimating ground-water solute mass transfer rate parameters from field test data is presented. The method entails matching solute concentration and hydraulic head data collected during the recovery phase of a pumping test through application of a simulation-regression technique. Estimation of hydraulic conductivity and mass transfer rate parameter values is performed by fitting model simulations to the data. Parameter estimates are utilized to assess cleanup times for pump-and-treat aquifer remediation scenarios. Uncertainty in the cleanup time estimate is evaluated using statistical information obtained with the parameter estimation technique. Application of the method is demonstrated using a hypothetical ground-water flow and solute transport system. Simulations of field testing, parameter estimation, and remedial time frames are performed to evaluate the usefulness of the method. Sets of random noise that signify potential field and laboratory measurement errors are combined with the hypothetical data to provide rigorous testing of the method. Field tests are simulated using ranges of values for data noise, the mass transfer rate parameters, the test pumping rates, and the duration of recovery monitoring to evaluate their respective influence on parameter and cleanup time estimates. The demonstration indicates the method is capable of yielding accurate estimates of the solute mass transfer rate parameters. When the parameter values for the hypothetical system are well estimated, cleanup time predictions are shown to be more accurate than when calculated using the local equilibrium assumption.  相似文献   

11.
Hydraulics of recirculating well pairs for ground water remediation   总被引:1,自引:0,他引:1  
Recirculating well pairs are a proven means of implementing bioremediation and may also be useful for applying other in situ ground water remediation technologies. A bromide tracer test was performed to characterize the hydraulic performance of a recirculating well pair installed at Moffett Field, California. In particular, we estimate two important properties of the recirculating well pair: (1) the fraction of captured water that is recycled between the wells, and (2) the travel-time distribution of ground water in the induced zone of recirculation. We also develop theoretical estimates of these two properties and demonstrate they depend upon a dimensionless pumping rate, denoted xi. The bromide breakthrough curve predicted from theory agrees well with that determined experimentally at Moffett Field. The minimum travel time between the wells is denoted t(min). In theory, t(min) depends inversely on Q, the pumping rate in the recirculating wells, and is proportional to a2, the square of the distance between the wells. Both the experimental and theoretical travel-time distributions indicate that at least half the recirculating water travels between the wells along fast flowpaths (travel time < 2*t(min)). Therefore, when designing recirculating well pairs, engineers should ensure that t(min) will be sufficiently high to allow biologically mediated reactions (or other in situ remediation processes) sufficient time to proceed.  相似文献   

12.
A systematic hydrogeologic site characterization has been completed in a fractured rock flow system, with the objective of identifying contaminant migration and fate pathways from a historical release of 1,1,1-trichloroethane (TCA). The study integrated hydrogeologic analysis techniques such as borehole geophysical logging, pumping test analysis, and hydrochemical facies analysis to study the impact of a dense nonaqueous phase liquid (DNAPL) in a sparsely fractured crystalline bedrock. The assessment methodology can be divided into two parts: (1) characterization of the source area, where DNAPL is acting as a residual source of TCA, and (2) characterization of the downgradient plume. Reduction in DNAPL mass in the source area has resulted in significant and sustained reductions in downgradient concentrations, suggesting that remediation of fractured crystalline bedrock contaminated with DNAPL is possible and not "technically infeasible."  相似文献   

13.
Characterization and remediation of petroleum contamination are complicated issues due to variable product compositions and site conditions. Generic group analytical methods such as total petroleum hydrocarbon (TPH) methods have played important field screening and regulatory functions for site characterization and cleanup. This study evaluated the application of three TPH methods (a GC/MS method, a spectrometric method EPA 418.1, and a rapid field method PetroFLAG). The results showed that quantification of TPH could be attained efficiently by a combination of rapid field methods (i.e., PetroFLAG) and more sophisticated fraction-specific and target-compound methods. TPH distributions suggested different source release information for two sites with different contaminant mixtures and climate conditions. TPH was also found to correlate with reductive redox capacity (RDC), an important parameter for the design of oxidative remediation schemes. The results indicated that good site specific correlations could be established to better estimate costs of the injection of chemical oxidants if necessary. RDC values varied broadly for both background (83 ˜ 569 meq/kg) and contaminated source (523 ˜ 6044 meq/kg) samples collected from actual sites.  相似文献   

14.
Bioremediation is an attractive alternative to traditional remediation methods for a variety of ground water contaminants. However, widespread implementation of bioremediation is currently limited by the complexity of the dynamic chemical and biological processes that need to be understood and incorporated into the design approach. Reactive transport models provide a powerful tool to simulate these complex interactions and, thus, can be used to improve and guide the design of bioremediation systems. We present a remediation design approach for intermittently stimulated biodegradation using multicomponent reactive transport models, parameterized using a series of nondimensional Damkohler numbers. Designs were based on either (1) a target aqueous phase concentration at the exit of the treatment system, or (2) the total contaminant mass fraction removed from a region of interest. The equation set used to develop this design approach is specific to the case of intermittent electron donor addition to drive cometabolic transformations. We illustrate the design procedure for a biocurtain that removes carbon tetrachloride. Our results for this case indicate that intermittent injection is significantly more efficient than strategies based on continuous pumping. Example design parameters include the length of the biologically active zone (i.e., biocurtain), the effective rate of degradation in this zone, and the interval between electron donor injection cycles. The presented dimensionless parametric approach can be used to design bench-scale column studies and should be helpful for scale-up to field-scale remediation systems.  相似文献   

15.
A model is presented for estimating vapor concentrations in buildings because of volatilization from soil contaminated by non- aqueous phase liquids (NAPL) or from dissolved contaminants in ground water. The model considers source depletion, diffusive- dispersive transport of the contaminant of concern (COC) and of oxygen and oxygen-limited COC biodecay. Diffusive-advective transport through foundations and vapor losses caused by foundation cross-flow are considered. Competitive oxygen use by various species is assumed to be proportional to the product of the average dissolved-phase species concentration and a biopreference factor. Laboratory and field data indicate the biopreference factor to be proportional to the organic carbon partition coefficient for the fuel hydrocarbons studied. Predicted indoor air concentrations were sensitive to soil type and subbase permeability. Lower concentrations were predicted for buildings with shallow foundations caused by flushing of contaminants by cross-flow. NAPL source depletion had a large impact on average exposure concentration. Barometric pumping had a minor effect on indoor air emissions for the conditions studied. Risk-based soil cleanup levels were much lower when biodecay was considered because of the existence of a threshold source concentration below which no emissions occur. Computed cleanup levels at NAPL-contaminated sites were strongly dependent on total petroleum hydrocarbon (TPH) content and COC soil concentration. The model was applied to two field sites with gasoline-contaminated ground water. Confidence limits of predicted indoor air concentrations spanned approximately two orders of magnitude considering uncertainty in model parameters. Measured contaminant concentrations in indoor air were within model-predicted confidence limits.  相似文献   

16.
A full-scale ground water circulation well (GCW) system was installed and operated to demonstrate in situ remediation of soil and ground water impacted with a mixture of chlorinated and nonchlorinated organic compounds at a Superfund site in upstate New York. System performance and applicability under site-specific conditions were evaluated based on the system's ability to meet the New York State Department of Environmental Conservation (NYSDEC) cleanup goals for target compounds in ground water and soil. Contaminants from the unsaturated zone were mobilized (volatilized) by one-way vacuum extraction, and treated via enhanced biodegradation (bioventing). In the saturated zone, contaminants were mobilized by soil flushing (solubilized) and treated by a combination of air stripping and biodegradation. An in situ aqueous phase bioreactor, and an ex situ gas phase bioreactor, were integrated into the system to enhance treatment via bioremediation. After 15 months of operation, the mass of target contaminants in soil and ground water combined had been reduced by 75%. Removal by biological mechanisms ranged from 35% to 56% of the total observed mass reduction. The in situ and the ex situ bioreactors mineralized 79% and 76%, respectively, of their target biodegradable contaminant loads. Results indicate that some mass reduction in target contaminants may have been from aerobic and aerobic processes within the circulation cell. Nonchlorinated compounds were relatively easy to mobilize (volatilize, solubilize, and/or transport) and treat when compared to chlorinated compounds. The data collected during the 15-month study indicate that remediation could be accomplished at the Sweden-3 Chapman site using the technology tested.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) are types of hazardous contaminants, which their ingestion could cause severe consequences on human health. Leakages from storage tanks, underground pipelines, and evaporation ponds are the main sources of soil and groundwater contaminations at the Tehran Oil Refinery area (TOR site), located in south of Tehran, Iran. In this study, soil samples were collected from different locations at and adjacent to a polluted stream in the south of the refinery. The samples were analyzed for two hazardous PAH compounds, namely benzo[a]anthracene and acenaphthene. The clean up levels due to the accidental ingestion of contaminated soils at the site were also investigated in accordance to the U.S.EPA guidelines. Comparing the soil analysis results indicated that the benzo[a]anthracene concentrations in the samples varied from 53 to 299 mg/kg, which were higher than the clean up level of 1.17 mg/kg. Thus, soil remediation is required for this contaminant. The acenaphthene analysis results denoted that the average concentration of this contaminant was below the clean up level of 116.67 mg/kg, indicating that no treatment for this contaminant is necessary at the TOR site. Also, because the slope of the ground extends to the south of the stream, which stimulates the migration of the contaminants in this direction due to advection and dispersion mechanisms, the average of benzo[a]anthracene concentrations in south samples was higher than north samples (i.e., Cavg(S) = 160 ppm, Cavg(N) = 113 ppm). Various treatment techniques such as thermal desorption, soil vapor extraction (SVE), and solidification/stabilization (S/S) were investigated for this site. Due to moderate to high plasticity and relatively low permeability of the soil and low volatility of benzo[a]anthracene, however S/S method is recommended as a practical approach for the remediation of the soil at the site.  相似文献   

18.
Vapor extraction (soil venting) has been demonstrated to be a successful and cost-effective remediation technology for removing VOCs from the vadose (unsaturated) zone. However, in many cases, seasonal water table fluctuations, drawdown associated with pump-and-treat remediation techniques, and spills involving dense, non-aqueous phase liquids (DNAPLS) create contaminated soil below the water table. Vapor extraction alone is not considered to be an optimal remediation technology to address this type of contamination.
An innovative approach to saturated zone remediation is the use of sparging (injection) wells to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below the areas of contamination. The contaminants dissolved in the ground water and sorbed onto soil particles partition into the advective air phase, effectively simulating an in situ air-stripping system. The stripped contaminants are transported in the gas phase to the vadose zone, within the radius of influence of a vapor extraction and vapor treatment system.
In situ air sparging is a complex multifluid phase process, which has been applied successfully in Europe since the mid-1980s. To date, site-specific pilot tests have been used to design air-sparging systems. Research is currently underway to develop better engineering design methodologies for the process. Major design parameters to be considered include contaminant type, gas injection pressures and flow rates, site geology, bubble size, injection interval (areal and vertical) and the equipment specifications. Correct design and operation of this technology has been demonstrated to achieve ground water cleanup of VOC contamination to low part-per-billion levels.  相似文献   

19.
Monte Carlo simulations are conducted to evaluate microbial-mediated contaminant reactions in an aquifer comprised of spatially variable microbial biomass concentrations, aquifer hydraulic conductivities, and initial electron donor/acceptor concentrations. A finite element simulation model is used that incorporates advection, dispersion, and Monod kinetic expressions to describe biological processes. Comparisons between Monte Carlo simulations of heterogeneous systems and simulations using homogeneous formulation of the same two-dimensional transport problem are presented. For the assumed set of parameters, physical aquifer heterogeneity is found to have a minor effect on the mass of contaminant biodegraded/transformed when compared to a homogeneous system; however, it noticeably changes the dispersion, skewness, and peakness of contaminant concentration distributions. Similarly, for low microbial growth rate, given favorable microbial growth characteristics, biological heterogeneity has minor effect on the mass of contaminant biodegraded/transformed when compared to a homogeneous system. On the other hand, when higher effective growth rates are assumed, biological heterogeneity and spatial heterogeneities in essential electron donor/acceptors reduce the efficiency of biotic contaminant reactions; consequently, model simulations derived from heterogeneous biomass distributions predict remediation time scales that are longer than those simulated for homogeneous systems. When correlations between physical aquifer and biological heterogeneities are considered, the assumed correlation affects predicted mean and variance of contaminant concentration and biomass distributions. For example, an assumed negative correlation between hydraulic conductivity and the initial biomass distribution produces a plume where less efficient biotic contaminant reactions occur at the leading edge of the plume; this is consistent with less degradation/transformation occurring over regions of higher groundwater velocities. However, the presence and absence of these correlations do not appear to affect the efficiency of microbial-mediated contaminant attenuation.  相似文献   

20.
DNAPL to LNAPL Transitions During Horizontal Cosolvent Flooding   总被引:1,自引:0,他引:1  
Cosolvent flooding is a technology with the potential to remove nonaqueous phase liquid (NAPL) sources from the subsurface. It can be used to initiate separate phase mobilization, which allows removal of NAPL within very few pore volumes. Mobilization may result in a sinking DNAPL bank during horizontal flooding of NAPLs denser than water. Reversal of phase density difference between aqueous and DNAPL phases could potentially avoid this downward migration of mobilized DNAPLs. We achieved phase density difference reversal and made DNAPLs float using two components in the cosolvent flooding solution. A low-density cosolvent partitions preferentially into the DNAPL and swells it, which causes a reduction in density of the DNAPL and reversal of the density difference between the NAPL and aqueous phases. A highdensity additive that remains in the aqueous phase allows the cosolvent flooding solution overall to have a density greater than that of water and permits control of the flooding instability. This study focused on tert-butanol as the swelling cosolvent and tetrachloroethylene as the contaminant. In batch tests with sucrose and glycerol as dense additives, phase density difference reversal occurred. To investigate the applicability of phase density difference reversal as a remediation technology, horizontal column and sandbox experiments were performed. These experiments demonstrated the occurrence of phase density difference reversal and effective remediation in horizontal cosolvent floods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号