首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The Eastern Mediterranean Sea is a remnant of a deep Mesozoic oceanic basin, now almost totally consumed as a result of long-term plate convergence between Eurasia and Africa. The present-day surface morphology of the Eastern Mediterranean relates both to the early history of formation of the deep basins and the recent geodynamic interactions between interfering microplates. Among the most conspicuous morphologic features of the basin is an arc-shape, elongated and wide, bathymetric swell bisecting the entire basin from the Ionian to Levantine areas, known as the Mediterranean Ridge. During the last decade this tectono-sedimentary accretionary prism, which results from the Hellenic subduction, has been intensively surveyed by swath mapping, multichannel seismic profiling and deep dives. We present here, and briefly discuss, the main morphological characteristics of this feature as derived from swath bathymetric data that considerably help to better assess the lateral and north–south morphostructural variability of the Mediterranean Ridge. This study reveals that the characteristics and morphostructural variability of the Mediterranean Ridge are related to: (1) a specific incipient collision geodynamic setting south of Crete, where the African and Aegean continental margins are nearly in contact, (2) a unique regional kinematics, controlled by frontal convergence south of Crete (central Mediterranean Ridge) and oblique subduction with opposite sense of shear for the western (Ionian) and eastern (Levantine) domains of the Mediterranean Ridge, that explain the lateral variations of deformation and (3) particularities of its sedimentary cover, which includes massive salt layers within the outer Mediterranean Ridge and local salt deposits within the inner domains, that control the north–south morphostructural variability of the sedimentary wedge.  相似文献   

2.
 The Mediterranean Ridge (eastern Mediterranean) is a large accretionary complex that results from the Africa–Europe–Aegean plates convergence. Multichannel seismic data, combined with previous results showed that the ridge comprises distinct major structural domains facing different forelands: (1) An outer domain is bounded to the south by the ridge toe. Underneath the Ionian and Levantine outer Ridge, Messinian evaporites act as a major decollement level. (2) An axial, or crestal, ridge domain with mud diapiric and mud volcano activity is bounded to the north by backthrust. (3) A less tectonized inner Ridge domain, possibly a series of former forearc basins, abuts the Hellenic Trench. The ridge displays strong along-strike variations. These variations can be interpreted as consequences of an ongoing collision against the Libyan continental promontory.  相似文献   

3.
Existing knowledge on the distribution of mud volcanoes (MVs) and other significant fluid/free gas-venting features (mud cones, mud pies, mud-brine pools, mud carbonate cones, gas chimneys and, in some cases, pockmark fields) discovered on the seafloor of the Mediterranean Sea and in the nearby Gulf of Cadiz has been compiled using regional geophysical information (including multibeam coverage of most deepwater areas). The resulting dataset comprises both features proven from geological sampling, or in situ observations, and many previously unrecognized MVs inferred from geophysical evidence. The synthesis reveals that MVs clearly have non-random distributions that correspond to two main geodynamic settings: (1) the vast majority occur along the various tectono-sedimentary accretionary wedges of the Africa-Eurasia subduction zone, particularly in the central and eastern Mediterranean basins (external Calabrian Arc, Mediterranean Ridge, Florence Rise) but also along its westernmost boundary in the Gulf of Cadiz; (2) other MVs characterize thick depocentres along parts of the Mesozoic passive continental margins that border Africa from eastern Tunisia to the Levantine coasts, particularly off Egypt and, locally, within some areas of the western Mediterranean back-arc basins. Meaningfully accounting for MV distribution necessitates evidence of overpressured fluids and mud-rich layers. In addition, cross-correlations between MVs and other GIS-based data, such as maps of the Messinian evaporite basins and/or active (or recently active) tectonic trends, stress the importance of assessing geological control in terms of the presence, or not, of thick seals and potential conduits. It is contended that new MV discoveries may be expected in the study region, particularly along the southern Ionian Sea continental margins.  相似文献   

4.
 The eastern Mediterranean Ridge reveals a peculiar feature called the “United Nations Rise”. It is notable for its complex morphology, interior structure, and mud volcanism. Its unusual structural–morphological characteristics are explained by its location at a junction of the western and eastern branches of the ridge and by the probable tectonic escape of accretionary prism sediments from the west. The geophysical data on the shallow structure of the eastern ridge branch showed some unusual structural trends, which could not be expected from the overall tectonic stress distribution. They are interpreted as resulting from the southward expansion of the Hellenic Arc.  相似文献   

5.
Seismic studies offshore southern Chile have revealed the presence of a 70–80 km wide accretionary prism seaward of the Golfo de Penas (GPAP), where the Chile Ridge collided with the South American Plate between 3 and 6 Ma ago. Using the paleo-positions of the Chile Ridge relative to South America, the maximum age of this accretionary prism, which continues to be formed in the aftermath of the ridge–continent collision, has been estimated. Building on these earlier findings, this study presents a mass balance analysis based on a 2D model of accretionary wedge and trench geometry. This model can explain the relative importance of sedimentary fluxes and deformation front migration for the wedge restoration. The proposed model can also serve to evaluate the effects of fluctuations in (1) terrigenous sediment flux related to climate change, and (2) subduction channel thickness on the accretionary prism growth. Notably, the data reveal that the key parameters controlling the rebuilding of the GPAP are the terrigenous sediment flux (75 km2/106 years), the relative advance of the deformation front (39.6 km/106 years), and the thickness of the subduction channel (0.1 km). Moreover, the range of possible solutions for the observed size of the accretionary prism is narrowed by fitting the present-day thickness of sediments at the deformation front. Finally, climate-induced variations in sedimentary fluxes on the margin can affect the rate of growth of the accretionary prism during short periods of time (<100,000 years).  相似文献   

6.
Information concerning two seismic lines, the first located northwest of the Lefkada Island and the second from the deep Ionian basin to the gulf of Patras, is used to trace the Kefalonia Transform Zone (KTZ) and to explore its relation with the sedimentary sequences and the deeper geologic structures in the study area. In addition, sea bottom topography and fault plane solutions are combined in order to explore the prolongation of the KTZ into the Ionian Abyssal Plain (IoAP) and to describe its properties. The boundary between the subduction of the eastern Mediterranean oceanic crust under the overriding continental crust and the KTZ is well constrained by the seismic data in association with seismicity and regional stress field. The southern prolongation of the KTZ is located in the IoAP towards the direction between Kefalonia and Zakynthos Islands at depth greater than 15 km. The southern part of the KTZ exhibits a strike–slip motion with a thrust component according to fault plane solutions of moderate and strong earthquakes. The seismic section mostly confirms the existence of the thrust component and gives information about the tectonic status east and west of the KTZ.  相似文献   

7.
Analysis of the multi-channel seismic reflection, magnetic and bathymetric data collected along a transect, 1110 km long parallel to 13° N latitude across the Bay of Bengal was made. The transect is from the continental shelf off Madras to the continental slope off Andaman Island in water depths of 525 m to 3350 m and across the Western Basin (bounded by foot of the continental slope of Madras and 85° E Ridge), the 85° E Ridge, the Central Basin (between the 85° E Ridge and the Ninetyeast Ridge), the Ninetyeast Ridge and the Sunda Arc. The study revealed eight seismic sequences, H1 to H8 of parallel continuous to discontinuous reflectors. Considering especially depth to the horizons, nature of reflection and on comparison with the published seismic reflection results of Currayet al. (1982), the early Eocene (P) and Miocene (M) unconformities and the base of the Quaternary sediments (Q) are identified on the seismic section. Marked changes in velocities also occur at their boundaries.In the Western Basin the acoustic basement deepening landward is inferred as a crystalline basement overlain by about 6.7 km of sediment. In the Central Basin possibly thicker sediments than in the Western Basin are estimated. The sediments in the Sunda Arc area are relatively thick and appears to have no distinct horizons. But the entire sedimentary section appears to be consisting of folded and possibly faulted layers.The comparatively broader wavelength magnetic anomalies of the Central Basin also indicate deeper depth of their origin. Very prominent double humped feature of the 85° E Ridge and broad basement swell of the Ninetyeast Ridge are buried under about 2.8 km thick sediments except over the prominent basement high near 92° E longitude. The positive structural relief of the buried 85° E Ridge in the area is reflected in magnetic signature of about 450 nT amplitude. Flexural bulge of the 85° E Ridge and subsidence of the Ninetyeast Ridge about 24 cm my–1 rate since early Eocene period have been inferred from the seismic sequence analysis.  相似文献   

8.
The Mediterranean Ridge is an arcuate ridge of deformed sediment caught up in the convergent plate margin between the African plate and the Aegean. An intensive campaign of SeaMARC I and SeaBeam surveys followed by piston coring has been conducted along the contact between undeformed turbidites of the Sirte Abyssal Plain and folded and faulted sediments of the Mediterranean Ridge. Along the outer edge of the Ridge, surficial sediments have been deformed into sinusoidal ridges and troughs (wavelengths 0.5–2 km, amplitude 20–150 m), which we interpret as folds. In plan view, the ridge and the trough fabric parallels the NW-SE trending regional contours, suggesting that the folds formed in response to compression orthogonal to the Mediterranean Ridge. The outermost ridge is shedding a debris apron out onto the abyssal plain, implying that uplift and deformation are ongoing. We show that the geometry of the outermost folds can be produced by elastic bending of a packet of 5–10 relatively strong layers, each 10–20 m thick, interbedded between weaker layers; we equate the strong layers with gypsum beds in the Messinian upper evaporites. Folding the seafloor from a flat layer into the observed ridge and trough topography would shorten the layer by less than 2%. Two percent shortening (equals two percent thickening) is insufficient to create the observed relief of the Mediterranean Ridge even if the entire sediment column down to basement were involved; we infer that additional shortening/thickening is accommodated by thrust faulting above a decollement at the top of the Messinian salt layer. At distances > 15 km from the deformation front and more than 500 m from the abyssal plain, sharp-edged, fine-grained side-scan lineations with very little vertical relief cut across the kilometer-scale ridge and trough topography. These fine-grained lineations fall in two groups trending N/S to NNE/SSW and ~ENE. We interpret these lineaments as traces of conjugate strike-slip faults formed in the same compressional regime which formed the NW/SE trending folds. The onset of strike-slip faulting may coincide with the cessation of imbricate thrust fan development above the initial salt-controlled decollement surface. The following characteristics of the Mediterranean Ridge are attributed to the presence of evaporites in the incoming sedimentary section: (1) initial deformation by folding rather than thrust faulting; (2) narrow taper; (3) rapid rate of outward growth; (4) karstification.  相似文献   

9.
In previous publications, the relationship between the Sirte Abyssal Plain as foreland and the Mediterranean Ridge as accretionary complex was considered to be simple: the foreland is undeformed, the accretionary complex consumes the foreland, the Messinian evaporites control the internal structure of the growing complex. The compilation of our own and published data results in a more complex tectonic pattern and a new geodynamic interpretation. The Sirte Abyssal Plain is imprinted by extensional tectonics which originated independently from and prior to the approaching process of accretion. The structural setting of the pre-Messinian and Messinian Sirte Abyssal Plain is responsible for the highly variable thickness of Messinian evaporites. The foreland setting in the Sirte Abyssal Plain also controls the internal structure of the Mediterranean Ridge, at least between the deformation front and Bannock Basin, following sediment deformation within the accretionary wedge with a dominating inherited SW-NE orientation. The taper angle of the post-Messinian Mediterranean Ridge is unusually small compared with other accretionary wedges. In the studied area, within a distance of about 45 km from the deformation front, there is no appreciable dip in the décollement. Therefore, the slope of the outer 45 km of the Mediterranean Ridge is considered to be caused only by gravitational spreading of Messinian evaporites deposited on the slope of pre-Messinian accretionary wedge. As a consequence, the Mediterranean Ridge underlying such slope is interpreted to belong to the foreland. The allochthonous evaporites overlie autochthonous evaporites of the Sirte Abyssal Plain. The NE-dipping décollement (and thus of the true tectonically driven deformation front) is expected to initiate at about the present position of Bannock Basin. The Sirte Abyssal Plain, the adjacent Cyrene Seamount and neighbouring seafloor relief on the African continental margin are considered to be the product of tectonic segmentation of the continental crust.  相似文献   

10.
A detailed reconstruction of the morphology and recent tectonic activity of the Northern Ionian basin is provided on the basis of newly acquired high-resolution swath bathymetric and single and multichannel seismic profiles. The tectonic domains in this area are the Calabrian accretionary wedge and the Apulian foreland. The contact between the two domains, oriented NW–SE, morphologically coincides with a sea-bottom erosional channel (Taranto canyon) characterized on both sides by mass movements induced by slope instability. Along the accretionary wedge/Apulian foreland boundary three different morphological sectors have been recognized whose main characters are represented by a southward stepped increase of erosional canyon activity resulting in a pronounced slope acclivity and a superficial sediment instability. By means of seismic data we correlate the morphology of the sea-bottom to different contractional and flexural processes of the accretionary wedge/foreland system. The interaction between the different rheological domains in the subduction/collision processes could have also induced horizontal stress represented by areas of tectonic release. In an area like this, where very few detailed surveys have been carried out, this study represents the first attempt in correlating the recent tectonic activity to the morphological features and in locating possible slope instability that has to be evaluated for the positioning of offshore infrastructures.  相似文献   

11.
Abstract. A number of recent studies based on hydrographic observations and modelling simulations have dealt with the major climatic shift that occurred in the deep circulation of the Eastern Mediterranean. This work presents hydrographic observations and current measurements conducted from 1997 to 1999, which reveal strong modifications in the dynamics of the upper, intermediate and deep layers, as well as an evolution of the thermohaline characteristics of the deep Aegean outflow since 1995. The reversal of the circulation in the upper layer of the north/central Ionian is worthy of note. The observations indicate a reduction of Atlantic Water in the northern Ionian with an increase on the eastern side of the basin. In the intermediate layer, the dispersal path of the Levantine Intermediate Water (LIW) is altered. Highly saline (>39.0) and well-oxygenated intermediate waters were found near the Western Cretan Arc Straits. They flow out from the Aegean, thus interrupting the traditional path of the LIW, and spread prevalently northwards into the Adriatic Sea. In the deep layer, dense waters, exiting from the Adriatic (σø−29.18 kg · m−3), flow against the western continental margin in the Ionian Sea at a depth of between 1000–1500 m. Dense waters of Aegean origin (> 29.20 kg · m−3), discharged into the central region of the Eastern Mediterranean during the early stages of the transient, propagate prevalently to the east in the Levantine basin and to the west in the northern Ionian Sea. Near-bottom current measurements conducted in the Ionian Sea reveal unforeseen aspects of deep dynamics, suggesting a new configuration of the internal thermohaline conveyor belt of the Eastern Mediterranean.  相似文献   

12.
The Gagua Ridge, carried by the Philippine Sea Plate, is subducting obliquely beneath the southernmost Ryukyu Margin. Bathymetric swath-mapping, performed during the ACT survey (Active Collision in Taiwan), indicates that, due to the high obliquity of plate convergence, slip partitioning occurs within the Ryukyu accretionary wedge. A transcurrent fault, trending N95° E, is observed at the rear of the accretionary wedge. Evidence of right lateral motion along this shear zone, called the Yaeyama Fault, suggests that it accommodates part of the lateral component of the oblique convergence. The subduction of the ridge disturbs this tectonic setting and significantly deforms the Ryukyu Margin. The ridge strongly indents the front of the accretionary wedge and uplifts part of the forearc basin. In the frontal part of the margin, directly in the axis of the ridge, localized transpressive and transtensional structures can be observed superimposed on the uplifted accretionary complex. As shown by sandbox experiments, these N330° E to N30° E trending fractures result from the increasing compressional stress induced by the subduction of the ridge. Analog experiments have also shown that the reentrant associated with oblique ridge subduction exhibits a specific shape that can be correlated with the relative plate motion azimuth.These data, together with the study of the margin deformation, the uplift of the forearc basin and geodetic data, show that the subduction of the Gagua Ridge beneath the accretionary wedge occurs along an azimuth which is about 20° less oblique than the convergence between the PSP and the Ryukyu Arc. Taking into account the opening of the Okinawa backarc basin and partitioning at the rear of the accretionary wedge, convergence between the ridge and the overriding accretionary wedge appears to be close to N345° E and thus, occurs at a rate close to 9 cm yr–1. As a result, we estimate that a motion of 3.7 cm yr–1±0.7 cm should be absorbed along the transcurrent fault. Based on these assumptions, the plate tectonic reconstruction reveals that the subducted segment of the Gagua Ridge, associated with the observable margin deformations, could have started subducting less than 1 m.y. ago.  相似文献   

13.
日本西南部的南海海槽是一个典型的俯冲系统,由菲律宾海板块向欧亚板块俯冲形成,其俯冲板片包含了九州-帕劳洋脊(KPR)、Kinan海山链、四国海盆和伊豆-小笠原岛弧(IBA)等多种地质单元。为了研究不同地质单元的板块俯冲效应,本文系统分析了南海海槽的地球物理和岩石地球化学特征。重力和热流特征显示南海海槽中部具有低的重力异常(-20–-40 mGal)和高的热流值(60–200 mW/m2),而东西两侧的热流值(20–80 mW/m2)较低。地震模拟结果显示俯冲板块的地壳厚度为5–20 km。地球化学结果表明俯冲板块的下覆地幔成分从西到东逐渐亏损。无震洋脊(如KPR、Kian海山链和Zenisu洋脊)的俯冲是控制南海海槽俯冲效应的主要因素。首先,无震洋脊的俯冲可能使上覆板块发生变形,沿着增生楔前缘出现不规则的地形凹陷。其次,无震洋脊的俯冲是大型逆冲地震的止裂体,阻碍了南海海槽1944年Mw 8.1和1946年Mw 8.3地震破裂的传播。此外,KPR和热的、年轻的四国海盆的俯冲会导致俯冲板片熔融,在日本岛弧上出现埃达克质岩浆活动,并为斑岩铜金矿床提供成矿物质。地球物理和地球化学特征的差异表明尽管IBA已经和日本岛弧发生碰撞,但作为IBA的残留弧,KPR仍然处于俯冲阶段,与日本岛弧之间有明显的地形分界,呈现单向收敛的状态。  相似文献   

14.
In order to understand the structure and evolution of the Mediterranean Ridge accretionary complex, it is necessary to understand the structure and history of its foreland. The Ionian Abyssal Plain is one of the varying types of foreland. The state of knowledge for that is presented. Its contour and detailed relief are described for the first time. Based on published and hitherto unpublished seismic data, information on the thickness of the Plio-Quaternary and on the Messinian evaporites are presented. Of particular interest are data concerning the pre-Messinian reflectors. They indicate a pattern of tilted blocks and horst-like features created in pre-Messinian time by tensional tectonics. Varying subsidence continued, however, during Messinian time and controlled the thickness of evaporites. At some places (e.g. Victor Hensen Seahill) vertical tectonics seem to be still active. The main tectonic structures of the Ionian Abyssal Plain are not related to the process of the present accretion and subduction at the Africa/Eurasia plate boundary but are pre-existing and should influence the internal structure of the Mediterranean Ridge which is still growing at the expense of the foreland. As a consequence of our structural evidence, we favour the following interpretation: the Ionian Abyssal Plain is not a remainder of the Jurassic Tethyan ocean but originated by extensive attenuation of continental crust.  相似文献   

15.
The seafloor of the Alboran Sea in the western Mediterranean is disrupted by deformations resulting from convergence between the African and Eurasian plates. Based on a compilation of existing and new multibeam bathymetry data and high-resolution seismic profiles, our main objective was to characterize the most recent structures in the central sector, which depicts an abrupt morphology and was chosen to investigate how active tectonic processes are shaping the seafloor. The Alboran Ridge is the most prominent feature in the Alboran Sea (>130 km in length), and a key element in the Gibraltar Arc System. Recent uplift and deformation in this ridge have been caused by sub-vertical, strike-slip and reverse faults with associated folding in the most recent sediments, their trend shifting progressively from SW–NE to WNW–ESE towards the Yusuf Lineament. Present-day transtensive deformation induces faulting and subsidence in the Yusuf pull-apart basin. The Alboran Ridge and Yusuf fault zones are connected, and both constitute a wide zone of deformation reaching tens of kilometres in width and showing a complex geometry, including different active fault segments and in-relay folds. These findings demonstrate that Recent deformation is more heterogeneously distributed than commonly considered. A narrow SSW–NNE zone with folding and reverse faulting cuts across the western end of the Alboran Ridge and concentrates most of the upper crustal seismicity in the region. This zone of deformation defines a seismogenic, left-lateral fault zone connected to the south with the Al Hoceima seismic swarm, and representing a potential seismic hazard. Newly detected buried and active submarine slides along the Alboran Ridge and the Yusuf Lineament are clear signs of submarine slope instability in this seismically active region.  相似文献   

16.
A brief review of the geological knowledge on the anoxic basins of the eastern Mediterranean is presented. Anoxic basins have been discovered in two different geological settings in the eastern Mediterranean. Bannock Basin belongs to the compressional style of the Mediterranean Ridge, and Tyro and Poseidon Basins belong to the transcurrent tectonic style of the Strabo Trench. The origin of the basins is subsurface salt dissolution triggered by tectonic deformation of the sediments on the Mediterranean Ridge, and tectonic subsidence (pull-apart mechanism) in the Strabo Trench. The onset of a deep-sea brine lake is always related to the outcrop of Messinian salts on the side-walls of the basin. The rate of basin subsidence controls the evolution of the brine lakes, which can also be completely diluted by bottom water circulation.  相似文献   

17.
The sea floor topography around Taiwan is characterized by the asymmetry of its shallow and flat shelves to the west and markedly deep troughs and basins to the south and east. Tectonics and sedimentation are major controls in forming the submarine physiographic features around Taiwan. Three Pliocene-Quaternary shelves are distributed north and west of Taiwan: East China Sea Shelf (passive margin shelf), the Taiwan Strait Shelf (foreland shelf), and Kaoping Shelf (island shelf) from north to south parallel to the strike of Taiwan orogen. Off northeastern Taiwan major morpho/tectonic features associated with plate subduction include E-W trending Ryukyu Trench, Yaeyama accretionary wedge, forearc basins, the Ryukyu Arcs, and the backarc basin of southern Okinawa Trough. Off eastern Taiwan lies the deep Huatung Basin on the Philippine Sea plate with a relatively flat floor, although several large submarine canyons are eroding and crossing the basin floor. Off southeastern Taiwan, the forearc region of the Luzon Arc has been deformed into five alternating N-S trending ridges and troughs during initial arc-continent collision. Among them, the submarine Hengchun Ridge is the seaward continuation of the Hengchun peninsula in southern Taiwan. Off southwestern Taiwan, the broad Kaoping Slope is the major submarine topographic feature with several noticeable submarine canyons. The Penghu Canyon separates this slope from the South China Sea Slope to the west and merges southwards into the Manila Trench in the northern South China Sea. Although most of sea floors of the Taiwan Strait are shallower than 60 m in water depth, there are three noticeable bathymetric lows and two highs in the Taiwan Strait. There exists a close relationship between hydrography and topography in the Taiwan Strait. The circulation of currents in the Taiwan Strait is strongly influenced by seasonal monsoon and semidiurnal tides. The Penghu Channel-Yunchang Ridge can be considered a modern tidal depositional system. The Taiwan Strait shelf has two phases of development. The early phase of the rift margin has developed during Paleoocene-Miocene and it has evolved to the foreland basin in Pliocene-Quaternary time. The present shelf morphology results mainly from combined effects of foreland subsidence and modern sedimentation overprinting that of the Late Pleistocene glaciation about 15,000 years ago.  相似文献   

18.
The sea floor topography around Taiwan is characterized by the asymmetry of its shallow and flat shelves to the west and markedly deep troughs and basins to the south and east. Tectonics and sedimentation are major controls in forming the submarine physiographic features around Taiwan. Three Pliocene-Quaternary shelves are distributed north and west of Taiwan: East China Sea Shelf (passive margin shelf), the Taiwan Strait Shelf (foreland shelf), and Kaoping Shelf (island shelf) from north to south parallel to the strike of Taiwan orogen. Off northeastern Taiwan major morpho/tectonic features associated with plate subduction include E-W trending Ryukyu Trench, Yaeyama accretionary wedge, forearc basins, the Ryukyu Arcs, and the backarc basin of southern Okinawa Trough. Off eastern Taiwan lies the deep Huatung Basin on the Philippine Sea plate with a relatively flat floor, although several large submarine canyons are eroding and crossing the basin floor. Off southeastern Taiwan, the forearc region of the Luzon Arc has been deformed into five alternating N-S trending ridges and troughs during initial arc-continent collision. Among them, the submarine Hengchun Ridge is the seaward continuation of the Hengchun peninsula in southern Taiwan. Off southwestern Taiwan, the broad Kaoping Slope is the major submarine topographic feature with several noticeable submarine canyons. The Penghu Canyon separates this slope from the South China Sea Slope to the west and merges southwards into the Manila Trench in the northern South China Sea. Although most of sea floors of the Taiwan Strait are shallower than 60?m in water depth, there are three noticeable bathymetric lows and two highs in the Taiwan Strait. There exists a close relationship between hydrography and topography in the Taiwan Strait. The circulation of currents in the Taiwan Strait is strongly influenced by seasonal monsoon and semidiurnal tides. The Penghu Channel-Yunchang Ridge can be considered a modern tidal depositional system. The Taiwan Strait shelf has two phases of development. The early phase of the rift margin has developed during Paleoocene-Miocene and it has evolved to the foreland basin in Pliocene-Quaternary time. The present shelf morphology results mainly from combined effects of foreland subsidence and modern sedimentation overprinting that of the Late Pleistocene glaciation about 15,000 years ago.  相似文献   

19.
Two cores from an anoxic basin of the southeastern Mediterranean Ridge were investigated to compare the clay mineralogy of pelagic sediments and of the interbedded sapropels. The sediments of Core BAN 84-02, raised from the basin floor, and those of Core BAN 84-08, from the eastern plateau of the Bannock Basin, provide evidence for different sedimentary environments. The anoxic conditions, which are still present near the bottom, produce an important decrease in smectite crystallinity (Core 02), whereas well-organized smectite persists in the normally oxygenated sediments (Core 08). Detrital clay minerals from various sources were deposited in the basin and no appreciable diagenesis was recognized downcore.

The clay mineralogy of the sapropels shows remarkable differences compared to the pelagic sediments. The changes observed are dependent on aggressive chemical reaction and on the sudden input of detrital crystalline sediments into the stagnant environment. A climatic curve registers the variable degree of clay mineral hydrolysis in continental areas and exhibits good correspondence with an already published oxygen isotope curve for the area.  相似文献   


20.
Sedimentation processes occurring in an active convergent setting are well illustrated in the Lesser Antilles island arc. The margin is related to westward subduction of the North and/or the South America plates beneath the Caribbean plate. From east to west, the arc can be subdivided into several tectono-sedimentary depositional domains: the accretionary prism, the fore-arc basin, the arc platform and inter-arc basin, and the Grenada back-arc basin. The Grenada back-arc basin, the fore-arc basin (Tobago Trough) and the accretionary prism on the east side of the volcanic arc constitute traps for particles derived from the arc platform and the South American continent. The arc is volcanically active, and provides large volumes of volcaniclastic sediments which accumulate mainly in the Grenada basin by volcaniclastic gravity flows (volcanic debris avalanches, debris flows, turbiditic flows) and minor amounts by fallout. By contrast, the eastern side of the margin is fed by ash fallout and minor volcaniclastic turbidites. In this area, the dominant component of the sediments is pelagic in origin, or derived from South America (siliciclastic turbidites). Insular shelves are the locations of carbonate sedimentation, such as large platforms which develop in the Limestone Caribbees in the northern part of the margin. Reworking of carbonate material by turbidity currents also delivers lesser amounts to eastern basins of the margin. This contrasting sedimentation on both sides of the arc platform along the margin is controlled by several interacting factors including basin morphology, volcanic productivity, wind and deep-sea current patterns, and sea-level changes. Basin morphology appears to be the most dominant factor. The western slopes of the arc platform are steeper than the eastern ones, thus favouring gravity flow processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号