首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectral type is a key parameter in calibrating the temperature which is required to estimate the mass of young stars and brown dwarfs. We describe an approach developed to classify low-mass stars and brown dwarfs in the Trapezium Cluster using red optical spectra, which can be applied to other star-forming regions. The classification uses two methods for greater accuracy: the use of narrow-band spectral indices which rely on the variation of the strength of molecular lines with spectral type and a comparison with other previously classified young, low-mass objects in the Chamaeleon I star-forming region. We have investigated and compared many different molecular indices and have identified a small number of indices which work well for classifying M-type objects in nebular regions. The indices are calibrated for young, pre-main-sequence objects whose spectra are affected by their lower surface gravities compared with those on the main sequence. Spectral types obtained are essentially independent of both reddening and nebular emission lines.
Confirmation of candidate young stars and brown dwarfs as bona fide cluster members may be accomplished with moderate resolution spectra in the optical region by an analysis of the strength of the gravity-sensitive Na doublet. It has been established that this feature is much weaker in these very young objects than in field dwarfs. A sodium spectral index is used to estimate the surface gravity and to demonstrate quantitatively the difference between young (1–2 Myr) objects, and dwarf and giant field stars.  相似文献   

2.
Recent observations point to the presence of structured dust grains in the discs surrounding young brown dwarfs, thus implying that the first stages of planet formation take place also in the substellar regime. Here, we investigate the potential for planet formation around brown dwarfs and very low-mass stars according to the sequential core accretion model of planet formation. We find that, for a brown dwarf mass 0.05 M, our models predict a maximum planetary mass of  ∼5   M  , orbiting with semimajor axis ∼ 1 au. However, we note that the predictions for the mass–semimajor axis distribution are strongly dependent upon the models chosen for the disc surface density profiles and the assumed distribution of disc masses. In particular, if brown dwarf disc masses are of the order of a few Jupiter masses, Earth-mass planets might be relatively frequent, while if typical disc masses are only a fraction of Jupiter mass, we predict that planet formation would be extremely rare in the substellar regime. As the observational constraints on disc profiles, mass dependencies and their distributions are poor in the brown dwarf regime, we advise caution in validating theoretical models only on stars similar to the Sun and emphasize the need for observational data on planetary systems around a wide range of stellar masses. We also find that, unlike the situation around solar-like stars, Type II migration is totally absent from the planet formation process around brown dwarfs, suggesting that any future observations of planets around brown dwarfs would provide a direct measure of the role of other types of migration.  相似文献   

3.
The aim of the Degenerate Objects around Degenerate Objects (DODO) survey is to search for very low-mass brown dwarfs and extrasolar planets in wide orbits around white dwarfs via direct imaging. The direct detection of such companions would allow the spectroscopic investigation of objects with temperatures much lower  (<500 K)  than the coolest brown dwarfs currently observed. These ultra-low-mass substellar objects would have spectral types >T8.5, and so could belong to the proposed Y dwarf spectral sequence. The detection of a planet around a white dwarf would prove that such objects can survive the final stages of stellar evolution and place constraints on the frequency of planetary systems around their progenitors (with masses between 1.5 and 8   M  , i.e. early B to mid-F). This paper presents the results of a multi epoch J band common proper motion survey of 23 nearby equatorial and Northern hemisphere white dwarfs. We rule out the presence of any common proper motion companions, with limiting masses determined from the completeness limit of each observation, to 18 white dwarfs. For the remaining five targets, the motion of the white dwarf is not sufficiently separated from the non-moving background objects in each field. These targets require additional observations to conclusively rule out the presence of any common proper motion companions. From our completeness limits, we tentatively suggest that  ≲5 per cent  of white dwarfs have substellar companions with   T eff≳ 500 K  between projected physical separations of 60–200 au.  相似文献   

4.
The properties of accretion discs around stars and brown dwarfs in the σ Ori cluster (age 3 Myr) are studied based on near-infrared (IR) time series photometry supported by mid-IR spectral energy distributions (SEDs). We monitor ∼30 young low-mass sources over eight nights in the J and K band using the duPont telescope at Las Campanas. We find three objects showing variability with J -band amplitudes  ≥0.5 mag  ; five additional objects exhibit low-level variations. All three highly variable sources have been previously identified as highly variable; thus, we establish the long-term nature of their flux changes. The light curves contain periodic components with time-scales of  ∼0.5–8 d  , but have additional irregular variations superimposed – the characteristic behaviour for classical T Tauri stars. Based on the colour variability, we conclude that hotspots are the dominant cause of variations in two objects (#19 and #33), including one likely brown dwarf, with spot temperatures in the range of 6000–7000 K. For the third one (#2), a brown dwarf or very low-mass star, inhomogeneities at the inner edge of the disc are the likely origin of variability. Based on mid-IR data from Spitzer , we confirm that the three highly variable sources are surrounded by circum-(sub)-stellar discs. They show typical SEDs for T Tauri-like objects. Using SED models, we infer an enhanced scaleheight in the disc for the object #2, which favours the detection of disc inhomogeneities in light curves and is thus consistent with the information from variability. In the σ Ori cluster, about every fifth accreting low-mass object shows persistent high-level photometric variability. We demonstrate that estimates for fundamental parameters in such objects can be significantly improved by determining the extent and origin of the variations.  相似文献   

5.
We present results from high-resolution hydrodynamical simulations that explore the effects of small-scale clustering in star-forming regions. A large ensemble of small- N clusters with five stellar seeds have been modelled and the resulting properties of stars and brown dwarfs statistically derived and compared with observational data.
Close dynamical interactions between the protostars and competitive accretion driven by the cloud collapse are shown to produce a distribution of final masses that is bimodal, with most of the mass residing in the binary components. When convolved with a suitable core mass function, the final distribution of masses resembles the observed initial mass function, in both the stellar and substellar regimes. Binaries and single stars are found to constitute two kinematically distinct populations, with about half of the singles attaining velocities ≥2 km s−1, which might deprive low-mass star-forming regions of their lightest members in a few crossing times. The eccentricity distribution of binaries and multiples is found to follow a distribution similar to that of observed long-period (uncircularized) binaries.
The results obtained support a mechanism in which a significant fraction of brown dwarfs form under similar circumstances as those of normal stars but are ejected from the common envelope of unstable multiple systems before their masses exceed the hydrogen burning limit. We predict that many close binary stars should have wide brown dwarf companions. Brown dwarfs, and, in general, very low-mass stars, would be rare as pure binary companions. The binary fraction should be a decreasing function of primary mass, with low-mass or substellar primaries being scarce. Where such binaries exist, they are expected either to be close enough (semimajor axis ∼10 au) to survive strong interactions with more massive binaries or to be born in very small molecular cloud cores.  相似文献   

6.
We analyse the angular momentum evolution from the red giant branch (RGB) to the horizontal branch (HB) and along the HB. Using rotation velocities for stars in the globular cluster M13, we find that the required angular momentum for the fast rotators is up to 1–3 orders of magnitude (depending on some assumptions) larger than that of the Sun. Planets of masses up to 5 times Jupiter's mass and up to an initial orbital separation of ~2 au are sufficient to spin-up the RGB progenitors of most of these fast rotators. Other stars have been spun-up by brown dwarfs or low-mass main-sequence stars. Our results show that the fast rotating HB stars have been probably spun-up by planets, brown dwarfs or low-mass main-sequence stars while they evolved on the RGB. We argue that the angular momentum considerations presented in this paper further support the 'planet second parameter' model. In this model, the 'second parameter' process, which determines the distribution of stars on the HB, is interaction with low-mass companions, in most cases with gas-giant planets, and in a minority of cases with brown dwarfs or low-mass main-sequence stars. The masses and initial orbital separations of the planets (or brown dwarfs or low-mass main-sequence stars) form a rich spectrum of different physical parameters, which manifests itself in the rich varieties of HB morphologies observed in the different globular clusters.  相似文献   

7.
Recent observations of nearby star forming regions have offered evidence that young brown dwarfs undergo a period of mass accretion analogous to the T Tauri phase observed in young stars. Brown dwarf analogs to stellar protostars, however, have yet to be definitively observed. These young, accreting objects would shed light on the nature of the dominant brown dwarf formation process, as well as provide ideal laboratories to investigate the dependence of the accretion mechanism on protostellar mass. Recent near infrared surveys have identified candidate proto‐brown dwarfs and characterized low mass protostars in nearby star forming regions. These techniques allow near infrared spectra to diagnose the effective temperature, accretion luminosity, magnetic field strength and rotation velocity of young low mass stars across the stellar/substellar boundary. The lowest mass proto‐brown dwarfs (M < 40 MJup), however, will prove challenging to observe given current near IR observational capabilities. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We show that there is a relationship between the age excess, defined as the difference between the stellar isochrone and chromospheric ages, and the metallicity as measured by the index [Fe/H] for late-type dwarfs. The chromospheric age tends to be lower than the isochrone age for metal-poor stars, and the opposite occurs for metal-rich objects. We suggest that this could be an effect of neglecting the metallicity dependence of the calibrated chromospheric emission–age relation. We propose a correction to account for this dependence. We also investigate the metallicity distributions of these stars, and show that there are distinct trends according to the chromospheric activity level. Inactive stars have a metallicity distribution which resembles the metallicity distribution of solar neighbourhood stars, while active stars appear to be concentrated in an activity strip on the log  R 'HK × [Fe/H] diagram. We provide some explanations for these trends, and show that the chromospheric emission–age relation probably has different slopes on the two sides of the Vaughan–Preston gap.  相似文献   

9.
We present the results of high-resolution (1–0.4 Å) optical spectroscopy of a sample of very low-mass stars. These data are used to examine the kinematics of the stars at the bottom of the hydrogen-burning main sequence. No evidence is found for a significant difference between the kinematics of the stars in our sample with I  −  K  > 3.5 ( M bol ≳ 12.8) and those of more massive M dwarfs ( M bol ≈ 7–10). A spectral atlas at high (0.4-Å) resolution for M8–M9+ stars is provided, and the equivalent widths of Cs  I , Rb  I and Hα lines present in our spectra are examined. We analyse our data to search for the presence of rapid rotation, and find that the brown dwarf LP 944-20 is a member of the class of 'inactive, rapid rotators'. Such objects seem to be common at and below the hydrogen-burning main sequence. It seems that in low-mass/low-temperature dwarf objects either the mechanism that heats the chromosphere, or the mechanism that generates magnetic fields, is greatly suppressed.  相似文献   

10.
Intermediate resolution spectroscopy from the European Southern Observatory Very Large Telescope is analysed for 63 photometrically selected low-mass  (0.08–0.30 M)  candidates of the open cluster NGC 2547. We have confirmed membership for most of these stars using radial velocities, and found that lithium remains undepleted for cluster stars with   I > 17.54 ± 0.14  and   Ks > 14.86 ± 0.12  . From these results, several pre–main-sequence evolutionary models give almost model independent ages of 34–36 Myr, with a precision of 10 per cent. These ages are only slightly larger than the ages of 25–35(±5) Myr obtained using the same models to fit isochrones to higher mass stars descending towards the zero-age main-sequence, both in empirically calibrated and theoretical colour–magnitude diagrams. This agreement between age determinations in different mass ranges is an excellent test of the current generation of low-mass pre–main-sequence stellar models and lends confidence to ages determined with either method between 30 and 120 Myr.  相似文献   

11.
Self-gravitating protostellar discs are unstable to fragmentation if the gas can cool on a time-scale that is short compared with the orbital period. We use a combination of hydrodynamic simulations and N -body orbit integrations to study the long-term evolution of a fragmenting disc with an initial mass ratio to the star of   M disc/ M *= 0.1  . For a disc that is initially unstable across a range of radii, a combination of collapse and subsequent accretion yields substellar objects with a spectrum of masses extending (for a Solar-mass star) up to  ≈0.01 M  . Subsequent gravitational evolution ejects most of the lower mass objects within a few million years, leaving a small number of very massive planets or brown dwarfs in eccentric orbits at moderately small radii. Based on these results, systems such as HD 168443 – in which the companions are close to or beyond the deuterium burning limit – appear to be the best candidates to have formed via gravitational instability. If massive substellar companions originate from disc fragmentation, while lower-mass planetary companions originate from core accretion, the metallicity distribution of stars which host massive substellar companions at radii of ∼1 au should differ from that of stars with lower mass planetary companions.  相似文献   

12.
A detailed study was performed for a sample of low-mass pre-main-sequence (PMS) stars, previously identified as weak-line T Tauri stars, which are compared to members of the Tucanae and Horologium Associations. Aiming to verify if there is any pattern of abundances when comparing the young stars at different phases, we selected objects in the range from 1 to 100 Myr, which covers most of PMS evolution. High-resolution optical spectra were acquired at European Southern Observatory and Observatório do Pico dos Dias . The stellar fundamental parameters effective temperature and gravity were calculated by excitation and ionization equilibria of iron absorption lines. Chemical abundances were obtained via equivalent width calculations and spectral synthesis for 44 per cent of the sample, which shows metallicities within 0.5 dex solar. A classification was developed based on equivalent width of Li  i 6708 Å and Hα lines and spectral types of the studied stars. This classification allowed a separation of the sample into categories that correspond to different evolutive stages in the PMS. The position of these stars in the Hertzsprung–Russell diagram was also inspected in order to estimate their ages and masses. Among the studied objects, it was verified that our sample actually contains seven weak-line T Tauri stars, three are Classical T Tauri, 12 are Fe/Ge PMS stars and 21 are post-T Tauri or young main-sequence stars. An estimation of circumstellar luminosity was obtained using a disc model to reproduce the observed spectral energy distribution. Most of the stars show low levels of circumstellar emission, corresponding to less than 30 per cent of the total emission.  相似文献   

13.
We investigate the dependence of stellar properties on the mean thermal Jeans mass in molecular clouds. We compare the results from the two largest hydrodynamical simulations of star formation to resolve the fragmentation process down to the opacity limit, the first of which was reported by Bate, Bonnell & Bromm. The initial conditions of the two calculations are identical except for the radii of the clouds, which are chosen so that the mean densities and mean thermal Jeans masses of the clouds differ by factors of 9 and 3, respectively.
We find that the denser cloud, with the lower mean thermal Jeans mass, produces a higher proportion of brown dwarfs and has a lower characteristic (median) mass of the stars and brown dwarfs. This dependence of the initial mass function (IMF) on the density of the cloud may explain the observation that the Taurus star-forming region appears to be deficient in brown dwarfs when compared with the Orion Trapezium cluster. The new calculation also produces wide binaries (separations >20 au), one of which is a wide binary brown dwarf system.
Based on the hydrodynamical calculations, we develop a simple accretion/ejection model for the origin of the IMF. In the model, all stars and brown dwarfs begin with the same mass (set by the opacity limit for fragmentation) and grow in mass until their accretion is terminated stochastically by their ejection from the cloud through dynamically interactions. The model predicts that the main variation of the IMF in different star-forming environments should be in the location of the peak (due to variations in the mean thermal Jeans mass of the cloud) and in the substellar regime. However, the slope of the IMF at high masses may depend on the dispersion in the accretion rates of protostars.  相似文献   

14.
Variability studies are an important tool to investigate key properties of stars and brown dwarfs. From photometric monitoring we are able to obtain information about rotation and magnetic activity, which are expected to change in the mass range below 0.3 solar masses, since these fully convective objects cannot host a solar‐type dynamo. On the other hand, spectroscopic variability information can be used to obtain a detailed view on the accretion process in very young objects. In this paper, we report about our observational efforts to analyse the variability and rotational evolution of young brown dwarfs and very low‐mass stars. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We have monitored S Ori 45, a young, low-mass (20 M j up) brown dwarf of the σ Orionis cluster (~3 Myr, 352 pc), using optical and near-infrared filters. S Ori 45 (spectral type M8.5) is found to be multi-periodic with a dominant modulation at 2.5–3.5 h, and a short modulation at about 46 min. We ascribe the longer of these modulations to a rotation period. After comparing these results with observations of more massive cluster brown dwarfs and field brown dwarfs, we conclude that substellar objects present rotational and angular momentum evolution. We have also obtained intermediate-resolution near-infrared spectroscopy of S Ori 70, which is a T-class, free-floating planetary candidate member in the σ Orionis cluster. Its observed spectrum has been compared to data of field brown dwarfs of similar types and to theoretical spectra computed for different surface temperatures and gravities. We conclude that S Ori 70 has a significantly cool, low-gravity atmosphere. This supports the young age of this object and its membership in the cluster. From state-of-the-art evolutionary models, the mass of S Ori 70 is estimated at 3 times the Jovian mass (+5 ?2 M j up), challenging current stellar/substellar formation models. S Ori 70 remains the lowest mass object so far identified in any open cluster.  相似文献   

16.
The UK Infrared Telescope Infrared Deep Sky Survey (UKIDSS) is the first of a new generation of infrared surveys. Here, we combine the data from two UKIDSS components, the Large Area Survey (LAS) and the Galactic Cluster Survey (GCS), with Two-Micron All-Sky Survey (2MASS) data to produce an infrared proper motion survey for low-mass stars and brown dwarfs. In total, we detect 267 low-mass stars and brown dwarfs with significant proper motions. We recover all 10 known single L dwarfs and the one known T dwarf above the 2MASS detection limit in our LAS survey area and identify eight additional new candidate L dwarfs. We also find one new candidate L dwarf in our GCS sample. Our sample also contains objects from 11 potential common proper motion binaries. Finally, we test our proper motions and find that while the LAS objects have proper motions consistent with absolute proper motions, the GCS stars may have proper motions which are significantly underestimated. This is possibly due to the bulk motion of some of the local astrometric reference stars used in the proper motion determination.  相似文献   

17.
In this paper we report the first results from a survey for low-mass stars and brown dwarfs, based on a photographic stack of around 100 Schmidt plates. This survey extends photographic searches by about 2 mag, and covers an area of 25 deg2. Some 30 faint objects with large R − I colours were selected for further study, and were found to have very strong molecular absorption in their spectra, but only moderately red infrared colours. Five of these stars were selected for a parallax programme; three of these were found to be at a distance of around 45 pc, implying a very low luminosity. On the basis of their luminosity alone it is clear that these stars are field brown dwarfs, and we discuss their likely evolutionary status in the context of current models of low-mass stellar evolution.  相似文献   

18.
The Monitor project is a photometric monitoring survey of nine young (1–200 Myr) clusters in the solar neighbourhood to search for eclipses by very low mass stars and brown dwarfs and for planetary transits in the light curves of cluster members. It began in the autumn of 2004 and uses several 2- to 4-m telescopes worldwide. We aim to calibrate the relation between age, mass, radius and where possible luminosity, from the K dwarf to the planet regime, in an age range where constraints on evolutionary models are currently very scarce. Any detection of an exoplanet in one of our youngest targets (≲10 Myr) would also provide important constraints on planet formation and migration time-scales and their relation to protoplanetary disc lifetimes. Finally, we will use the light curves of cluster members to study rotation and flaring in low-mass pre-main-sequence stars.
The present paper details the motivation, science goals and observing strategy of the survey. We present a method to estimate the sensitivity and number of detections expected in each cluster, using a simple semi-analytic approach which takes into account the characteristics of the cluster and photometric observations, using (tunable) best-guess assumptions for the incidence and parameter distribution of putative companions, and we incorporate the limits imposed by radial velocity follow-up from medium and large telescopes. We use these calculations to show that the survey as a whole can be expected to detect over 100 young low and very low mass eclipsing binaries, and ∼3 transiting planets with radial velocity signatures detectable with currently available facilities.  相似文献   

19.
We present optical spectra of four intermediate-mass candidate young stellar objects that have often been classified as Herbig Ae/Be stars. Typical Herbig Ae/Be emission features are not present in the spectra of these stars. Three of them, HD 36917, HD 36982 and HD 37062, are members of the young Orion nebula cluster (ONC). This association constrains their ages to be ≲1 Myr. The lack of appreciable near-infrared excess in them suggests the absence of hot dust close to the central star. However, they do possess significant amounts of cold and extended dust as revealed by the large excess emission observed at far-infrared wavelengths. The fractional infrared luminosities  ( L ir/ L )  and the dust masses computed from IRAS fluxes are systematically lower than those found for Herbig Ae/Be stars but higher than those for Vega-like stars. These stars may thus represent the youngest examples of the Vega phenomenon known so far. In contrast, the other star in our sample, HD 58647, is more likely to be a classical Be star, as is evident from the low   L ir/ L   , the scarcity of circumstellar dust, the low polarization, the presence of H α emission and near-infrared excess, and the far-infrared spectral energy distribution consistent with free–free emission similar to other well-known classical Be stars.  相似文献   

20.
We have undertaken a series of hydrodynamic + N ‐body simulations in order to explore the binary properties of young stars. We find that multiple stars are a natural outcome of collapsing turbulent flows, with a high incidence of N > 2 multiples, specially among the higher mass objects. We find a positive correlation of multiplicity with primary mass and a companion frequency that decreases with age, during the first few Myr after formation. Binary brown dwarfs are rarely formed, in conflict with observations. Brown dwarfs as companions are predominantly found orbiting binaries or triples at large separations. The paucity of ultra low mass and low mass ratio binaries has been investigated further, and we tentatively conclude that their formation is intricately related to an appropriate selection of initial conditions and an accurate modelling of disc accretion and evolution. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号