首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BOREAS Fjellberg, A. 1978 03 01: Fragments of a Middle Weichselian fauna on Andøya, north Norway. Boreas. Vol. 7. p. 39. Oslo. ISSN 0300–9483.
Presence of the chironomid Corynocera ambigua Zett. and the carnivore Mustela erminea L. on Andøya about 15,000 B.P. is suggested. The oribatide mite Trichoribates cf. setiger (Träg.) has been recorded in 17–18,000 years old sediments on Andøya.  相似文献   

2.
Blockfields, weathering boundaries and marginal moraines have been mapped along a longitudinal transect from northern Andøya to Skånland in northern Norway. The degree of rock-surface weathering above and below glacial trimlines, clay-mineral assemblages and surface exposure dating based on in situ cosmogenic 10Be have been used to reconstruct the vertical dimensions and timing of the Last Glacial Maximum (LGM) of the Scandinavian Ice Sheet in this region. The cosmogenic exposure dates suggest that the lower blockfield boundary/trimline along the Andøya-Skånland transect represents the upper limit of the Late Weichselian ice sheet, with an average surface gradient of c . 9.5 m/km. The surface exposure dates from Andøya pre-date the LGM, suggesting that the LGM ice sheet did not reach mountain plateaux at northwest Andøya. The results thus support evidence from lake sediment records that the northern tip of Andøya was not covered by the Scandinavian Ice Sheet during the LGM.  相似文献   

3.
BOREAS Vorren, K.-D. 1978 03 01: Late and Middle Weichselian stratigraphy of Andøya, north Norway, Boreas, Vol. 7, pp. 19–38. Oslo. ISSN 0300–9483.
Bio-stratigraphy and 14C datings from Lake Endletvatn, 69o 44'N and 19o05'E, approx. 35 m above sea level, suggest that the lacustrine sedimentation started about 18,000 B.P. The Middle Weichselian vegetation was probably a dry arctic, partly barren, grassland type with abundant Draba spp. and perhaps also Braya spp. Two climatic ameliorations of this chronal substage, named Endletvatn thermomers 1 and 2 (ET 1 and 2), have been recorded. During ET 2, the beginning of which has been dated at about 15,000 B.P., a humid climate prevailed, with a July temperature probably not deviating much from the present one. The colonization by low alpine and subalpine species probably started in the Bølling Chronozone. During the early Allerød Chronozone, protocratic conditions with grasses RumexlOxyria, Papaver and Sagina of. saginoides prevailed. During the middle of the Allerød, stable soil and continuous vegetation was established at sheltered places. At the transition to the Younger Dryas Chronozone a climate favouring Artemisia changed this vegetational development. The middle of the Younger Dryas was cool and humid, probably with an upper low alpine vegetation. The end of this chronozone was characterized by a vegetation of low alpine heaths with Empetrum and Dryas.
Diatom analysis (Foged 1978) suggests that there has been no direct marine influence in the basin. The marginal moraine stratigraphy, the marine limit and the climatic development are discussed.  相似文献   

4.
Thermoluminescence dating has been carried out on feldspar sand grains from the distal sandur of the Godøya Formation and correlated sediments at Sunnmøre, western Norway. The accumulated dose was determined by the regeneration method. The Godøya Formation, which was earlier assumed to be of Middle Weichselian age, was dated to 105–130 ka and is now assumed to postdate immediately the Eemian interglacial. Dates of sediments previously correlated to the Godøya Formation yielded ages in the ranges of 70–90 and 40–50 ka, thus indicating at least three Weichselian ice-free periods predating the Ålesund interstadial in the area.  相似文献   

5.
The foraminiferal fauna and lithology of 17 short sediment cores from two profiles in the Norwegian Channel have been investigated. Three ecostratigraphical zones are distinguished and their depositional environment, age and correlation with adjacent areas are discussed. The zones form a climatically conditioned succession (from below): the Cassidulina-Nonion zone contains an arctic fauna affected by meltwater influx, and its deposition was in progress in Late Weichselian; the Uvigerina-Cassidulina zone with a mixed fauna of arctic and boreal species is referred to the Early Flandrian; the Uvigerina-Bulimina zone contains a boreal fauna and was deposited under influence of Atlantic water; its age is regarded as Middle and Late Flandrian. Transport and deposition of sediments in the channel is discussed on the basis of recent current conditions and distribution of the zones.  相似文献   

6.
Morphological, seismic and lithostratigraphic investigations of a moraine deposit at Bleik (the Bleik moraine), northern Andøya, show short-distance transported till overlying long-distance transported predominantly glaciofluvial ice-marginal deposits. Consolidated glaciomarine sediments from a core at present sea-level, c . 400 m distally to the moraine complex, contain 31 species of foraminifera, among which Cassidulina reniforme, Islandiella helenae and Trifarina fluens dominate, and fragments of the molluscs Mya truncata and Astarte sp. and the echinoid Strongylocentrotus sp. Amino acid analyses of the foraminifera Cibicides lobatulus and the mollusc Mya truncata indicate ages between 22,000 and 16,000 BP. Radiocarbon dating of fragments of Mya truncata from the upper part of the core gave an age of 17,940 ± 245 BP, while a dating of unidentified shell fragments from the lower part gave an infinite age (>40,000 BP). The sediment was probably disturbed by icebergs beyond the end moraine zone, and the radiocarbon and amino acid dating of Mya truncata therefore represent a maximum age for this process. This new evidence indicates two phases with a higher relative sea-level than at present at Bleik, c . 18,000 and >40,000 BP. The Bleik moraine probably represents the early Late Weichselian glacial maximum ( c . 22,000 BP), while the underlying deglaciation deposit and associated beach-ridge (Bruvollen) is of pre-Late Weichselian age. Moraine ridges 3–4 km to the south of Bleik probably indicate advances of local glaciers between 22,000 and 18,000 BP.  相似文献   

7.
Three localities with marginal moraines deposited by former cirque glaciers are investigated in east-central southern Norway. The wet-based (erosive) cirque glaciers with aspects towards S-SW and N-NE are mapped at altitudes above 1100 m, and have a mean equilibrium-line altitude of 1275 m. With a suggested mean annual winter precipitation close to the average for the modern accumulation season (1 October-30 April) when the cirque glaciers existed, the mean air-temperature depression during the ablation season (1 May-30 September) is calculated to be 6–7°C lower than at present. The high-altitude cirques of central Rondane were still covered by ice when the low-altitude cirque glaciers developed in distal position for this massif in eastern Rondane and on isolated mountains. Hence, the cirque glaciers are suggested to have existed during the deglaciation after the Late Weichselian maximum, and most likely during the Younger Dryas (11000–10000 BP). The cirque glaciers indicate a downwasting ice-sheet surface well below an altitude of 1100 m prior to the Younger Dryas, and this supports a limited (small) vertical extent for the Late Weichselian ice sheet in this region. With the contemporaneous level for instantaneous glacierization (glaciation threshold) just below the highest elevated peaks in east-central southern Norway, this fits with the idea of a continuous downwasting of the Late Weichselian ice sheet since the 'first' nunataks appeared. The occurrence of the cirque glaciers indicates a multidomed Scandinavian ice-sheet geometry during the Late Weichselian.  相似文献   

8.
Examination of a 10 m piston core from the eastern Kattegat revealed marine sediments spanning a period from the late Middle Weichselian to the Early Holocene. The oldest marine unit in the core is 14C-dated to about 30,000–36,000 years BP. These sediments represent the Middle Weichselian Sandnes/Denekamp-Hengelo Interstadial (upper part of stable isotope stage 3) and can be correlated to marine deposits from several localities in the Kattegat region by means of foraminifera. The Late Weichselian deposits comprise sediments from the Oldest Dryas Stadial and the Allerød Interstadial. The intervening periods are not represented in the sequence (hiatuses). Sediments from the latest part of the Early Holocene Preboreal period succeeding the Allerod sequence indicate a considerable hiatus spanning 2000–3000 years around the Weichselian/Holocene boundary. The late Preboreal faunas document a high freshwater inflow during this period, and stable conditions seem not to have been reached in the area until a few hundred years later, in the Boreal period. Comparison with boxcore material from the same site documents a reduction of the energy level of the bottom currents some time between c. 8000 and 800 years BP.  相似文献   

9.
The history of postglacial emergence on the Murman coast, Kola Peninsula, is reconstructed based on twelve new radiocarbon ages from three marine sections and regional shoreline observations. Two pronounced shore levels are recognized below the Late Weichselian marine limit. The lower shoreline (11 -16 m a.s.l.) is associated with a transgression dated to 6200–6600 BP, correlative to the Tapes transgression on the Norwegian coastline. The upper shoreline (36–47 m a.s.l.) is not yet dated directly but probably correlates to the Main (Younger Dryas) shoreline. Strandline elevations descend eastward along the Murman coast. Observed emergence trends suggest the greatest regional Late Weichselian glacier load over the west-central Kola Peninsula rather than in the southern Barents Sea.  相似文献   

10.
A relative and absolute (pollen concentration) diagram is presented from Østervatnet, southern Varanger peninsula, north of the Main sub-stage (Tromsø-Lyngen) moraines. The pollen assemblage zones are correlated biostratigraphically with chronozones from Bølling to Middle Flandrian. Sediment analyses (loss on ignition and particle size) and implied sedimentation rates support this chronology. The three 14 C-dates are considered too old by 1000–2000 years because of hard water error. Redeposited Tertiary palynomorphs were encountered in the lower, mineral sediments; their source is unknown. Pollen spectra and pollen deposition rates indicate tundra throughout the Late Weichselian, with Artemisia -grass steppe predominant during Older and Younger Dryas. Rapid vegetational changes began at around 10,000 B.P., followed by successive immigration and establishment of tree birch (with accompanying floristic change) and Juniperus. Ericales were conspicuously unimportant and the pollen diagram records a herb flora rich in basiphilous species  相似文献   

11.
Based on c. 1500 km reflection seismic profiles, the Quaternary formations and their pre-Quaternary substratum in the southeastern Kattegat are described and a geological interpretation is suggested. The major volume of Quaternary deposits is found in a broad north-northwest south-southeast trending topographic depression. The substratum consists of Upper Cretaceous limestone in the region north of the Sorgenfrei–Tornquist Zone, and inside this zone older Mesozoic sedimentary rocks and Precambrian crystalline rocks are found. The Quaternary is divided into four seismic units. No direct stratigraphic control is available, but the units are assumed to represent a period ranging from Late Saalian to Holocene. The oldest unit (unit 3) is composed of deposits of supposed Late Saalian to Middle Weichselian age. This unit was severely eroded probably by the Late Weichselian ice sheets in a zone extending 40–50 km from the Swedish coast. Unit 2 represents the Late Weichselian till deposits. North and east of the island of Anholt unit 3 is cut by a system of channels eroded by glacial meltwater. By the erosion a relief up to c. 100 m was formed. After the recession of the Late Weichselian ice, an up to 100 m thick sequence of water-lain sediments (unit 1) was deposited in the erosional basin and channels. Holocene deposits (unit 0) of considerable thickness have only been identified in the channels in the northern part of the area.  相似文献   

12.
Th/U dating and radiocarbon dating of 'old' shells are discussed, and amino acid ratios from shells are used as a method of relative-age dating. The Svalbard area has been completely covered by an extensive ice sheet at leats once. New data from Sjuøyane indicate that such glaciation took place in the Early Weichselian. The Middle Weichselian was a period of interstadial conditions. Series of beaches of assumed Middle Weichselian age occur in several places in western Spitsbergen while no such beaches are known in the eastern part of the archipelago. The maximum glaciation in the Late Weichselian is assumed to have taken place about 18,000 B.P. In the western part of Spitsbergen, the Late Weichselian glaciation was limited and local, while the eastern part of the archipelago was covered by an ice sheet. Kongsøya has a pattern of Holocene shoreline displacement which indicates that the centre of this ice sheet was east of kong karts Land.  相似文献   

13.
Compared to the other islands in the Svalbard archipelago, Nordaustlandet offers only limited stratigraphical or sedimentological information on its Quaternary deposits. This article aims to fill the gap by presenting new results from glacial geological, sedimentological and chronological studies in the southern Murchisonfjorden area. Field data include reconnaissance mapping and detailed logging of vertical sections along cliff-face outcrops a few metres high adjacent to the present-day shoreline. Combined with OSL and AMS age determinations, these data provide evidence of three successive Weichselian sequences, each represented by the deposition of till followed by the accumulation of shallow marine deposits. Contrary to earlier conclusions, this study demonstrates that the area was occupied by a Late Weichselian glacier (LWG), although the LWG till is thin and discontinuous. Interstadial sublittoral sand related to the Mid-Weichselian interstadial was dated to 38–40 kyr, and an Early Weichselian interstadial to 76–80 kyr. The preservation of older sediments, multiple striae generations and abundant observations of weathered local bedrock material indicate weak glacial erosion within the study area. We suggest that the Late Weichselian glacier was relatively inactive and remained mainly cold-based until the deglaciation. The Isvika sections can be considered a new key site that offers further potential to improve our understanding of the Weichselian stage within the northwestern sector of the Barents–Kara Ice Sheet.  相似文献   

14.
Sejrup, Hans Petter 1987 03 01: Molluscan and foraminiferal biostratigraphy of an Eemian-Early Weichselian section on Karmøy, southwestern Norway. Boreas , Vol. 16, pp. 27–42. Oslo. ISSN 0300–9483.
At Karmøy, southwestern Norway, a section with marine sediments from the last interglacial (the Avaldsnes Interglacial) and from two ice-free periods (the Torvastad and Bø Interstadial) in the Weichselian have been examined for molluscs and foraminifera. The following conclusions concerning the depositional environments of these sediments can be drawn: (1) The Avaldsnes Interglacial was a high-energy environment with a sea level 20 to 50 m higher than at present, regressing towards the end of the interglacial. Sea temperatures were as in the area today or slightly warmer. (2) During the Torvastad Interstadial (71–85 ka) the sea level was between 0 and c . 20 m higher than at present, and sea temperatures were as between Svalbard and northern Norway today. (3) The Bø Interstadial (40–64 ka) shows a complete interstadial cycle, with changing sea level and temperatures. Its optimum was close to the conditions prevailing in North Norway today or slightly colder. By comparison with other sites, a total of at least four interstadial episodes through the Weichselian in southwestern Norway is proposed. These date to c . 30 ka, 40–64 ka, 71–85 ka and 87–101 ka. The episodes and the glacial advances between them do not directly correlate with published interpretations of changes in surface circulation in the Norwegian Sea through the Weichselian. It is suggested that the nourishment of the southern part of the Scandinavian ice sheet might be more related to sea surface conditions in the North Atlantic than to those of the Norwegian Sea.  相似文献   

15.
Quaternary sediments along a profile crossing the southern part of the Jæren escarpment, southwestern Norway, have been investigated with regard to their glacial history and sea-level variations. Deposits from at least three glaciations and two ice-free periods between Oxygen Isotope Stage 6 and the Late Weichselian have been identified. Subglacial till directly overlain by a glaciomarine regressional succession indicates a deglaciation, and amino acid ratios in Elphidium excavatum between 0.083 and 0.118 date this event to Oxygen Isotope Stage 6. Sea-level dropped from 130 to below 110 m a.s.l. Subsequently, a short-lived ice advance deposited a marginal moraine and a sandur locally on the escarpment. Stratigraphical position and luminescence dates around 148 ka BP suggest deposition during the final stage 6 deglaciation. A Late Weichselian till covers most of the surface of Jæren. In addition to a well documented westerly ice flow, glaciotectonic indications of ice flow towards the north have been found. Ice flow directions and a hiatus between Oxygen Isotope Stage 6 and the Weichselian indicate enhanced erosion along the escarpment and the influence of a Norwegian Channel ice-stream. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
The consistent geographical and altitudinal distribution of autochthonous block fields (mantle of bedrock weathered in situ) and trimlines in southern Norway suggests a multi-domed and asymmetric Late Weichselian ice sheet. Low-gradient ice-sheet profiles in the southern Baltic region, in the North Sea, and along the outer fjord areas of southern Norway, are best explained by movement of ice on a bed of deforming sediment, although water lubricated sliding or a combination of the two, may not be excluded. The ice-thickness distribution of the Late Weichselian Scandinavian ice sheet is not in correspondence with the modern uplift pattern of Fennoscandia. Early Holocene crustal rebound was apparently determined by an exponential, glacio-isostatic rise. Later, however, crustal movements appear to have been dominated by large-scale tectonic uplift of the Fennoscandian Shield, centred on the Gulf of Bothnia, the region of maximum lithosphere thickness.  相似文献   

17.
Winguth, C., Mickelson, D. M., Larsen, E., Darter, J. R., Moeller, C. A. & Stalsberg, K. 2005 (May): Thickness evolution of the Scandinavian Ice Sheet during the Late Weichselian in Nordfjord, western Norway: evidence from ice-flow modeling. Boreas , Vol. 34, pp. 176–185. Oslo. ISSN 0300–9483.
Results from experiments with a two-dimensional ice-flow model, applied along a west-east transect in western Norway, provide new constraints on the thickness evolution of the Scandinavian Ice Sheet throughout the Late Weichselian glaciation and deglaciation. Investigations took place along an E-W flowline of the former ice sheet at c. 62N, from the modern glacier Jostedalsbreen, through the Nordfjord, and across the continental shelf. A paleoclimate record from Kråkenes, which is located directly at the flowline, provides temperature and precipitation information for the time between 13 800 and 9200 cal. yr BP. LGM climate conditions for the study area are estimated from various GCM studies. The GISP2 δ18O record has been tuned to the local data in order to provide a continuous temperature record as input for time-transgressive model runs. The results of all experiments suggest that the ice did not cover the highest mountain peaks in this area, and that nunataks persisted throughout the Late Weichselian glaciation. These findings are in contrast to results from many previous model studies and other ice-sheet reconstructions, but agree well with minimum thickness estimates from cosmogenic dating and with vertical ice limits inferred from lower block field boundaries and trimlines.  相似文献   

18.
Field research on Phippsøya, the largest island in the Sjuøyane archipelago, defines the course and timing of postglacial emergence, documents past-glacier movements, and reinterprets deglacial sedimentary sequences. Previously described tills were not identified in sections exposed along the northeast shore of Phippsøya, but instead sublittoral sediments with rock-fall concentrations derived from the adjacent slope. A glacio-isostatically higher sea level >40 ka deposited sublittoral sediment and is possibly correlative to a deglacial event in oxygen isotope stage 4 or 5 identified at other sites on Svalbard. The postglacial marine limit is 22 ± 1 m aht and occurs as an escarpment or washing limit into a stony drift. This drift contains granite and quartzite erratics from Nordaustlandet that indicate coverage by a northward flowing ice sheet during the Late Weichselian. Datable material on the raised-beach sequence was rare and a 14C age of c. 9.2 ka on an articulated Balanus balanus from 10 m aht provides a minimum constraining age on the marine limit. A mild transgression occurred by 6.2 ka, with sea level falling close to present levels by c. 5.0 ka. The zone of zero emergence (hinge line) lies 10 to 20 km north of Sjuøyane and is approximately coincident with the last glacial maximum limit on the continental shelf. There is an approximately 75 to 100 km offset between observed and modelled zone of zero emergence, indicating a need to refine earth rheology-based ice-sheet models.  相似文献   

19.
The occurrence of till beds alternating with glaciomarine sediment spanning oxygen isotope stages 6 to 2, combined with morphological evidence, shows that the southwestern fringe of Norway was inundated by an ice stream flowing through the Norwegian Channel on at least four occasions, the last time being during the Late Weichselian maximum. All marine units are deglacial successions composed of muds with dropstones and diamictic intrabeds and a foraminiferal fauna characteristic of extreme glaciomarine environments. Land‐based ice, flowing at right angles to the flow direction of the ice stream, fed into the ice stream along an escarpment formed by erosion of the ice stream. Each time the ice stream wasted back, land‐based ice advanced into the area formerly occupied by the ice stream. During the last deglaciation of the ice stream (c. 15 ka BP), the advance of the land‐based ice occurred immediately upon ice stream retreat. As a result, the sea was prevented from inundating the upland areas, allowing most of the glacioisostatic readjustment to occur before the land‐based ice melted back at about 13 ka BP. This explains the low Late Weichselian sea levels in the area (10–20 m) compared with those of the Middle Weichselian and older sea‐level high stands (~200 m). Regional tectonic movements cannot explain the location of the observed marine successions. The highest sea level recorded (>200 m) is represented by glaciomarine sediments from the Sandnes interstadial (30–34 ka BP). Older interstadial marine sediments are found at somewhat lower levels, possibly as a result of subsequent glacial erosion in these deposits. Ice streams developed in the Norwegian Channel during three Weichselian time intervals. This seems to correspond to glacial episodes both to the south in Denmark and to the north on the coast of Norway, although correlations are somewhat hampered by insufficient dating control.  相似文献   

20.
The Late Quaternary ( c . 130,000–10,000 BP) glacial history of the central west coast of Jameson Land, East Greenland, is reconstructed through glacial stratigraphical studies. Seven major sedimentary units are described and defined. They represent two interglacial events (where one is the Holocene). one interstadial event and two glacial events. The older interglacial event comprises marine and fluvial sediments, and is correlated to the Langelandselv interglacial, corresponding to oxygen isotope sub-stage 5e. It is followed by an Early Weichselian major glaciation during the Aucellaelv stade, and subsequently by an Early Weichselian interstadial marine and deltaic event (the Hugin Sø interstade). Sediments relating to the Middle Weichselian have not been recognized in the area. The Hugin Sø interstade deposits have been overrun by a Late Weichselian ice advance, during the Flakkerhuk stade, when the glacier, which probably was a thin, low gradient fjord glacier in Scoresby Sund, draped older sediments and landforms with a thin till. Subsequent to the final deglaciation, some time before 10,000BP, the sea reached the marine limit around 70 m a.s.l., and early Holocene marine, fluvial and littoral sediments were deposited in the coastal areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号