首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The dielectric constants and dissipation factors of topaz, scapolite and orthoclase were determined at 1 MHz using a two-terminal method and empirically determined edge corrections. The results are: topaz κ′ a =6.61 tan δ=0.0005 κ′ b =6.82 tan δ=0.0007 κ′ c =6.81 tan δ=0.0007 orthoclase κ′ a =4.69 tan δ=0.0007 κ′ b =5.79 tan δ=0.0007 κ′ c =5.63 tan δ=0.0011 κ′ 11 =4.72 κ′ 22 =5.79 κ′ 33 =5.76 scapolite κ′ a =6.74 tan δ=0.0004 κ′ c =8.51 tan δ=0.0004 The deviation (Δ) between measured dielectric polarizabilities as determined from the Clausius-Mosotti equation and those calculated from the sum of ion polarizabilities according to α D (mineral)=∑αD (ions) for topaz is 2.5%. The large deviations of orthoclase and scapolite from the oxide additivity rule with δ=+7.2 and + 17.6%, respectively, are attributed to “rattling” K ions in orthoclase and “rattling” (Na,K,Ca) ions and disordered O= and Cl- ions in scapolite.  相似文献   

2.
The dielectric constants and dielectric loss values of 4 Ca-containing minerals were determined at 1 MHz using a two-terminal method and empirically determined edge corrections. The results are: vesuvianitel κ′ a=9.93 tan δ=0.006 κ′ c=9.79 tan δ=0.005 vesuvianitel κ′ a=10.02 tan δ=0.002 κ′ c=9.85 tan δ=0.003 zoisite1 κ′ a =10.49 tan δ=0.0006 κ′ b =15.31 tan δ=0.0008 κ′ c=9.51 tan δ=0.0008 zoisite2 κ′ a =10.55 tan δ=0.0011 κ′ b =15.45 tan δ=0.0013 κ′ c=9.39 tan δ=0.0008 epidote κ′ 11= 9.52 tan δ=0.0008 κ′ 22=17.1 tan δ=0.0009 κ′ 33= 9.37 tan δ=0.0006 fluorapatite1 κ′ a =10.48 tan δ=0.0008 κ′ c = 8.72 tan δ=0.0114 fluorapatite2 κ′ a =10.40 tan δ=0.0010 κ′ c=8.26 tan δ=0.0178 The deviation (δ) between measured dielectric polarizabilities as determined from the Clausius-Mosotti equation and those calculated from the sum of oxide polarizabilities according to α D (mineral)=∑ α D (oxides) for vesuvianite is ~ 0.5%. The large deviations of epidote and zoisite from the additivity rule with Δ=+ 10.1 and + 11.7%, respectively, are attributed to “rattling” Ca ions. The combined effects of both a large F thermal parameter and possible F-ion conductivity in fluorapatite are believed to be responsible for Δ=+2–3%. Although variation of oxygen polarizability with oxygen molar volume (Vo) is believed to affect the total polarizabilities, the variation of Vo in these Ca minerals is too small to observe the effect.  相似文献   

3.
4.
The effect of Cr on the silicate system has been studied in air at 1 atm by adding a small amount of MgCr2O4 (0.2–0.5 wt.%) to the join Mg2SiO4 (forsterite) — CaAl2Si2O8 (anorthite) — CaMgSi2O6 (diopside), which has been considered to form a thermal divide in the system CaO-MgO-Al2O3-SiO2. The spinel primary field is enlarged compared with that in the Cr-free join at the expense of the anorthite primary field. The piercing points forsterite+anorthite+diopside+liquid and forsterite+anorthite+spinel+liquid approach each other with increasing MgCr2O4, meet at the join with 0.25 wt.% MgCr2O4 (0.20 wt.% Cr2O3) to form the ‘isobaric quaternary invariant point’ forsterite+anorthite+diopside+spinel+liquid, and then separate again as new ‘piercing points’ of diopside+spinel+anorthite+liquid and forsterite+diopside+ spinel+liquid. This process indicates that the join Mg2SiO4-CaAl2Si2O8-CaMgSi2O6 containing more than 0.2 wt.% Cr2O3 cannot be a thermal divide in the basalt tetrahedron. The results of the present study show that the presence of a minor amount of Cr causes a significant effect on the phase relations and therefore, the role of Cr must be taken into account in the formulation of a petrologic model.  相似文献   

5.
Thermal diffusivity (D) was measured using laser-flash analysis (LFA) from oriented single-crystal albite and glasses near LiAlSi3O8, NaAlSi3O8, CaAl2Si2O8, LiAlSi2O6 and CaMgSi2O6 compositions. Viscosity measurements of the supercooled liquids, over 2.6 × 108 to 8.9 × 1012 Pa s, confirm strongly non-Arrhenian behavior for CaAl2Si2O8, and CaMgSi2O6, and near-Arrhenian behavior for the others. As T increases, D glass decreases, approaching a constant near 1,000 K. Upon crossing the glass transition, D decreases rapidly. For feldspars, D for the melt is ~15% below D of the bulk crystal, whereas for pyroxenes, this difference is ~40%. Thermal conductivity (k lat = ρC P D) of crystals decreases with increasing T, but k lat of glasses increases with T because heat capacity (C P ) increases with T more strongly than density (ρ) and D decrease. For feldspars, k lat for the melt is ~10% below that of the bulk crystal or glass, whereas this decrease for pyroxene is ~50%. Therefore, melting substantially impedes heat transport, providing positive thermal feedback that could promote further melting.  相似文献   

6.
Equilibrium volumes and expansivities of three liquids in the system anorthite (CaAl2Si2O8)–diopside (CaMgSi2O6) have been derived from dilatometric measurements of the equilibrium length of samples in the glass transition range. The typical temperature range of 40 K for the measurements is limited at low temperature by the very long times necessary to reach structural equilibrium and at high temperature by the penetration of the rod used to measure sample dilatation. Despite such narrow intervals, the expansivities are determined to better than 3% thanks to the high precision with which length changes are measured. The coefficient of volume thermal expansion (1/V dV/dT) of the fully relaxed liquid just above the glass transition is found to decrease linearly from diopside composition (139 ± 4 × 10−6 K−1) to anorthite composition (59 ± 2 × 10−6 K−1). These values are greater than those determined for the same liquids at superliquidus temperatures, demonstrating that expansivities of silicate melts may decrease markedly with increasing temperature. A predictive model based upon partial molar volumes which vary as a linear function of the logarithm of temperature is proposed. Received: 25 February 2000 / Accepted: 29 May 2000  相似文献   

7.
 In Madagascar, hibonite occurs as a rather frequent mineral within thorianite-bearing skarns which are widespread in the Pan African granulitic formations constituting the S-E part of the Island (Tranomaro area). In these skarns, leucocratic segregations made up of CO3-scapolite to meionite (Anequivalent=89–95% which implies T≥850° C), spinel and corundum were formed at stage 1 of metasomatism in a titanite-bearing matrix consisting of scapolite (Aneq=77–88) and aluminous diopside. During stage 2 of metasomatism, scapolite from the lenses were altered to anorthite+calcite while the less calcic scapolite remained stable which indicates T≈800° C. Hibonite crystallized at the expense of corundum and spinel. Expressed as mol% of the CaAl12O19/Ca(Al10TiR2+)O19/REE(Al11R2+)O19 [+Th (Al10R2+ 2)O19] end-members (R 2+=Mg, Fe2+, Zn2+; Al=Al, Fe3+; Ti=Ti, Si), its composition varies from 26/72/2 to 50/23/27. The ideal activity of the CaAl12O19 component is about 0.25. Fluid inclusions in corundum, hibonite and anorthite are composed of nearly pure CO2. In corundum, the isochores for primary inclusions are in agreement with the P-T estimates for regional metamorphism and stage 1 metasomatism (T≈850° C, P≈5 kbar). Inclusions with the highest density in hibonite and anorthite constrain P to about 3–3.5 kbar for T=800° C. Thermodynamic calculations indicate that, in addition to a low activity of CaAl12O19, stability of hibonite in equilibrium with anorthite and calcite implies an extremely low activity of silica (below the zircon-baddeleyite buffer). By contrast the activity of CO2 may be high, in agreement with the observed fluid compositions. These results are corroborated by a short comparison with the other granulite occurrences of hibonite in Tanzania and South India. Received: 18 August 1994 / Accepted: 12 October 1995  相似文献   

8.
The system CaMgSi2O6CaAl2SiO6CaFeAlSiO6 has been studied in air at 1 atm. The phase assemblage at subsolidus temperatures in the CaMgSi2O6-rich portion is Cpx + An + Mel and that in the CaMgSi2O6-poor portion Cpx + An + Mel + Sp. At subsolidus temperatures the sigle-phase field of clinopyroxene increases with an increase in the CaFeAlSiO6 component of the system. The Al2O3 content of clinopyroxene, however, continues to increase beyond the single-phase field and attains at least 16.04 wt.% Al2O3 with 3.9 wt.% Fe2O3. The stability field of fassaite in the system over a range of pressures and oxygen fugacities has been estimated from data in the literature as well as the present data. The CaFeAlSiO6 content of fassaite is dependent on oxygen fugacity, but is not influenced by pressure. The stability field is strongly influenced by oxygen fugacity at low and high pressure, and decreases with decreasing oxygen fugacity. Clinopyroxenes in both volcanic and metamorphic rocks from various localities, when plotted on the CaMgSi2O6CaAl2SiO6CaFeAlSiO6 triangle, show that there is no compositional gap between diopside and fassaitic pyroxene in metamorphic rocks, and that the fassaitic pyroxene in alkalic rocks becomes richer in both CaAl2SiO6 and CaFeAlSiO5 components as crystallization proceeds. These results agree with those obtained in the experimental study.  相似文献   

9.
In the system CaO-MgO-Al2O3-SiO2, the tetrahedron CaMgSi2O6(di)-Mg2SiO4(fo)-SiO2-CaAl2 SiO6(CaTs) forms a simplified basalt tetrahedron, and within this tetrahedron, the plane di-fo-CaAl2Si2O8(an) separates simplified tholeiitic from alkalic basalts. Liquidus phase relations on this join have been studied at 1 atm and at 7, 10, 15, and 20 kbar. The temperature maximum on the 1 atm isobaric quaternary univariant line along which forsterite, diopside, anorthite, and liquid are in equilibrium lies to the SiO2-rich side of the join di-fo-an. The isobaric quaternary invariant point at which forsterite, diopside, anorthite, spinel, and liquid are in equilibrium passes, with increasing pressure, from the silica-poor to the silica-rich side of the join di-fo-an, which causes the piercing points on this join to change from forsterite+diopside+anorthite+liquid and forsterite +spinel+anorthite+liquid below 5 kbar to forsterite +diopside+spinel+liquid and diopside +spinel+anorthite+liquid above 5 kbar. As pressure increases, the forsterite and anorthite fields contract and the diopside and corundum fields expand. The anorthite primary phase field disappears entirely from the join di-fo-an between 15 and 20 kbar. Below about 4 kbar, the join di-fo-an represents, in simplified form, a thermal divide between alkalic and tholeiitic basalts. From about 4 to at least 12 kbar, alkalic basalts can produce tholeiitic basalts by fractional crystallization, and at pressures above about 12 kbar, it is possible for alkalic basalt to be produced from oceanite by crystallization of both olivine and orthopyroxene. If alkalic basalts are primary melts from a lherzolite mantle, they must be produced at high pressures, probably greater than about 12 kbar.Department of Geosciences, University of Texas at Dallas Contribution No. 327. Hawaii Institute of Geophysics Contribution No. 814.  相似文献   

10.
Plagioclase is the major rock-forming mineral constituting the Earth’s crust, whereas anorthite (CaAl2Si2O8) is a common minerals in lunar highlands crust, meteorites, possibly in some comets and on Mercury. Besides anorthite, two high-temperature polymorphs of CaAl2Si2O8 are known: dmisteinbergite and svyatoslavite, which are found in burnt coal dumps, meteorites and pseudotachylytes. Here we present the results of detailed studies (quenching experiments, elemental analysis, Raman spectroscopy and in situ high temperature single crystal X-ray diffraction (up to 1000 °C)) on naturally co-occurring CaAl2Si2O8 polymorphs (anorthite, dmisteinbergite and svyatoslavite) from a burnt coal dump in Kopeisk, Russia. New polymorphs were found in all natural samples and obtained upon heating of dmisteinbergite (unquenchable β-dmisteinbergite and quenchable γ-dmisteinbergite). It was shown that Ca coordination differs significantly in CaAl2Si2O8 polymorphs, resulting in a different capacity to host Ba and possibly other large ion lithophile elements. Combining our data on natural samples with the previously published data on natural and synthetic compounds, we propose a new scheme of CaAl2Si2O8 polymorphs stability. Our results indicate that CaAl2Si2O8 polymorphs could be used for temperature estimations for both Earth and planetary sciences.  相似文献   

11.
Four different solution models, the two-parameter Margules, the quasi-chemical (QC), the Wilson and the non-random two-liquid (NRTL) model, have been used for fitting the calorimetric excess enthalpy of solution for the following four binary silicate systems: anorthite-albite, pyrope-grossular, diopside-enstatite and diopside-Ca-Tschermak. All models except the Wilson model yield a satisfactory fit to the data but the NRTL model generally results in the lowest residuals. The use of NRTL and QC facilitates the study of the configurational and non-configurational parts of the excess entropy of mixing.Three different methods, namely those of Kohler, Wohl, and Hillert, have been used to combine binary solution properties to predict ternary solution properties. Comparison of computed excess free energy of mixing in a hypothetical solution shows that all the three methods are viable but the Kohler and Wohl methods are similar to each other and are significantly different from the Hillert method. The Kohler method with one or a combination of different binary models is recommended for predicting multicomponent solution properties.Abbreviations G ex excess free energy of mixing - H ex excess enthalpy of mixing - S ex total excess entropy of mixing - S ex c configurational excess entropy of mixing - W ij interaction energy parameter between speciesi andj - X i mole fraction of speciesi - QC quasi-chemical - NRTL non-random two-liquid - M Margules formulation - W Wohl's formulation - RK Redlich-Kister - K Bertrand-Kohler - H Hillert - Di diopside (CaMgSi2O6) - En enstatite (Mg2Si2O6) - Py pyrope (MgAl2/3SiO4) - Gr grossular (CaAl2/3SiO4) - CaTs Ca-Tschermak (CaAl2SiO6) - Ab albite (NaAlSi3O8) - An anorthite (CaAl2Si2O8)  相似文献   

12.
The techniques of electron paramagnetic resonance (EPR) were used to measure the concentration ratio of Eu2+ to Eu3+ in quenched CaMgSi2O6, Ca3Si3O12, and CaAl2Si2O8 liquids as functions of partial pressure of oxygen and temperature. The redox equilibrium of the Eu ions was described by the reaction 4Eu3+ + 202? = 4Eu2+ + O2. The reduction of Eu3+ to Eu2+ was endothermic, and for CaMgSi2O6 and Ca3Al2Si3O12 liquids the mean value of ΔH0 and the standard deviation from that mean were 25 ± 7 kcal/mole.The magnitude of the Eu anomaly in the distribution coefficients is discussed in terms of the compositions of the solid and liquid phases.  相似文献   

13.
The superposition model is used to attempt to explain the EPR spectrum of Fe3+ in spodumene (LiAlSi2O6). Two different models for the distortion of the local environment of Fe3+ are considered. If the local structure around Fe3+ is distorted toward that of its isomorphic compound LiFeSi2O6, it is possible to obtain an agreement between experimental data and calculated constants, only if it is considered that the values of \(\bar B_2\) are different for the two non equivalent oxygens O1 and O2. A second model of local distortion of the structure, based on crystal chemical considerations, is proposed. With this model, it is possible to explain the EPR spectrum with a single value of \(\bar B_2\) . It is seen that the local arrangement around isolated Fe3+ in spodumene may be different from that in LiAlSi2O6.  相似文献   

14.
By means of in situ observation, the nucleation and growth of triclinic, pseudo-orthorhombic and pseudo-hexagonal CaAl2Si2O8 were investigated and their relative stabilities established. Pseudo-hexagonal and pseudo-orthorhombic CaAl2Si2O8 nucleate prior to anorthite and grow in a supercooled anorthite melt before the latter appears. They either dissolve or transform to anorthite once the latter nucleates and starts to grow. Corundum and mullite also nucleate metastably prior to anorthite in this melt. The liquidus temperatures of the four metastably nucleated phases were determined precisely by in situ measurements of the transformation temperatures from a polyhedral to a rounded morphology. On the basis of the supercooling thus determined, the growth rate versus supercooling relations were measured and analysed for the respective phases. The growth rate of the stable phase is one order of magnitude higher than those of any metastable phases. However, the growth rates of the three CaAl2Si2O8 polymorphs normalized by the viscosities are nearly the same.  相似文献   

15.
The dielectric constants and dissipation factors of synthetic tephroite (Mn2SiO4), fayalite (Fe3SiO4) and a forsteritic olivine (Mg1.80Fe0.22SiO4) were measured at 1 MHz using a two-terminal method and empirically determined edge corrections. The results are: tephroite, κ′a= 8.79 tan δa = 0.0006 κ′b = 10.20 tan δb = 0.0006 κ′c= 8.94 tan δc= 0.0008 fayalite, gk′a = 8.80 tan δa = 0.0004 gk′b= 8.92 tan δb = 0.0018 gk′c = 8.58 tan δc = 0.0010 olivine, gk′a = 7.16 tan δa = 0.0006 gk′b = 7.61 tan δb = 0.0008 gk′c = 7.03 tan δc = 0.0006 The low dielectric constant and loss of the fayalite indicate an exceptionally low Fe3+ content. An FeO polarizability of 4.18 Å3, determined from αD(FeO) = [αD (Fe2SiO4)-αD(SiO2)]/2, is probably a more reliable value for stoichiometric FeO than could be obtained from FexO where x = 0.90–0.95. The agreement between measured dielectric polarizabilities as determined from the Clausius-Mosotti equation and those calculated from the sum of oxide polarizabilities according to αD(M2M′X2) = 2αD(MX) + αD(M′X2) is ~+2.8% for tephroite and +0.2% for olivine. The deviation from additivity in tephroite is discussed.  相似文献   

16.
17.
The argon solubility of 38 liquids in the system Na2O-CaO-MgO-Al2O3-SiO2 (NCMAS) has been determined at 1873 K and 1 bar, the argon concentration of presaturated glasses being measured using a static mass spectrometer. For compositions in the subsystem diopside (CaMgSi2O6), nepheline (NaAlSiO4), albite (NaAlSi3O8), anorthite (CaAl2Si2O8), argon solubility is generally a linear function of the relative proportion of each end member, solubility being lowest in diopside melt (1.53 10−5 cm3 STP · g−1 · bar−1) and highest in albite melt (2.88 10−4 cm3 STP · g−1 · bar−1). For the tectosilicate joins studied (SiO2-Na2Al2O4, SiO2-CaAl2O4, SiO2-MgAl2O4) solubility decreases with decreasing silica content in all cases, being highest for Na-bearing liquids and lowest for Mg-bearing liquids at constant molar silica content. Where comparison is possible our results are in good agreement with data from the literature. When our data are considered in isolation we find that argon solubility shows an excellent correlation with calculated ionic porosity. The covariation of argon solubility and liquid density is also reasonable, that with molar volume less convincing and that with polymerization state (as defined by the ratio of the number of nonbridging oxygens and tetrahedral network forming cations; NBO/T) nonexistent. However, when our data are combined with those from the literature no well constrained correlation between argon solubility and ionic porosity is apparent. Based upon this observation and consideration of the temperature dependence of noble gas solubility it is concluded that ionic porosity is not a universally applicable parameter which may be used to predict noble gas solubility as a function of composition, temperature and pressure. Two new models for calculating argon solubility are proposed, both employing the notion of partial molar argon solubilities. The first uses oxide components, for which partial molar argon solubility is directly proportional to partial molar ionic porosity calculated at 1873 K, irrespective of the temperature of experimental equilibration. The second model, which offers the best fit to the available data, employs tetrahedral units rather than oxides as the proposed melt components. This latter model successfully accounts for reported argon solubilities in simple Al-free systems, in simple Al-bearing systems and in natural liquids. This is interpreted to infer that argon is incorporated in large sites in the liquid structure (such as the space within rings of n-tetrahedra) although further work is required to understand the quantitative links between melt structure and noble gas solubility.  相似文献   

18.
The pyroxene saturation surface in the system diopside-albite-anorthite may be calculated to ±10°C from thermochemical data over most of its composition range. The thermochemical data used are the experimentally determined enthalpies of mixing of the ternary liquids and the enthalpy of fusion of diopside. These are combined with a mixing model for the configurational entropy in the melt and the activity of CaMgSi2O6 in the clinopyroxene, which is less than unity due to departures from CaMgSi2O6 stoichiometry. The ‘two-lattice’ melt model appears to work satisfactorily throughout the pyroxene primary phase field but probably needs modification at more anorthite-rich compositions.  相似文献   

19.
29Si MAS NMR experiments have been carried out to determine the silica species distribution (Q distribution) in albite, NaAlSi3O8, and anorthite, CaAl2Si2O8, composition glasses (designated albite and anorthite glass). Our results indicate that the Q distribution of albite glass contains all five possible silica species and shows a tendency towards high Q3 and Q4 concentrations, whereas anorthite glass does not contain Q4 and has a high Q0 concentration. Rationalizations are made in terms of the observed Q distributions to explain differences in devitrification behavior of these two glasses. 27Al MAS NMR data for these glasses suggest that differences in devitrification behavior between these two glasses should be ascribed to small growth rates rather than small nucleation rates of crystalline albite from albite glass.  相似文献   

20.
Thirty spodumene samples of distinct paragenetic types (primary magmatic, secondary after petalite and hydrothermal) from variety of granitic pegmatites were characterized by electron microprobe, polarized FTIR spectroscopy and Mössbauer spectroscopy. The FTIR spectra of OH (weak sharp pleochroic bands at 3,425, 3,410, 3,395 cm−1 and in the 3,500–3,470 spectral region) are strongly polarized with maximum absorption parallel to nγ. The majority of OH dipoles are presumably generated by a partial replacement of O2 oxygen atoms with an orientation pointing above the Li vacancy site. The separation of the bands probably resulted from a replacement of the coordinating Al by Fe and Si by Al. Homogeneous spodumene mostly close to its ideal formula LiAlSi2O6 shows Fe (0.00–0.10 apfu as Fe3+; Fe3+ >> Fe2+) and Na (0.00–0.04 apfu) as the only minor cations and Fe3+Al−1 substitution up to 10 mol% of the LiFe3+Si2O6 component. Hydrogen concentrations (from 0.1 up to <5 ppm H2O by weight) vary as a function of genetic type with the highest amounts in high-temperature magmatic spodumene. Differences among particular genetic types of spodumene are related to maximum solubility of OH in spodumene structure at given PT conditions and at actual chemical composition of spodumene. OH defect concentrations in spodumene follow a trend, LT/LP pyroxenes containing lower hydrogen contents compared to HT/HP ones. The hydrogen contents in particular genetic types of spodumene and their decrease with decreasing T and P are consistent with petrologic models of the pegmatite (sub)types formations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号