首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E. Tikhomolov 《Solar physics》1995,156(2):205-219
A numerical simulation of the process of generation of the magnetic field by Rossby vortices, whose horizontal scale is comparable to the solar radius, has been carried out. Long-lived vortices form global magnetic structures that drift together with vortices. Differential rotation in latitude leads to a longer lifetime of cyclones and corresponding magnetic structures. The cyclone and the magnetic structure travel in longitude with the velocity close to a corresponding differential rotation velocity and drift slowly poleward. The interaction of cyclones located in close latitudes makes one of them move to higher latitudes and the poloidal component of the magnetic field to intensify during the interaction.The formation of large-scale vortices was simulated, when the initial condition was specified by a grid of small-scale vortices with a random amplitude distribution. Merging of vortices of the same sign leads to the formation of large-scale vortices whose size is determined by the geometry of the problem and by the differential rotation profile.  相似文献   

2.
Future radio observations with the Square Kilometre Array (SKA) and its precursors will be sensitive to trace spiral galaxies and their magnetic field configurations up to redshift z ≈ 3. We suggest an evolutionary model for the magnetic configuration in star‐forming disk galaxies and simulate the magnetic field distribution, the total and polarized synchrotron emission, and the Faraday rotation measures for disk galaxies at z ≲ 3. Since details of dynamo action in young galaxies are quite uncertain, we model the dynamo action heuristically relying only on well‐established ideas of the form and evolution of magnetic fields produced by the mean‐field dynamo in a thin disk. We assume a small‐scale seed field which is then amplified by the small‐scale turbulent dynamo up to energy equipartition with kinetic energy of turbulence. The large‐scale galactic dynamo starts from seed fields of 100 pc and an averaged regular field strength of 0.02 μG, which then evolves to a “spotty” magnetic field configuration in about 0.8 Gyr with scales of about one kpc and an averaged regular field strength of 0.6 μG. The evolution of these magnetic spots is simulated under the influence of star formation, dynamo action, stretching by differential rotation of the disk, and turbulent diffusion. The evolution of the regular magnetic field in a disk of a spiral galaxy, as well as the expected total intensity, linear polarization and Faraday rotation are simulated in the rest frame of a galaxy at 5GHz and 150 MHz and in the rest frame of the observer at 150 MHz. We present the corresponding maps for several epochs after disk formation. Dynamo theory predicts the generation of large‐scale coherent field patterns (“modes”). The timescale of this process is comparable to that of the galaxy age. Many galaxies are expected not to host fully coherent fields at the present epoch, especially those which suffered from major mergers or interactions with other galaxies. A comparison of our predictions with existing observations of spiral galaxies is given and discussed (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We summarize the current state of the long term discussion about the saturation mechanisms associated with rapid growth of small‐scale magnetic field, that operate in large‐scale galactic dynamos, and related problems with magnetic helicity conservation. Our general conclusion is that, taking into account magnetic helicity fluxes, large‐scale magnetic field can be amplified up to about the equipartition level. In contrast, models without helicity fluxes give an initial temporal magnetic field growth, but then decay. In our opinion, it is more appropriate to refer to the situation as a “potentially catastrophic scenario” rather than as “catastrophic α‐quenching” (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In this study we provide the first numerical demonstration of the effects of turbulence on the mean Lorentz force and the resulting formation of large‐scale magnetic structures. Using three‐dimensional direct numerical simulations (DNS) of forced turbulence we show that an imposed mean magnetic field leads to a decrease of the turbulent hydromagnetic pressure and tension. This phenomenon is quantified by determining the relevant functions that relate the sum of the turbulent Reynolds and Maxwell stresses with the Maxwell stress of the mean magnetic field. Using such a parameterization, we show by means of two‐dimensional and three‐dimensional mean‐field numerical modelling that an isentropic density stratified layer becomes unstable in the presence of a uniform imposed magnetic field. This large‐scale instability results in the formation of loop‐like magnetic structures which are concentrated at the top of the stratified layer. In three dimensions these structures resemble the appearance of bipolar magnetic regions in the Sun. The results of DNS and mean‐field numerical modelling are in good agreement with theoretical predictions. We discuss our model in the context of a distributed solar dynamo where active regions and sunspots might be rather shallow phenomena (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Powerful solar complexes of activity are supposed to result from the excitation of Rossby vortices within a thin layer beneath the convection zone. Numerical simulations demonstrate that Rossby vortices generate large-scale arc-like magnetic structures. It is shown that the most powerful complex of activity observed in June-July 1982 was likely to be a result of the excitation of a Rossby anticyclone rather than a cyclone.  相似文献   

6.
木星“大红斑”的旋转浅水实验模拟研究   总被引:1,自引:0,他引:1  
在具有自由表面的旋转轨物面浅水实验系统上进行了可重复的系列模拟实验,在旋转随动坐标系中拍摄的照片和功率谱分析表明,确有大尺度持续存在的涡旋、漂移与演化产生,在一定条件下,呈现出一个自持的、长寿命的、沿与整体旋转方向相反方向漂移的反气旋孤立波涡旋(Rossby孤立波涡旋),这就是木星“大红斑”的实验室模型,实验结果证实,流体动力学不稳定主要来自于剪切和Coriolis力效应,由于远离平衡态的耗散系统的自组织,涌现出大尺度长寿命相干涡旋结构,受多次实验的启发,从流体动力学基本方程出发,在一定的实验条件下提出一个半经验模型,近似求出了Rossby孤立波涡旋解。  相似文献   

7.
Low‐frequency instabilities of plasma waves in the arch structures in solar active regions have been investigated before a flare. In the framework of mechanism of “direct initiation” of instability by slowly increasing (quasi‐static) large‐scale electric field in a loop the dispersion relation has been studied for the perturbations which propagate almost perpendicularly to the magnetic field of the loop. The case has been considered, when amplitude of weak (“subdreicer”) electric field sharply increases before a flare, low‐frequency instability develops on the background of ion‐acoustic turbulence and thickness of this turbulent plasma layer plays the role of mean characteristic scale of inhomogeneity of plasma density. If the values of the main plasma parameters, i.e. temperature, density, magnetic field amplitude allow to neglect the influence of the shear of magnetic strength lines on the instability development, then two types of the waves can be generated in preflare plasma: the kinetic Alfvén waves and some new kind of the waves from the range of slowly magneto‐acoustic ones. Instability of kinetic Alfvén waves has clearly expressed threshold character with respect to the amplitude of “subdreicer” electric field. This fact seems to be useful for the short‐time prediction of a flare in arch structure. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We provide a theory of magnetic diffusion, momentum transport, and mixing in the solar tachocline by considering magnetohydrodynamics (MHD) turbulence on a β plane subject to a large scale shear (provided by the latitudinal differential rotation). In the strong magnetic field regime, we find that the turbulent viscosity and diffusivity are reduced by magnetic fields only, similarly to the two-dimensional MHD case (without Rossby waves). In the weak magnetic field regime, we find a crossover scale (LR) from a Alfvén dominated regime (on small scales) to a Rossby dominated regime (on large scales). For parameter values typical of the tachocline, LR is larger than the solar radius so that Rossby waves are unlikely to play an important role in the transport of magnetic field and angular momentum. This is mainly due to the enhancement of magnetic back-reaction by shearing which efficiently generates small scales, thus strong currents. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Polarized intensity and polarization angles are calculated from Stokes parameters Q and U in a nonlinear way. The statistical properties of polarized emission hold information about the structure of magnetic fields in a large range of scales, but the contributions of different stages of data processing to the statistical properties should first be understood. We use 1.4 GHz polarization data from the Effelsberg 100‐m telescope of emission in the Galactic plane, near the plane and far out of the plane. We analyze the probability distribution function and the wavelet spectrum of the original maps in Stokes parameters Q, U and corresponding PI. Then we apply absolute calibration (i.e. adding the large‐scale emission to the maps in Q and U), subtraction of polarized sources and subtraction of the positive bias in PI due to noise (“denoising”). We show how each procedure affects the statistical properties of the data. We find a complex behavior of the statistical properties for the different regions analyzed which depends largely on the intensity level of polarized emission. Absolute calibration changes the morphology of the polarized structures. The statistical properties change in a complex way: Compact sources in the field flatten the wavelet spectrum over a substantial range. Adding large‐scale emission does not change the spectral slopes in Q and U at small scales, but changes the PI spectrum in a complex way. “Denoising” significantly changes the p.d.f. of PI and raises the entire spectrum. The final spectra are flat in the Galactic plane due to magnetic structures in the ISM, but steeper at high Galactic latitude and in the anticenter. For a reliable study of the statistical properties of magnetic fields and turbulence in the ISM based on radio polarization observations, absolute calibration and source subtraction are required. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The steady state solution of a three species magnetoplasma is presented. It is shown that relaxed magnetic field configuration results in a triple curl Beltrami equation which permits the existence of three structures. It is the consequence of inertial effects of the plasma constituents. One of the three vortices is of large scale while the remaining two relaxed structures are of small size of the order of electron skin depth. The magnetic field profiles are given for different Beltrami parameters. The study could be helpful to understand large magnetic field structures in three species plasmas found in space and laboratory.  相似文献   

11.
The influence of strong, large‐scale magnetic fields on the structure and temperature distribution in white dwarf atmospheres is investigated. Magnetic fields may provide an additional component of pressure support, thus possibly inflating the atmosphere compared to the non‐magnetic case. Since the magnetic forces are not isotropic, atmospheric properties may significantly deviate from spherical symmetry. In this paper the magnetohydrostatic equilibrium is calculated numerically in the radial direction for either for small deviations from different assumptions for the poloidal current distribution. We generally find indication that the scale height of the magnetic white dwarf atmosphere enlarges with magnetic field strength and/or poloidal current strength. This is in qualitative agreement with recent spectropolarimetric observations of Grw+10°8247. Quantitatively, we .nd for e.g. a mean surface poloidal field strength of 100 MG and a toroidal field strength of 2‐10 MG an increase of scale height by a factor of 10. This is indicating that already a small deviation from the initial force‐free dipolar magnetic field may lead to observable effects. We further propose the method of finite elements for the solution of the two‐dimensional magnetohydrostatic equilibrium including radiation transport in the diffusive approximation. We present and discuss preliminary solutions, again indicating on an expansion of the magnetized atmosphere.  相似文献   

12.
13.
The problem of the determination of surface brightness distribution parameters from the observed CP2-star variability, usually explained with the “oblique rotator model”, is discussed. A simple geometrical model of the surface brightness distribution is derived from the common properties of the observed light curves of these stars. This “spot model” which is supported from the known facts concerning the magnetic field structure and the surface distributions of chemical elements serves as a basis of the special inverse problem: the determination of the number of large scale inhomogeneities, their locations and extents and further parameters, from all the observed light curves of a given star. A suitable technique for solving the special inverse problem is explained. The problem of ambiguity which even arises for the proposed simple model and, in connection with that, the remaining possibilities to win the relevant information on the inhomogeneities of surface brightness are discussed. For the purpose of illustration, the result of the light curve analysis of the CP2 star HD 8441 is given.  相似文献   

14.
The correlation between stellar activity, as measured by the indicator Δ R HK, and the Rossby number Ro in late-type stars is revisited in light of recent developments in solar dynamo theory. Different stellar interior models, based on both mixing-length theory and the full spectrum of turbulence, are used in order to see to what extent the correlation of activity with Rossby number is model dependent, or otherwise can be considered universal. Although we find some modest model dependence, we find that the correlation of activity with Rossby number is significantly better than with rotation period alone for all the models we consider. Dynamo theory suggests that activity should scale with the dynamo number. A current model of the solar dynamo, the so-called interface dynamo, proposes that the amplification of the toroidal magnetic field by differential rotation (the ω -effect) and the production of the poloidal magnetic field from toroidal by helical turbulence (the α -effect) take place in different, adjacent layers near the base of the convection zone. A new scale analysis based on the interface dynamo shows that the appropriate dynamo number does not depend on the Rossby number alone, but also depends on an additional dimensionless factor related to the differential rotation. This leads to a new interpretation of the correlation between activity and Rossby number, which in turn leads to some conclusions about the magnitude of differential rotation in the dynamo layers of late-type main-sequence stars.  相似文献   

15.
Abstract— In this paper, we review the recent hypothesis, based mostly on geomorphological features, that a ~130 m‐wide sag pond, surrounded by a saddle‐shaped rim from the Sirente plain (Abruzzi, Italy), is the first‐discovered meteoritic crater of Italy. Sub‐circular depressions (hosting ponds), with geomorphological features and size very similar to those exhibited by the main Sirente sag, are exposed in other neighboring intermountain karstic plains from Abruzzi. We have sampled present‐day soils from these sag ponds and from the Sirente sags (both the main “crater” and some smaller ones, recently interpreted as a crater field) and various Abruzzi paleosols from excavated trenches with an age range encompassing the estimated age of the “Sirente crater.” For all samples, we measured the magnetic susceptibility and determined the Ni and Cr contents of selected specimens. The results show that the magnetic susceptibility values and the geochemical composition are similar for all samples (from Sirente and other Abruzzi sags) and are both significantly different from the values reported for soils contaminated by meteoritic dust. No solid evidence pointing at an impact origin exists, besides the circular shape and rim of the main sag. The available observations and data suggest that the “Sirente crater,” together with analogous large sags in the Abruzzi intermountain plains, have to be attributed to the historical phenomenon of “transumanza” (seasonal migration of sheep and shepherds), a custom that for centuries characterized the basic social‐economical system of the Abruzzi region. Such sags were excavated to provide water for millions of sheep, which spent summers in the Abruzzi karstic high pasture lands, on carbonatic massifs deprived of natural superficial fresh water. Conversely, the distribution of the smaller sags from the Sirente plain correlates with the local pattern of the calcareous bedrock and, together with the characteristics of their internal structure, are best interpreted as natural dolines. In fact, reported radiocarbon ages for the formation of the main sag pond and of the smaller sags differ (significantly) by more than two millennia, thus excluding that they were all contemporaneously formed by a meteoritic impact.  相似文献   

16.
17.
Our investigation has been carried using the instruments onboard the Solar Dynamics Observatory (SDO) providing a high resolution of images (AIA photographs and HMI magnetograms). We have investigated the structure and magnetic evolution of several coronal bright points and small scale N-S polarity magnetic fluxes closely associated with them. We also compare the evolution of the magnetic polarities of elementary isolated sources of positive and negative fluxes (magnetic bipoles) and coronal bright points. Tiny (“elementary”) coronal bright points have been detected. A standard coronal bright point is shown to be a group of “elementary” coronal bright points that flare up sequentially. Our investigation shows that a change in the magnetic fluxes of opposite polarities is observed before the flare of a coronal bright point. We show that not all cases of the formation of coronal bright points are described by the magnetic reconnection model. This result has not been considered previously and has not been pointed out by other authors.  相似文献   

18.
There has been observational evidence about spin axes of quasars in large quasar groups correlated over hundreds of Mpc. This is seen in the radio spectrum as well as in the optical range. There is not yet a satisfactory explanation of this “spooky” alignment. This alignment cannot be explained by mutual interaction at the time that quasars manifest themselves optically. A cosmological explanation could be possible in the formation of superconducting vortices (cosmic strings) in the early universe, just after the symmetry-breaking phase of the universe. We gathered from the NASA/IPAC and SIMBAD extragalactic databases the right ascension, declination, inclination, position angle and eccentricity of the host galaxies of three large quasar groups to obtain the azimuthal and polar angle of the spin vectors. The alignment of the azimuthal angle of the spin vectors of quasars in their host galaxy is confirmed in the large quasar group U1.27 and compared with two other groups in the vicinity, i.e., U1.11 and U1.28, investigated by Clowes (2013). It is well possible that the azimuthal angle alignment fits the predicted azimuthal angle dependency in the theoretical model of the formation of general relativistic superconducting vortices, where the initial axial symmetry is broken just after the symmetry breaking of the scalar-gauge field.  相似文献   

19.
We consider two types of streamer structures observed in the solar atmosphere. Structures of the first type are medium-scale configurations with scale lengths comparable to the scale height in the corona, kT/mg = 100 thousand km, which appear as characteristic plasma structures in the shape of a dome surrounding the active region with thin streamers emanating from its top. In configurations of this type, gravity plays no decisive role in the mass distribution. The plasma density is constant on magnetic surfaces. Accordingly, the structure of the configurations is defined by the condition ψ = const, where ψ is the flux function of the magnetic field. Structures of the second type are large-scale configurations (coronal helmets, loops, and streamers), which differ from the above structures in that their scale lengths exceed the scale height in the corona. For them, gravity plays a decisive role; as a result, instead of the magnetic surfaces, the determining surface is BgradΦ = 0. We constructed three-dimensional images of these structures. Some of the spatial curves called “visible contours” of the Br = 0 surface are shown to be brightest in the corona. We assume that the helmet boundaries and polar plumes are such curves.  相似文献   

20.
PROGNOZ-7 observations of intense “magnetosheath-like” plasma deep inside the high latitude boundary layer, the plasma mantle, indicates that solar wind plasma elements may occasionally penetrate the magnetopause and form high density regions in the plasma mantle. These “magnetosheath-like” regions are usually associated with strong flow of solar wind ions (e.g. H+ and He2+) and the presence of terrestrial ions (e.g. O+). The magnetosheath-like structures may roughly be classified as “newly injected” or “stagnant”. The newly injected structures have characteristics very similar to those found in the magnetosheath, i.e. strong antisunward flow and magnetosheath ion composition and density. The magnetic field characteristics may, however, differ considerably from those found further out in the magnetosheath. The “stagnant” structures are characterized by a reduced plasma flow, a lower density and a different ion composition as compared to that in the magnetosheath. In a few cases newly injected structures were even found in the innermost part of the mantle (i.e. forming a “boundary region” adjacent to the lobe). These cases were also associated with fairly strong fluxes of O+ ions in the outer mantle. Whilst the newly injected type of magnetosheath-like structure contained almost no O+ ions, the stagnant regions were intermixed by an appreciable amount of ionospheric ions. The newly injected and stagnant penetration regions had both in common a diamagnetic decrease of the ambient magnetic field. The newly injected structures, however, were also associated with a considerable reorientation of the magnetic field vector. A common feature for penetration regions well separated from the magnetopause is that they are mainly observed for a southward IMF. A third category of plasma mantle penetrated events, denoted “open magnetopause” events, usually occurred when the IMF was away and northward. Characteristics for these events were a smooth transition/rotation of the magnetic field vector near the magnetopause, and fairly high ion densities in the mantle and the transition region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号