首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
River water (Water of Luce, Scotland) is used in laboratory experiments designed to investigate physical and chemical properties of Fe. Mn, Cu, Ni, Co, Cd and humic acids in riverine and estuarine systems. Using NaCl, MgCl2 and CaCl2 as coagulating agents, coagulation of dissolved (0.4 μm filtered) Fe, Cu, Ni, Cd and humic acids increases in a similar matter with increasing salt molarily: Ca2+ is the most dominant coagulating agent. Removal by coagulation with Ca2+ at seawater concentrations ranges from large (Fe-80%. HA-60%, Cu-40%) to small (Ni, Cd-15%) to essentially nothing (Cd, Mn-3%). Destabilization of colloids is the indicated mechanism. Solubility-pH measurements show that between a pH of 3 and 9, Fe, Cu, Ni, Mn, Co and Cd are being held in the dissolved phase by naturally occurring organic substances. Between pH of 2.2 and 1.2 a large proportion of dissolved Fe, Cu. Ni and Cd (72, 35,44 and 36% respectively) is precipitated along with the humic acids; in contrast, Mn and Co show little precipitation (3%). Adsorption-pH experiments, using unfiltered river water spiked with Cu, indicate that adsorption of Cu onto suspended particles is inhibited to a large extent by the formation of dissolved Cu-organic complexes.The experimental results demonstrate that solubilities and adsorption properties of certain trace metals in freshwaters can be opposite to those observed with artificial solutions or predicted with chemical models. Interaction with organic substances is a critical factor.  相似文献   

2.
Organic matter from an arable soil derived from base rich parent material was extracted by alkali and fractionated on the basis of solubility in 0.1 N HCl, hot water and hot 6 N HCl and by selective adsorption on charcoal. The distribution of associated metals was determined and Cu had the largest proportion, 15%, associated with the organic matter. Moderate proportions of the total Al, Co, Ni, and V (3–8%) but only small amounts (?1%) of the Mn, Fe, Ti, Cr, Ba and Sr were extracted from the soil by alkali. The Fe and Ti were concentrated mainly in the humic fraction whereas Mn and V were both found largely in the fulvic acid.Electron paramagnetic resonance spectra of the various fractions were examined and attempts made to relate the spectra to the forms of some of the metals present. In the humic acid fraction Cu was present partly as a copper porphyrin-type complex but in the fulvic acid it was in some other complexed form. VO2+ occurred in complexed forms in the fulvic acid which were more covalent than VO2+ humic acid complexes, whereas the Mn2+ components of the humic and fulvic acids all had a high degree of ionicity.  相似文献   

3.
Geochemical responses in weathered and oxidized surface metasedimentary rocks associated with stratiform lead-zinc mineralization at Stirling Hill (6 km west of Broken Hill) are compared with the geochemical responses in fresh drill core from an equivalent lithostratigraphic section with stratiform lead-zinc mineralization at the Pinnacles Mine (8 km south of Stirling Hill). Mineralization is interpreted as being volcanic exhalative and it lies within highly metamorphosed (sillimanite grade) rocks of the Willyama Supergroup.Surface rocks were classified into groups by discriminant analysis using drill core data from the Pinnacles Mine as the initial training set. The behaviour of elements in surface rocks varies with the rock group but Zn, Pb, Mn, Fe, and Co are leached from all surface rocks relative to fresh drill core.Nothwithstanding the leaching effects of weathering, common geochemical responses to mineralization have been identified in drill core and surface rocks. Coincident positive anomalies for Zn/Ba and Fe/(Na × Ba) ratios and negative anomalies for Na/(Mn × Ca) ratios uniquely define mineralization in both weathered surface rocks and in fresh drill core.The results demonstrate that the pattern of geochemical responses to Pinnacles-type stratiform volcanic-exhalative mineralization in surface rocks has survived the intensive weathering regime in the Broken Hill region.  相似文献   

4.
Montmorillonite, kaolinite, goethite, and particulate and soluble natural organic materials influence the rate of Mn(II) oxidation. While surfaces accelerate the reaction, apparently by bonding Mn2+ in a manner which fulfills the requirements of the transition state, soluble organic materials retard the reaction by complexing the oxidizable species. It is doubtful whether particulate matter would influence the oxidation process under natural loading conditions since 50–500 mg l?1quantities are required to produce measurable changes in the reaction rate. Complexation by humic materials, however, might be expected to reduce the rate of oxidation by an amount proportional to the dissolved organic carbon concentration. Oxidation followed by precipitation is predicted to be an important mechanism for Mn2+ removal in oceanic waters. The situation is less predictable in lake waters.  相似文献   

5.
真菌在矿物、岩石风化和元素溶解过程中发挥着重要作用。土壤中分布和生长着多种真菌,这些不同真菌在矿物和岩石风化,以及元素溶解过程中发挥的作用可能存在显著差异。为限定此差异,本研究从玄武岩风化土壤中分离获取了4种真菌(Aspergillus pesudofelis、Aspergillus viridinutans、Aspergillus undagawae和Aspergillus clavatus),设计批式溶解实验,探究了实验室条件下(28℃、30天内)4种真菌对玄武岩的风化作用,主要通过分析元素(包括Mg、Al、Si、Ca、Ti、Mn、Fe、Ni和Sr)的溶解速率和机制揭示不同属种真菌造成的玄武岩风化差异,并选取其中两种典型真菌所在的体系进行分析。实验结果显示不同属种真菌对玄武岩的风化和元素溶解的作用确实存在显著差异:1)与无机对照组相比,真菌A.pseudofelis的生长使得溶液pH值发生显著变化,元素的线性释放速率(Ril)显著升高;2)不同种真菌对体系pH值和Ril的影响差别巨大,且并非所有真菌均能加快玄武岩风化,如经过30天反应,含真菌A.pseudofelis体系溶液pH值上升了2.1,元素Mg的线性释放速率是无机对照组的22.5倍;而含真菌A.viridinutans体系溶液pH值仅上升了0.1,Mg的线性释放速率与无机对照组近似相等;3)Mg、Al、Ca、Ti元素的线性释放速率Ril最大值均出现在溶液最低pH值条件下,表明这4种元素的释放行为很大程度上受控于质子交换作用,而Fe和Ni的释放则由真菌代谢的草酸主导。由此可知,不同种真菌对有机酸代谢水平的差异影响了玄武岩中元素的释放行为。这也可能表明,在岩石早期风化过程中,具有较强有机酸(如草酸)代谢能力的真菌在Fe和Mg等生命必需元素的释放过程中起着重要作用。  相似文献   

6.
Understanding the effects of organic acids (OA) on the transformation of Fe and Mn to surface water from the weathering coal gangue is of great benefit to risk assessment and remediation strategies for contaminated water and soil. Based on the investigation on surface water in the central coal districts of the Guizhou Province, 18 water samples were collected for heavy metal analysis. The results indicated that the pH value of surface water is low (3.11–4.92), and Fe concentration (1.31–5.55 mg L?1) and Mn concentration (1.90–5.71 mg L?1) were, on average, 10.86 and 34.33 times the limit of Surface Water Quality Standards, respectively. In order to evaluate the effects of the OA on the dissolution of Fe and Mn from the weathering coal gangue, column elution and batch leaching experiments were conducted. The results show that the low molecular weight of organic acids (LMWOAs, i.e., oxalic, tartaric, malic and citric acids) and fulvic acids significantly accelerated the dissolution of Fe and Mn; in addition, when the concentration of OA reached 25 mmol L?1, the concentrations of Fe, and Mn were 1.14–67.08 and 1.11–2.32 times as high as those in 0.5 mmol L?1 OA, respectively. Furthermore, the migration of Fe and Mn was significantly influenced by the pH and Eh, especially for Fe; the ion Mn was dissolved from the gangue more easily than the ion Fe in the column leaching, which was contrary to the results of batch leaching.  相似文献   

7.
This study deals with the weathering processes operating at the scale of a small catchment (Nsimi-Zoetele, Cameroon) and is focused on the role of organic colloids on mineral weathering and transport of elements in natural waters. Samples of river, spring and groundwaters from Nsimi-Zoetele were filtered through membranes of decreasing pore size (0.22 μm, 0.025 μm, or: 300,000 Da, 5000 Da) to separate colloidal fractions from the truly dissolved one. Major and trace elements and dissolved organic carbon (DOC) were analysed in each fraction. Two kinds of waters can be distinguished in the catchment: clear and coloured waters. Clear waters exhibit low concentrations of major and trace elements and DOC. Elements are carried in these solutions in a true dissolved form except Al and rare earth elements (REEs). By contrast, the higher abundances of Al, Fe and trace elements in coloured waters are controlled by the colloidal fraction. Thermodynamic equilibrium calculations show that clear waters are in equilibrium with kaolinite and iron oxi-hydroxide which are major minerals in the weathered soil. For coloured waters, the aqueous speciation of Ca, Mg, Cu, Fe, Al, La and Th was calculated taking into account the complexes with humic acids. Speciation calculations for Cu, Fe, Al, La, Th show a strong complexation with humic acids, in good agreement with the results of the filtration experiments. By contrast, although filtration experiments show a strong control of major cations by organic matter (for example 75% for Ca), speciation calculations reveal that their complexes with humic ligands do not exceed a few percent of total dissolved elements. This discrepancy is explained as an artefact induced by the organic colloids and occurring during the filtration procedure. Finally, both filtration experiments and speciation calculations show that organic matter plays an important role in natural DOC-rich waters. Organic acids increase significantly the dissolution rates of silicates and oxi-hydroxides and thus the amounts of solutes and of complexed elements leaving the catchment.  相似文献   

8.
The islands of New Caledonia are largely composed of ultrabasic rocks (peridotites). severily weathered, rich in Fe, Mn and Co, and where several ore deposits of Ni and Cr are extensively mined. Sediment cores from the bay of Dumbea, in the south of the main island, and from the northern part of the lagoon (Belep Islands), less affected by the mining activities, were analyzed for their mineral composition and metal concentrations. In the surficial sediments, oxides and silicates, including Fe serpentine and smectites, undergo rapid transformation or neoformation in a short time, in particular in the confined bay of Dumbea. Fe is largely present as goethite, and in deeper layers (60–100 cm) as hematite and magnetite. Chromite can be identified at each horizon. The metal concentrations decrease from the near shore areas, in particular the vicinity of the Dumbea river mouth to the open part of the lagoon. This trend is more important for Ni than for Fe or Cr. Fe ranges from 3.5 to 9% (dry weight), Ni from 200 to 2000 μg/g, Cr from 700 to 2000 μg/g, Co from 20 to 150 μg/g and Mn from 130 to 900 μg/g; yet the concentrations are lower than concentrations found in the ultrabasic rocks or laterites of the watershed. To try to understand the behavior of metals during the sedimentation-diagenesis events, we evaluated the sediment accumulation rate, and used different sequential leaching procedures. Fe, Mn, Ni, Cr and Co are mainly present as, or bound to, oxides or oxyhydroxides, even in the deeper layers ( > 100 cm) where the organic content is relatively high (about 6% of organic C). Metals are mainly transported from the land to the lagoon as oxides and dispersed in the lagoon sediments, where they are diluted with a large amount of carbonaceous sediment. During diagenesis, a significant part of Mn, Co and Ni are dissolved; but, unlike Mn and Co, which seem to coprecipitate with carbonate, most of the Ni is released into the waters of the lagoon. Apparently no horizon of the sediment has undergone significant in-situ metal enrichment.  相似文献   

9.
Quaternary alkaline basalts of Middle Atlas, are weathered into spheroidal volumes organized into weathering cover. In the profile studied, the study of transformations from a fresh core basalt to the most weathered rinds, has been analysed using BESI images (backscattred electron image analysis). A part from the microscopic analysis of each weatherted basalt, proportions of primary minerals, clays and pore space has been quantified in different stages of weathering. Indeed, in fresh core basalt, weathering is characterized by a first dissolution of the glass, followed by feldspar transformations in twinning plans, cleavages and in micropores inherited from the magmatic and cristallographic history of the rock.

In most basaltic weathered rinds, pore spaces given by the dissolution of the glass, were filled by a mixture of clays and iron products. In these samples, feldspars are completely dissolved giving important porosity occupied by small quantity of halloysite and kaolinite. The olivine and pyroxene transformations are accompanied by weak pore space formation. At the bottom of the soil, this porosity decreases in response to filling by later secondary products which come from the upper part of the soil by weathering solutions.  相似文献   


10.
Iron and manganese solubility at the sediment/water interface has been studied at a water depth of 20 m in Kiel Bight, Western Baltic. By means of an in situ bell jar system enclosing 3.14 m2 sediment surface and 2094 l water a complete redox turn-over in the bottom water was simulated in an experiment lasting 99 days. The concentration of dissolved Fe in the bell jar water never exceeded 0.041 μmol · dm?3during the first 50 days of the experiment and then rose abruptly as the Eh fell from +600 to ?200 mV. The concentration of dissolved Fe under oxic and anoxic conditions seems to be limited by equilibria with solid Fe-phases (hydroxides and amorphous sulphide, respectively). In contrast to Fe, manganese was released continuously from the bottom during the first 50 days of the experiment leading to exponentially increasing manganese concentrations in the bell jar water. During this time dissolved O2 had become ready depleted and pH had dropped from 8.3 to 7.5. Contrary to iron, manganese being solubilized in reduced sediment layers can penetrate oxic strata in metastable form due to slow oxidation kinetics; when the redoxcline moves upwards Mn2+ is enriched in bottom waters. The maximum concentration of dissolved Mn under anoxic conditions is controlled by a solid phase with solubility properties similar to MnCO3 (rhodochrosite). Bottom water enrichment in dissolved Mn2+ could be traced to originate from excess solid manganese within the top 3 cm of the sediment.  相似文献   

11.
To test the hypothesis that manganese- and iron-reducing bacteria in marine sediments respond rapidly to seasonal pulses of fresh organic carbon settling to the sea floor, we amended wet metal oxide?Crich and metal oxide?Cpoor sediments from the Beaufort Sea, Canadian Arctic, with organic carbon in the form of shrimp powder and incubated them at room temperature. Neither Mn nor Fe was released to the aqueous phase from unamended metal oxide?Crich sediment during a 41-day incubation, but both elements were released from sediment aliquots amended with organic carbon. Dissolved Mn appeared in the aqueous phase after a lag period of 2 days or less and reached levels as high as 600 ??mol l?1 before levelling out. The release of dissolved Mn was accompanied by a decrease in the concentration of solid-phase reducible Mn. Dissolved Fe did not appear until 2 weeks into the incubation and only after the concentration of dissolved Mn had levelled out. For low concentrations of amended organic carbon (0.3%), the kinetics of Mn reduction fit a second-order rate law with a rate constant k = 2 × 10?3 g ??mol?1 day?1, but at intermediate and high organic carbon concentrations (0.7 and 1.3%), the reduction kinetics was better described by a pseudo-first-order rate law with a rate constant k?? = 1.6 × 10?1 day?1. A pulse of organic carbon settling to the sea floor can trigger reduction of Mn and Fe oxides within a few days in strongly seasonal sedimentary environments, such as in the Arctic.  相似文献   

12.
High concentrations of metals in organic matter can inhibit decomposition and limit nutrient availability in ecosystems, but the long-term fate of metals bound to forest litter is poorly understood. Controlled experiments indicate that during the first few years of litter decay, Al, Fe, Pb, and other metals that form stable complexes with organic matter are naturally enriched by several hundred percent as carbon is oxidized. The transformation of fresh litter to humus takes decades, however, such that current datasets describing the accumulation and release of metals in decomposing organic matter are timescale limited. Here we use atmospheric 210Pb to quantify the fate of metals in canopy-derived litter during burial and decay in coniferous forests in New England and Norway where decomposition rates are slow and physical soil mixing is minimal. We measure 210Pb inventories in the O horizon and mineral soil and calculate a 60-630 year timescale for the production of mobile organo-metallic colloids from the decomposition of fresh forest detritus. This production rate is slowest at our highest elevation (∼1000 m) and highest latitude sites (>63°N) where decomposition rates are expected to be low.We calculate soil layer ages by assuming a constant supply of atmospheric 210Pb and find that they are consistent with the distribution of geochemical tracers from weapons fallout, air pollution, and a direct 207Pb application at one site. By quantifying a gradient of organic matter ages with depth in the O horizon, we describe the accumulation and loss of metals in the soil profile as organic matter transforms from fresh litter to humus. While decomposition experiments predict that Al and Fe concentrations increase during the initial few years of decay, we show here that these metals continue to accumulate in humus for decades, and that enrichment occurs at a rate higher than can be explained by quantitative retention during decomposition alone. Acid extractable Al and Fe concentrations are higher in the humus layer of the O horizon than in the mineral soil immediately beneath this layer: it is therefore unlikely that physical soil mixing introduces significant Al and Fe to humus. This continuous enrichment of Al and Fe over time may best be explained by the recent suggestion that metals are mined from deeper horizons and brought into the O horizon via mycorrhizal plants. In sharp contrast to Al and Fe, we find that Mn concentrations in decomposing litter layers decrease exponentially with age, presumably because of leaching or rapid uptake, which may explain the low levels of acid extractable Mn in the mineral soil. This study quantifies how metals are enriched and lost in decomposing organic matter over a longer timescale than previous studies have been able to characterize. We also put new limits on the rate at which metals in litter become mobile organo-metallic complexes that can migrate to deeper soil horizons or surface waters.  相似文献   

13.
Research on hydrogeochemistry for mineral exploration for inland Australia includes development of weathering models and extensive mine-scale and regional groundwater data. Mineral saturation indices for groundwater, activity–activity plots and reaction modelling simulate weathering of volcanic-hosted massive sulfide (VHMS) deposits in deeply weathered environments. At 10 m or more below surface, dissolved O2 is very low and other solutes such as sulfate, carbonate and nitrate are more likely oxidants. Modelling indicates that these processes differ from oxic weathering of highly eroded terrains, and provide the framework to develop robust hydrogeochemical exploration procedures in covered terrains. Sulfide weathering potentially occurs in two or more phases that effect surrounding groundwaters in differing manners. Deeper oxidative alteration of sulfides (e.g. bornite to chalcopyrite), occurring tens to hundreds of metres below surface, uses sulfate and carbonate as oxidants, causing neutral to alkaline conditions. In this zone, only pyritic massive sulfides potentially generate acidic conditions. Thus, deep sulfide-rich rocks are indicated by sulfate-depleted groundwater. Closer to the surface, sulfides are oxidised to soluble sulfates by dissolved nitrate, with much less acid production than if dissolved oxygen was the main oxidant. Thus, in shallow groundwater, sulfides are indicated by sulfate enrichment and nitrate depletion. Elements are released from sulfides and wall rocks by acid or alkaline conditions. The derived FeS (pH–Eh + Fe + Mn) and AcidS (Li + Mo + Ba + Al) indices distinguish sulfide systems through tens of metres of cover. VHMS systems are distinguished from other non-economic sulfide deposits where there is little transported cover, using various dissolved elements, including Zn, Pb and Cu. Elsewhere, ‘patchiness’ and limited aerial extent of metal signals are due to adsorption effects, that intensify with depth. Other elements such as Mn and Co have lesser diminution effects, but are less selective indicators for VHMS. There is exploration potential for elements such as Pt or Ag. These varying sulfide indicators have moderate utility, even for large-scale (~5 km spacing) sampling. Results indicate that hydrogeochemistry can add value to greenfields exploration for VHMS ore deposits in deeply weathered terrains. It is also moderately successful at indicating the presence of sulfide-rich systems (whether magmatic or hydrothermal) under >100 m cover, thus providing a rapid and cost-effective regional prospectivity tool for deeply buried terrains. Such mineral exploration tools will encourage exploration investment for more difficult regions of Australia and in other deeply weathered regions of the world.  相似文献   

14.
The Transdanubian Range (Hungary, ALCAPA Unit) preserves a series of black shale-hosted Mn-carbonate deposits and cherty, Fe-rich Mn-oxide mineralized rocks associated with varicolored metalliferous claystones. Coccoid clumps (spherules), oval, tubular, and filamentous morphologies were observed by petrography, SEM-EDS, and TEM studies and are interpreted to be mineralized cellular materials. Local selective enrichment of bioessential elements (Mn, Fe, S, As, P, Mg, Ba, Sr, Co, Ce) occurs, and together with low δ13C values of the Mn carbonates also supports microbial mediated reactions. The results strongly suggest that the formation of Mn–Fe and Si minerals was associated with microbial metabolic processes. The role of aerobic chemolithoautotroph bacteria was essential in sequestering metal ions (Mn2 +, Fe2 +) from solution, which were deposited in the sediment pile and serve as a paleoenvironmental indicator of oxic conditions. These deposits are examples of, and therefore provide important criteria for identifying, non-sulphidic, oxic, microbial mineral processes. We provide a new genetic model for giant black shale-hosted Mn-carbonate deposits that involves episodic aerobic microbial processes.Although a part, if not the whole of the black shale-hosted Mn-carbonate deposits is of biogenetic-bacterial sedimentary origin, a hydrothermal/exhalative source of metals may have contributed to the formation of the deposits. An Fe–Mn-oxide chimney system is proposed to be a proximal facies to geofluid vents that occurred along fracture systems, which may have provided metals from deep-seated sources.  相似文献   

15.
An electron spin resonance (ESR) method for determining quantitatively amounts and forms of Mn in 0.2 ml of marine and lacustrine waters with no chemical processing is described and applied to various samples from the Puget Sound region of western Washington state. Results over the 50 ppb15 ppm (0.9–270 μM) total Mn concentration range are reproducible to within ±3–5% and average 8 ± 7 and 13 ± 7% lower than inductively coupled plasma (ICP) determinations on marine and lacustrine pore waters, respectively. Main features in profiles of total Mn versus depth in Pacific Northwest pore waters resemble those in profiles from other coastal regions.The method reveals that 72–77% of total dissolved Mn is present as free Mn++ in most seawaters, 14–16% is complexed with chloride, and 10–12% is complexed with sulfate. Less than 5% is associated with carbonate, bicarbonate or organic ligands. These results should significantly reduce uncertainties in equilibrium calculations of state of saturation of seawaters with respect to precipitation of various Mn-solids. The method can be easily extended to various ionic strengths and temperatures.  相似文献   

16.
The Parnok deposit is made up of stratiform lodes of iron (magnetite) and manganese (oxide-carbonate, carbonate, and carbonate-silicate) ores localized among terrigenous-carbonate sediments (black shales) on the western slope of the Polar Urals. The lithological study showed that ore-bearing sediments were accumulated in a calm hydrodynamic setting within a relatively closed seafloor area (trap depressions). Periodic development of anaerobic conditions in the near-bottom seawater was favorable for the accumulation of dispersed organic matter in the terrigenous-carbonate sediments. Carbon required to form calcium carbonates in the ore-bearing sediments was derived from carbon dioxide dissolved in seawater. In the organic-rich sediments, carbonates were formed with the participation of carbon dioxide released by the destruction of organic matter. However, δ13C values (from 0.5 to ?4.4‰ PDB) suggest a relatively low fraction of the isotopically light biogenic carbon in the host calcite. The most probable sources of Fe and Mn were hydrothermal seepages at the seafloor. The Eh-pH conditions during stagnation were favorable for the precipitation of Fe and accumulation of Mn in a dissolved state. Transition from the stagnation regime to the concentration of oxygen in near-bottom waters was accompanied by oxidation of the dissolved Mn and its precipitation. Thus, fluctuations in Eh-pH parameters of water led to the differentiation of Fe and Mn. Initially, these elements were likely precipitated as oxides and hydroxides. During the subsequent lithification, Fe and Mn were reduced to form magnetite and rhodochrosite. The texture and structure of rhodochrosite aggregates indicate that manganese carbonates already began to form at the diagenetic stage and were recrystallized during the subsequent lithogenetic stages. Isotope data (δ13C from ?8.9 to ?17.1‰ PDB) definitely indicate that the oxidized organic matter of sediment served as the main source of carbon dioxide required to form manganese carbonates. Carbonates from host rocks and manganese ores have principally different carbon isotopic compositions. Unlike carbonates of host rocks, manganese carbonates were formed with an active participation of biogeochemical processes. Further processes of metagenesis (T ≈ 250–300°C, P ≈ 2 kbar) resulted in the transformation of textures, structures, and mineral composition of all rocks of the deposit. In particular, increase in temperature and pressure provided the formation of numerous silicates in manganese ores.  相似文献   

17.
The Sr isotope stratigraphy of the biogenic apatite was used to determine the age of pelagic sediments in the Brazil Basin (Station 1541) that contain ferromanganese micronodules, nodules, and coatings on the weathered volcanic rocks. The age of sediments at horizons 0–5 and 86–90 cm was estimated at 24.1 ± 0.2 Ma and 24.8 ± 0.2 Ma, respectively. The average sedimentation rate in the Late Oligocene was about 13 mm/ka. The hydrogenous Fe–Mn nodule on the sediment surface with the Mn/Fe value of 1.05–1.95 was formed at a rate of 1.2–2.4 mm/Ma, which is 1000 times lower than the growth rate of buried nodule (Mn/Fe 0.4) at depth of 83 cm. Diagenesis provoked changes in the mineral composition of the buried nodule (asbolane-buserite partially replaced by goethite), leading to the loss of a part of Mn, Ni, Li, and Tl but accumulation of trace elements linked with iron oxyhydroxides (Ce, Th, Be, As, and V) were retained. The composition of manganese micronodules at two studied depths in sediments evolved in the course of two stages of ore formation: related to the oxic and suboxic diagenesis. The Sr isotopic composition in manganese micronodules from both horizons do not differ from that of dissolved Sr in the ocean water. The 143Nd/144Nd ratio, which reflects the Nd isotopic composition in the paleocean during the micronodule formation, varies in manganese micronodules from different horizons and is constant in different size fractions.  相似文献   

18.
Fayalite, hypersthene, basalt, and obsidian were dissolved in buffered solutions (25°C; pH 4.5 and 5.5) under air, N2 or O2 atmospheres, in order to follow the kinetics of dissolution. Each dissolved more rapidly at lower pH values, dissolving most rapidly in the initial few days, followed by slower dissolution for periods up to six months. Dissolution was more rapid when air was excluded. In oxygen atmospheres an Fe(OH)3 precipitate armors mineral surfaces, thus inhibiting further dissolution, and further affects the solution by scavenging dissolved silica and cations. Dissolution reactions include initial exchange between cations and H+, incongruent dissolution of silicate structures, oxidation of Fe2+ in solution, precipitation of Fe(OH)3, and scavenging of dissolved silica and cations by Fe(OH)3. Dissolution kinetics may explain weathering of mafic rocks and minerals at the Earth's surface, the formation of Fe-oxide coatings on mineral grains, weathering of submarine mafic rocks and intrastratal solution of mafic minerals in buried sandstones. Early Precambrian weathering would have been more rapid before the appearance of large amounts of oxygen in the atmosphere, and continental denudation rates may have been higher than at present because of this effect and the predominance of mafic igneous rocks at an early stage of continent formation and growth.  相似文献   

19.
The 1–2 mm fraction of FeS2, Fe3O4, PbS, PbSO4, ZnS, ZnCO3, Cu2S and Cu2(OH)2CO3 was dissolved in water, dilute HCl and 0.01 m organic acids (tannin, salicylic acid and citric acid) at 1 atm and 20° C. Duplicate samples of one gram each were placed in 50 ml of solvent with shaking once each day for one month at pH's of 2, 4 and 6. The pH of all the solutions was maintained by periodic addition of either HCl or NaOH. Comparing the results at pH 6, a value observed under surface conditions, the organic acids had a higher metal ion concentration because of their complexing ability. Results at pH 6 in ppm of the metal ions are shown below: For example the Fe concentration dissolved from pyrite in water was 0.02 ppm but 2.3–4.3 in the organic acids. From malachite 0.2 ppm Cu were dissolved by water but 25–1550 ppm by the organic acids. In general Cu minerals seem to be more soluble in organic acids than the Pb, Zn and Fe minerals. The different solution power of the organic acids within the experiments seems not to be caused by the crystallography of the minerals tested. Further there apparently is no preferential complexing of an organic acid with respect to a distinct anion or cation of the minerals. The experiments therefore show, that it is difficult to predict exactly which organic acid is most effective in dissolving minerals. However the experiments should apply to natural weathering conditions of ore minerals and may aid in understanding metal ion transport. For example the origin of the high Cu concentration in the sedimentary “Kupferschiefer” are more easily explained by weathering and transport of Cu in the form of organo-metallic complexes than by reaction with only water. The Cu content in organic acids is much higher than in water and the Cu concentration in the solutions now is not so strongly controlled by the solubility of Cu-cabonates and phosphates.  相似文献   

20.
Fractionation by ultra-filtration of the dissolved organic material (DOM) in the River Beaulieu, with typical concentrations of dissolved organic carbon (DOC) of 7–8 mg C/l, showed it to be mainly in the nominal molecular weight range of 103–105, with 16–23% of the total DOC in the fraction > 105. The molecular weight distribution of DOM in the more alkaline River Test (average DOC, 2 mg C/l) was similar. In the River Beaulieu water, containing 136–314 βg Fe/l in ‘dissolved’ forms, 90% or more of this Fe was in the nominal molecular weight fraction > 105. Experiments showed that DOM of nominal molecular weight <105 could stabilize Fe(III) in ‘dissolved’ forms. The concentrations of ‘dissolved’ Fe in the river water probably reflect the presence of colloidal Fe stabilized by organic material and this process may influence the apparent molecular weight of the DOM. Dissolved. Mn (100–136 βg/l) in the River Beaulieu was mainly in true solution, probably as Mn(II), with some 30% in forms of molecular weight greater than ca 104.During mi xing in the Beaulieu Estuary, DOC and dissolved Mn behave essentially conservatively. This contrasts with the removal of a large fraction of the dissolved Fe (Holliday and LISS, 1976, Est. Coastal Mar. Sci. 4, 349–353). Concentrations of lattice-held Fe and Mn in suspended particulate material were essentially uniform in the estuary, at 3.2 and 0.012%, respectively, whereas the non-lattice held fractions decreased markedly with increase in salinity. For Mn the decrease was linear and could be most simply accounted for by the physical mixing of riverborne and marine participates, although the possibility that some desorption occurs is not excluded. The non-linear decrease in the concentration of non-lattice held Fe in particulates reflected the more complex situation in which physical mixing is accompanied by removal of material from the ‘dissolved’ fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号