首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Following the probability tomography principles previously introduced to image the sources of electric and electromagnetic anomalies, we demonstrate that a similar approach can be used to analyse gravity data. First, we give a coherent derivation of the Bouguer anomaly concept as a Newtonian-type integral for an arbitrary mass distribution buried below a non-flat topography. A discretized solution of this integral is then derived as a sum of elementary contributions, which are cross-correlated with the gravity data function in the expression for the total power associated with the Bouguer anomaly. To image the mass distribution underground we introduce a mass contrast occurrence probability function using the cross-correlation product of the observed Bouguer anomaly and the synthetic field due to an elementary mass contrast source. The tomographic procedure consists of scanning the subsurface with the elementary source and calculating the occurrence probability function at the nodes of a regular grid. The complete set of grid values is used to highlight the zones of highest probability of mass contrast concentrations. Some synthetic and field examples demonstrate the reliability and resolution of the new gravity tomographic approach.  相似文献   

2.
二次电流场多次叠加概率成像   总被引:3,自引:1,他引:2       下载免费PDF全文
基于地下电流场的积分公式,离散化的二次电流场被分解为电性不连续界面上的一系列点电荷电场的代数和.单位正点电荷电场被引入作为空间扫描函数(SDS),积累电荷出现的概率(COP)函数定义为二次电流场与SDS的互相关.为对概率成像结果进行定量分析解释,提出了规范的积累电荷出现的概率(NCOP)函数.通过应用有限元算法对2D地电模型进行二次电流场合成,实现了二次电流场的多次叠加概率成像.结果表明对均匀半空间中赋存地质异常体的电性结构,概率成像方法对地下异常体的空间位置有较好的指示作用.  相似文献   

3.
This paper is an extension of a previous study, in which the principles of self-potential ground surface tomography were outlined. The new arguments which are here set forth are the proper accounting for the topographic effects and a robust approach to global 3D tomography. The 2D case is initially considered in order to facilitate a full understanding of the new method. In order to gauge the topographic distortions, the concepts of slope effect and surface regularization are introduced, as suitable means to compute point by point correction factors of the measured self-potential data, prior to the recognition of the tomographic images of the primary and induced electric sources underground. The tomographic approach is then developed by introducing again the concepts of the scanning function and of the charge occurrence probability function, which were amply dealt with in the previous paper. The new approach to 3D global tomography means here the composition of charge occurrence probability functions related to any two orthogonal surface components of the natural electric field, in order to account fully for the total surface component of the self-potential field and hence to elicit the greatest amount of information. Two field examples are presented to show the full effectiveness of the proposed method. They refer, respectively, to a near-surface investigation for archaeological purposes and to a very deep investigation in an active volcanic area.  相似文献   

4.
自电位层析成像的理论与实验研究   总被引:1,自引:1,他引:1       下载免费PDF全文
为研究自电位异常场的物理机制,本文根据Patella半无限空间自电位层析成像的理论方法,对有限边界条件下的图像重建进行了研究,根据四边形界面处自电位的测量数据,重建出异常电荷的二维概率分布.文中对图像重建进行了数值模拟,分析了改进成像精度的措施,并对受压岩石的破裂过程开展了实验模拟研究,成像结果表明,实验中发现的岩石破裂的裂隙同正电荷出现的最大概率区域的位置基本一致,反映了裂隙尖端处正负电荷分离的微观过程.  相似文献   

5.
Following a previous paper in which the principles of a 3D ground-surface tomographic processing of self-potential data were established, we extend the method to active source geoelectric surveying. The main purpose of the new tomographic approach is to obtain a physical image reconstruction of the induced electric charges distributed over buried resistivity discontinuities. The information is produced in a probabilistic sense, as the mathematical formulation underlying the method treats only the intrinsic physical nature of the generated electric field underground and the method of its ground-surface detection, independently of the geometry of the unknown structures. In practice, a 3D tomography is realized by cross-correlating a set of distributed electric-field ground-surface data with a scanning function, representing a unit positive point charge located anywhere in the lower half-space. The resolution of the method is tested on the synthetic response of a 3D structural simulation of an archaeological target, consisting of an infinitely resistive prismatic body immersed in a half-space, including surface inhomogeneities and layering. Finally, the field response of a 3D structure consisting of a hypogeal dromos-chamber tomb inside the Sabine Necropolis at Colle del Forno, close to Rome, is presented and discussed.  相似文献   

6.
Resistivity anomaly imaging by probability tomography   总被引:10,自引:0,他引:10  
Probability tomography is a new concept reflecting the inherently uncertain nature of any geophysical interpretation. The rationale of the new procedure is based on the fact that a measurable anomalous field, representing the response of a buried feature to a physical stimulation, can be approximated by a set of partial anomaly source contributions. These may be given a multiplicity of configurations to generate cumulative responses, which are all compatible with the observed data within the accuracy of measurement. The purpose of the new imaging procedure is the design of an occurrence probability space of elementary anomaly sources, located anywhere inside an explored underground volume. In geoelectrics, the decomposition is made within a regular resistivity lattice, using the Frechet derivatives of the electric potential weighted by resistivity difference coefficients. The typical tomography is a diffuse image of the resistivity difference probability pattern, that is quite different from the usual modelled geometry derived from standard inversion.  相似文献   

7.
When an electric current is introduced to the earth, it sets up a distribution of charges both on and beneath the earth's surface. These charges give rise to the anomalous potential measured in the d. c. resistivity experiment. We investigate different aspects of charge accumulation and its fundamental role in d. c. experiments. The basic equations and boundary conditions for the d. c. problem are first presented with emphasis on the terms involving accumulated charges which occur wherever there is a non-zero component of electric field parallel to the gradient of conductivity. In the case of a polarizable medium, the polarization charges are also present due to the applied electric field, yet they do not change the final field distribution. We investigate the precise role of the permittivity of the medium. The charge buildup alters the electric fields and causes the refraction of current lines; this results in the well-known phenomenon of current channelling. We demonstrate this by using charge density to derive the refraction formula at a boundary. An integral equation for charge density is presented for whole-space models where the upper half-space is treated as an in-homogeneity with zero conductivity. The integral equation provides a tool with which the charge accumulation can be examined quantitatively and employed in the practical forward modelling. With the aid of this equation, we investigate the effect of accumulated charges on the earth's surface and show the equivalence between the half-space and whole-space formulations of the problem. Two analytic examples are presented to illustrate the charge accumulation and its role in the d. c. problem. We investigate the relationship between the solution for the potential via the image method and via the charge density. We show that the essence of the image method solution to the potential problem is to derive a set of fictitious sources which produce the same potential as does the true charge distribution. It follows that the image method is viable only when the conductivity structure is such that the effect of the accumulated charge can be represented by a set of point images. As numerical examples, we evaluate quantitatively the charge density on the earth's surface that arises because of topography and the charge density on a buried conductive prism. By these means, we demonstrate the use of the boundary element technique and charge density in d. c. forward modelling problems.  相似文献   

8.
An electromagnetic field is generated through the accelerating movement of two equal but opposite charges of a single dipole. An electromagnetic field can also be generated by a time-varying infinitesimal point charge. In this study, a comparison between the electromagnetic fields of an infinitesimal point charge and a dipole has been presented. First, the time-domain potential function of a point source in a 3D conductive medium is derived. Then the electric and magnetic fields in a 3D homogeneous lossless space are derived via the relation between the potential and field. The field differences between the infinitesimal point charge and the dipole in the step-off time, far-source, and near-source zones are analyzed, and the accuracy of the solutions from these sources is investigated. It is also shown that the field of the infinitesimal point charge in the near-source zone is different from that of the dipole, whereas the far-source zone fields of these two sources are identical. The comparison of real and simulated data shows that the infinitesimal point charge represents the real source better than the dipole source.  相似文献   

9.
岩石破裂过程中的超低频电磁异常   总被引:34,自引:2,他引:34       下载免费PDF全文
震前电磁场和大地自电位的异常是重要的地震前兆现象.在零磁空间对超低频段的磁场和自电位的变化进行了岩石破裂的实验研究,细致地揭示出电场、磁场出现异常变化的全过程,对深入认识超低频电磁信号的微观机理具有重要的意义.实验发现,岩石受力后应变、电位和磁场的缓慢变化在空间分布上是首先在近破裂源处出现,继而随裂纹的发展而改变位置;在时间序列上先出现自电位异常,然后是超低频磁场的变化;在异常形态上,超低频电磁信号呈现出早期、中期、晚期3个阶段的明显差异.研究表明,岩石微破裂引起裂隙尖端处的电荷分离. 静电荷在局部区域的积累和运移,导致了自电位的脉冲状变化;而在主破裂阶段,积累电荷的急速运动形成瞬间电流,激发了脉冲式的磁场异常.本文详细介绍了这一综合实验的技术步骤和观测结果,并对地震电磁前兆的微观机理进行了探讨.   相似文献   

10.
The anomalies of electric-magnetic field and self-potential before earthquakes are important precursory phenom-ena.A simulating experiment study on the variations in ultra-low frequency(ULF)magnetic field and self-poten-tial during rock cracking was carried out in a magnetic field-free space.The results revealing in detail the whole process of the occurrences of electric and magnetic anomalises are significant for understanding the microscopic mechanism of ULF electric and magnetic signals.The experiment indicated that at the initial stage the slow changes in strain.self-potential and magnetic field with small amounts appeared firstly near the source of initial cracking,and then extended as the crack developed on.In the time domain,the self-potential anomaly emerged first and ULF magnetic field changes arose then.The shape of the ULF electric and magnetic anomaly varied ob-viously in early-,mid-and late-term of the test.The authors attributed the pulse-like changes of self-potential to the generationj and movement of the accumulated electric charges during the cracking caused by charge separation on the crack tips within the sample.While the magnetic pulses of shorter-period at the last stage of the test,may be induced by instantaneous electric current of the accumulated charege during the cracking acceleration.The technical method and the observational results of this experiment are given in detail and the microscopic mechanism of elec-tric and magnetic precursors before earthquake are discussd in the present paper as well.  相似文献   

11.
We have developed a new numerical method to determine the shape (shape factor), depth, polarization angle, and electric dipole moment of a buried structure from residual self-potential (SP) anomalies. The method is based on defining the anomaly value at the origin and four characteristic points and their corresponding distances on the anomaly profile. The problem of shape determination from residual SP anomaly has been transformed into the problem of finding a solution to a nonlinear equation of the form q = f (q). Knowing the shape, the depth, polarization angle and the electric dipole moment are determined individually using three linear equations. Formulas have been derived for spheres and cylinders. By using all possible combinations of the four characteristic points and their corresponding distances, a procedure is developed for automated determination of the best-fit-model parameters of the buried structure from SP anomalies. The method was applied to synthetic data with 5% random errors and tested on a field example from Colorado. In both cases, the model parameters obtained by the present method, particularly the shape and depth of the buried structures are found in good agreement with the actual ones. The present method has the capability of avoiding highly noisy data points and enforcing the incorporation of points of the least random errors to enhance the interpretation results.  相似文献   

12.
均匀半空间瞬变电磁场直接时域响应数值分析   总被引:1,自引:0,他引:1       下载免费PDF全文
近源时域电磁场具有信号强、探测深度大和精度高等优点,但传统瞬变电磁场理论中偶极子近似在近源区会引起较大误差,推导瞬变电磁场直接时域解析式是解决这一问题的关键.本文在点电荷微元假设下通过时域格林函数,采用分离变量等方法推导出了上半空间一次有源波动场和反射波的时域解析式和下半空间二次无源波动场的时域解析式,结合均匀半空间瞬变电磁场的边界条件给出了均匀半空间瞬变电磁场的直接时域解析式,进而利用第一型曲线积分,通过沿回线源叠加推导出圆回线源在瞬变电磁场中的直接时域解析式.然后在半空间表面上,与传统的电偶极源假设下的表达式作了比较.数值结果表明两者在远源区的计算结果相差甚微,而近源区则存在很大误差.本文利用真正点元(点电荷)严密推导给出的均匀半空间表面上瞬变电磁场的直接时域解析式适用于全场区探测,克服了偶极子假设下只适用远场区的不足,为瞬变电磁法的进一步发展和实际勘探提供了新的理论基础.  相似文献   

13.
The main features of the distribution of volume and surface charges in a conducting medium can be described separately for direct and alternating electromagnetic fields. The density of charges depends on the conductivity of a medium and on the electrical field. The relation is particularly simple for the quasi-stationary field, i.e., when the influence of displacement currents is negligible. Conditions are formulated under which electrical charges arise in a conducting medium: electrical charges are shown to exist for direct and quasi-stationary fields when there is a component of electric field parallel to the gradient of conductivity. The density of these charges is proportional to the applied electric field.  相似文献   

14.
The physical mechanism by which the regions with increased or decreased total electron content, registered by measuring delays of GPS satellite signals before strong earthquakes, originate in the ionosphere has been proposed. Vertical plasma transfer in the ionospheric F 2 region under the action of the zonal electric field is the main disturbance formation factor. This field should be eastward, generating the upward component of plasma electromagnetic drift, in the cases of increased total electron content at midlatitudes and deepened minimum of the F 2 layer equatorial anomaly. Upward plasma drift increases electron density due to a decrease in the O+ ion loss rate at midlatitudes and decreases this density above the equator due to an enhancement of the fountain effect (plasma discharge into the equatorial anomaly crests). The pattern of the spatial distribution of the seismogenic electric field potential has been proposed. The eastward electric field can exist in the epicentral region only if positive and negative electric charges are located at the western and eastern boundaries of this region, respectively. The effectiveness of the proposed mechanism was studied by modeling the ionospheric response to the action of the electric field generated by such a charge configuration. The results of the numerical computations indicated that the total electron content before strong earthquakes at middle and low latitudes is in good agreement with the observations.  相似文献   

15.
The physical mechanisms determining the variability of the vertical profiles of electrical conductivity, space charge density, and electric field in the undisturbed midlatitude lower atmosphere are discussed. The influence of the global and local mesoscale processes on the variability of electrical conductivity and the main component of the atmospheric electric field is estimated. The sunrise effect is studied, estimates are obtained for the charge accumulation rate in the column of the lower atmosphere and the corresponding growth rate of the field strength close to the ground. It is shown that the increase in the average charge density is mainly due to the breakdown of the stable stratification of the atmospheric boundary layer and transformation of the vertical profile of electrical conductivity following the convective mixing of a radon and its daughter products.  相似文献   

16.
The electromagnetic response of a horizontal electric dipole transmitter in the presence of a conductive, layered earth is important in a number of geophysical applications, ranging from controlled‐source audio‐frequency magnetotellurics to borehole geophysics to marine electromagnetics. The problem has been thoroughly studied for more than a century, starting from a dipole resting on the surface of a half‐space and subsequently advancing all the way to a transmitter buried within a stack of anisotropic layers. The solution is still relevant today. For example, it is useful for one‐dimensional modelling and interpretation, as well as to provide background fields for two‐ and three‐dimensional modelling methods such as integral equation or primary–secondary field formulations. This tutorial borrows elements from the many texts and papers on the topic and combines them into what we believe is a helpful guide to performing layered earth electromagnetic field calculations. It is not intended to replace any of the existing work on the subject. However, we have found that this combination of elements is particularly effective in teaching electromagnetic theory and providing a basis for algorithmic development. Readers will be able to calculate electric and magnetic fields at any point in or above the earth, produced by a transmitter at any location. As an illustrative example, we calculate the fields of a dipole buried in a multi‐layered anisotropic earth to demonstrate how the theory that developed in this tutorial can be implemented in practice; we then use the example to examine the diffusion of volume charge density within anisotropic media—a rarely visualised process. The algorithm is internally validated by comparing the response of many thin layers with alternating high and low conductivity values to the theoretically equivalent (yet algorithmically simpler) anisotropic solution, as well as externally validated against an independent algorithm.  相似文献   

17.
We consider the calculation of the electrical field quantities, electric potential and the vertical component of the total volume density of electric current, in a horizontally layered, piecewise homogeneous and arbitrarily anisotropic earth due to a system of direct current point sources. By applying Fourier transformation with respect to the horizontal space coordinates to the static field equations, the field quantities are obtained as the solutions of the system of transform-domain differential equations in the vertical (depth) coordinates. A recurrence scheme has been given to compute the tranform-domain field quantities at any depth. The corresponding space-domain quantities are then obtained by inverse Fast Fourier Transformation (FFT). A complete computer program has been developed for computing the electric potentials at any depth of the layered earth, which is composed of an arbitrary number of anisotropic layers with arbitrary conductivity tensors. By considering the point sources at different depths from the surface, equipotential contours on the surface of arbitrarily anisotropic layered earth models are given.  相似文献   

18.
The paper deals with the mechanism of generating a ground potential gradient electric field in regions of seismic activity and its penetration into the ionosphere. The mechanism is based on the electrode effect of charge separation under the action of the natural atmospheric electric field, A large, non-compensated, space charge is formed following a chain of ion-molecular reactions as a result of the anomalous increase of radon and aerosol emanation from the crust. This space charge leads to anomalous variations of the electric field ground level, which is supported by the experimental observations made in the seismo-active regions. In turn the variations of the strong electric field over the large earthquake areas lead to the modification of ionospheric parameters due to penetration of the anomalous electric field into the ionosphere. A theoretical model of these phenomena is proposed in this paper.  相似文献   

19.
Fluctuations of short period in the atmospheric electric field were studied through the measurements of electric field and space charge density on the Mid-Pacific Ocean. The amplitude of fluctuation is about one third of the mean electric field, and the period mainly ranges from 2 to 5 min. The fluctuations are considered to be under the influence of spatial and temporal variation of space charge layer that possibly originates from the electrode effect above the sea surface. The unit of electrical irregularities in the atmosphere above the ocean has horizontal scale of the order of 1.5 km and indicates a tendency to become large as the wind speed increases. The vertical scale of space charge layer is estimated at several tens meters.  相似文献   

20.
X. Qie  S. Soula  S. Chauzy 《Annales Geophysicae》1994,12(12):1218-1228
A numerical model called PICASSO [Production d’Ions Corona Au Sol Sous Orage (French) and Production of Corona Ions at the Ground Beneath Thundercloud (English)], previously designed, is used to describe the evolution of the principal electrical parameters below a thunderstorm, taking into account the major part played by corona ions. In order to improve the model restitution of a real situation, various improvements are performed: an initial vertical distribution of aerosol particles is introduced instead of the previously used uniform concentration; time and space calculation steps are adjusted according to the electric field variation rate; the upper boundary condition is improved; and the coefficients of ion attachment are reconsidered with an exhaustive bibliographic study. The influence of the ion attachment on aerosol particles, on the electric field and charge density aloft, is studied by using three different initial aerosol particle concentrations at ground level and two types of initial vertical distributions: uniform and non-uniform. The comparison between field data and model results leads to adjust the initial aerosol particle concentration over the experimental site at the value of 5000 cm−3 which appears to be highly realistic. The evolutions of the electric field and of the charge density at altitude are greatly influenced by the aerosol concentration. On the contrary, the surface intrinsic field, defined as the electric field that would exist underneath a thundercloud if there were no local charges, is weakly affected when the model is forced by the surface field. A good correlation appears between the success in the triggered lightning attempts and this intrinsic field evaluation. Therefore, when only the surface field is available, the model can be used in a triggered lightning experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号