首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haughton is a ~24 Myr old midsize (apparent diameter 23 km) complex impact structure located on Devon Island in Nunavut, Canada. The center of the structure shows a negative gravity anomaly of ?12 mGal coupled to a localized positive magnetic field anomaly of ~900 nT. A field expedition in 2013 led to the acquisition of new ground magnetic field mapping and electrical resistivity data sets, as well as the first subsurface drill cores down to 13 m depth at the top of the magnetic field anomaly. Petrography, rock magnetic, and petrophysical measurements were performed on the cores and revealed two different types of clast‐rich polymict impactites: (1) a white hydrothermally altered impact melt rock, not previously observed at Haughton, and (2) a gray impact melt rock with no macroscopic sign of alteration. In the altered core, gypsum is present in macroscopic veins and in the form of intergranular selenite associated with colored and zoned carbonate clasts. This altered core has a natural remanent magnetization (NRM) four to five times higher than materials from the other core but the same magnetic susceptibility. Their magnetization is still higher than the surrounding crater‐fill impact melt rocks. X‐ray fluorescence data indicate a similar proportion of iron‐rich phases in both cores and an enrichment in silicates within the altered core. In addition, alternating‐field demagnetization results show that one main process remagnetized the rocks. These results support the hypothesis that intense and possibly localized post‐impact hydrothermal alteration enhanced the magnetization of the clast‐rich impact melt rocks by crystallization of magnetite within the center of the Haughton impact structure. Subsequent erosion was followed by in situ concentration in the subsurface leading to large magnetic gradient on surface.  相似文献   

2.
Abstract— The 4 km wide and 500 m deep circular Kärdla impact structure in Hiiumaa Island, Estonia, of middle Ordovician age (~455 Ma), is buried under Upper Ordovician and Quaternary sediments. To constrain the geophysical models of the structure, petrophysical properties such as magnetic susceptibility, natural remanent magnetization (NRM), density, electrical conductivity, porosity and P-wave velocity were measured on samples of crystalline and sedimentary rocks collected from drill cores in different parts of the structure and the surrounding area. The results were used to interpret the central gravity anomaly of ?3 mGal and the magnetic anomaly of ?100 nT and also the surrounding weak positive anomalies revealed by high precision survey data. The unshocked granitic rocks outside the structure have a mean density of ~2630 kgm?3. Their shocked counterparts have densities of ~2400 kgm?3 at a depth of ~500 m, increasing up to 2550 kgm?3 at a depth of 850 m. Porosity and electrical conductivity decrease, but P-wave velocity increases as density increases away from the impact point. Thus, the gradual changes in the physical properties of the rocks as a function of radial distance from the crater centre are consistent with an impact origin for Kärdla. As in many other impact structures, the magnetization of the shocked rocks are also clearly lower than those of unshocked target rocks. A new geophysical and geological model of the Kärdla structure is presented based on geophysical field measurements and data on gradual changes in petrophysical parameters of the shocked target and overlying rocks, together with structural data from numerous boreholes. An important feature of this model is the lack of an observable geophysical signature of the central uplift observed in drillcores.  相似文献   

3.
Abstract— A magnetic model is proposed for the Bosumtwi meteorite impact structure in Ghana, Africa. This relatively young (~1.07 Ma) structure with a diameter of ~10.5 km is exposed within early Proterozoic Birimian—Tarkwaian rocks. The central part of the structure is buried under postimpact lake sediments, and because of lack of drill cores, geophysics is the only way to reveal its internal structure. To study the structure below and beyond the lake, a high‐resolution, low altitude (~70 m) airborne geophysical survey across the structure was conducted, which included measurements of the total magnetic field, electromagnetic data, and gamma radiation. The magnetic data show a circumferential magnetic halo outside the lakeshore, ~12 km in diameter. The central‐north part of the lake reveals a central negative magnetic anomaly with smaller positive side‐anomalies north and south of it, which is typical for magnetized bodies at shallow latitudes. A few weaker negative magnetic anomalies exist in the eastern and western part of the lake. Together with the northern one, they seem to encircle a central uplift. Our model shows that the magnetic anomaly of the structure is presumably produced by one or several relatively strongly remanently magnetized impact‐melt rock or melt‐rich suevite bodies. Petrophysical measurements show a clear difference between the physical properties of preimpact target rocks and impactites. Suevites have a higher magnetization and have low densities and high porosities compared to the target rocks. In suevites, the remanent magnetization dominates over induced magnetization (Koenigsberger ratio > 3). Preliminary palaeomagnetic results reveal that the normally magnetized remanence component in suevites was acquired during the Jaramillo normal polarity epoch. This interpretation is consistent with the modelling results that also require a normal polarity magnetization for the magnetic body beneath the lake. The reverse polarity remanence component, superimposed on the normal component, is probably acquired during subsequent reverse polarity events.  相似文献   

4.
The nature of the ancient magnetic field of the Moon, in which lunar rocks acquired their remanent magnetism, has emerged as an important potential source of evidence, if somewhat controversial, for a lunar core which at a period in the Moon's history was the source of the magnetic field. Many of the lunar rocks possess a stable, primary remanence (NRM) with characteristics consistent with and indicative of thermo-remanent magnetization, acquired when the rocks cooled in an ambient magnetic field. Also present are secondary components of magnetization, one type of which appears to have been acquired between collection on the Moon and reception in the laboratory and others which were apparently acquired on the Moon.An important question to be answered is whether meteorite impacts play any part in lunar magnetism, either in modifying pre-existing magnetizations or by imparting a shock remanent magnetism (SRM) in a transient magnetic field associated with the impact. With current knowledge, SRM, in either a global lunar magnetic field of a transient field, and TRM cannot be distinguished, and in the paper the secondary magnetization characteristic of lunar rocks are examined to investigate whether their nature favours the presence of a permanent lunar magnetic field or whether they are consistent with an origin as a transient field-generated SRM.Besides terrestrial processes of secondary magnetization, such as viscous, chemical and partial thermoremanent magnetization, possible processes peculiar to the Moon are discussed and their likely importance assessed in relation to lunar sample history. The nature of the secondary magnetizations appear to be best explained on the assumption that they are due to one or more of the processes that require an ambient lunar field, namely viscous, partial thermoremanent and shock magnetization. When associated with other types of evidence obtained from lunar magnetism studies, investigations of lunar sample remanent magnetism now favours the existence of an ancient lunar magnetic field.  相似文献   

5.
Abstract— Yamato 000593, a nakhlite, was analyzed in terms of its magnetic record and magnetomineralogy. The natural remanent magnetization (NRM: 3.55–6.07 times 10?5 Am2/kg) was thermally demagnetized at ~320 °C, and it was unstable against alternating field demagnetization. Based on analyses of thermomagnetic curves, the temperature dependence of hysteresis parameters, and microscopic observations, the magnetic minerals mainly consist of magnetite (0.68 wt% of the sample, including ~5% Fe2TiO4) of less than 100 μm in size, associated with minor amounts of monoclinic pyrrhotite (<0.069 wt% of the sample) and goethite. Thermal demagnetization of NRM at ~330 °C is explained due to an offset of magnetization of antipodal NRM components of magnetite, whereas it is not due to a pyrrhotite Curie point. Large magnetite grains show exsolution texture with ilmenite laths, and are cut by silicate (including goethite) veins that formed along cracks. Numerous single‐domain (SD) and pseudo‐single‐domain (PSD) magnetite grains are scattered in the mesostasis and adjacent olivine grains. Moderate coercive forces of HC = 6.8 mT and HRC = 31.1 mT suggest that Yamato 000593 is fundamentally able to carry a stable NRM; however, NRM was found to be unstable. Accordingly, the meteorite was possibly crystallized at 1.3 Ga under an extremely weak or absent magnetic field, or was demagnetized by impact shock at 12 Ma (ejection age) on Mars. This finding differs from the results of previous paleomagnetic studies of SNC (shergottites, nakhlites, chassignites, and orthopyroxenite) Martian meteorites. The significant dipole magnetic field resulting from the molten metallic core was probably absent during the Amazonian Epoch (after 1.8 Ga) on Mars.  相似文献   

6.
Abstract— The magnetometer experiment (MAG) onboard the Near‐Earth Asteroid Rendezvous (NEAR)‐Shoemaker spacecraft detected no global scale magnetization and established a maximum magnetization of 2.1 times 10?6 Am2 kg?1 for asteroid 433 Eros. This is in sharp contrast with the estimated magnetization of other S‐class asteroids (Gaspra, ?2.4 times 10?2 Am2 kg?1; Braille, ?2.8 times 10?2 Am2 kg?1) and is below published values for all types of ordinary chondrites. This includes the L/LL types considered to most closely match 433 Eros based on preliminary interpretations of NEAR remote geochemical experiments. The ordinary chondrite meteorite magnetization intensity data was reviewed in order to assess the reasonableness of an asteroid‐meteorite match based on magnetic property measurements. Natural remanent magnetization (NRM) intensities for the ordinary chondrite meteorites show at least a 2 order of magnitude range within each of the H, L, and LL groups, all well above the 2.1 times 10?6 Am2 kg?1 level for 433 Eros. The REM values (ratio of the NRM to the SIRM (saturation remanent magnetization)) range over 3 orders of magnitude for all chondrite groups indicating no clear relationship between NRM and the amount of magnetic material. Levels of magnetic noise in chondrite meteorites can be as much as 70% or more of the NRM. Consequently, published values of the NRM should be considered suspect unless careful evaluation of the noise sources is done. NASA Goddard SFC studies of per unit mass intensities in large (>10 000 g) and small (down to <1 g) samples from the same meteorite demonstrate magnetic intensity decreases as size increases. This would appear to be explained by demagnetization due to magnetic vector randomness at unknown scale sizes in the larger samples. This would then argue for some level of demagnetization of large objects such as an asteroid. The possibility that 433 Eros is an LL chondrite cannot be discounted.  相似文献   

7.
We present results of a magnetic survey of achondritic meteorites, representing the aubrites (A), diogenites (D), Irowardites (H), and eucrites (E) groups and relate their magnetic behavior to respective class characteristics and models of origin.Magnetic susceptibility (x) values cluster well within each group and decrease systematically between groups (from 2 to 0.1×10–3GOe–1 cm–3), with the average metal contents, (from 1 to <0.1 wt%) in the above order. The natural remanent magnetization (NRM) values range broadly within each group, but group averages decrease roughly as above. However, the considerable within-sample and intra-group variability in NRM level and its demagnetization characteristics attest to inhomogeneous and localized brecciation effects. Although petrological-chemical studies resolve a primary component of magmatic differentiation on the planetoid of origin, no clear magnetic record of such event has been preserved. The magnetization of achondrites is mainly the product of their complex, multi-stage impact brecciation and metamorphism history, in accord with other lines of evidence.The magnetic behavior of achondrites is remarkably similar to that characteristic of lunar breccias and impact-melt rocks and reinforces their analogous mode of genesis, as brought out by chemical and petrographic analyses.  相似文献   

8.
Intrinsic magnetic properties, like susceptibility, provide a precise determination of the iron phases with a penetration depth not available with other chemical and mineralogical sensing tools, thus allowing to unravel space weathering effects. Systematic measurements of meteorites demonstrate that susceptibility measurements on asteroid surface could be a very efficient way to assign a meteorite class to a given asteroid. Another application could be the characterization of the highly magnetic Martian regolith. On the other hand, natural remanent magnetization (NRM) measurements are crucial to interpret magnetic field anomalies such as those found on Mars and Moon, and likely to be found on Mercury. NRM gives also access to past magnetic fields and extinct planetary dynamo. Rugged, light and low consumption systems already exist for such measurements on Earth and we present a scheme to integrate both magnetic susceptibility (using a LC oscillator) and NRM (using a 3 axis fluxgate or a gradiometer) to offer a versatile instrument package for any mission involving a lander. For the LC oscillator calibration of the geometric factor is presented. The fluxgate can be used both for making local magnetic anomaly maps, thus investigating subsurface structures, and for evaluating NRM of individual boulders.  相似文献   

9.
Abstract— Evolutionary processes in meteorites and magnetic fields in the early solar system, both spatial and localised in planetary bodies, can leave their imprint in meteorites through the natural remanent magnetization (NRM) and other magnetic properties they impart to them. In the present investigation the Estherville mesosiderite has been studied to enquire whether its magnetic properties can help to resolve any of the uncertainties associated with mesosiderite history and evolution, and to examine evidence for any magnetic fields to which it or its constituent fragments have been subjected. The Estherville sample as received is strongly magnetized, with an initial NRM intensity of 1.4 × 10?3 Am2 kg?1. The NRM of individual fragments broken from the main mass, when referred to common reference axes, is scattered in direction on a scale which ranges from ~ 1 cm down to ~ 1 mm. Alternating field and thermal demagnetization show a range of magnetic stability among the samples and also some secondary NRM, indicating a variety of magnetic histories. Thermomagnetic analyses of matrix and iron-nickel separates show that the dominant magnetic carriers are kamacite and tetrataenite. The non-coherent directions of NRM within the matrix imply the acquisition of an initial NRM by kamacite in the fragments prior to their final accumulation into the mesosiderite material, and the presence of an ambient magnetic field when the fragment material cooled after its formation. If the tetrataenite carrying the primary NRM was formed from the previously magnetized kamacite/taenite during slow cooling after later metamorphic heating, the maximum temperature during the latter event could not have been higher than ~700 °C or the kamacite would have been remagnetized uniformly or demagnetized, according to whether or nor there was an ambient magnetic field present. Susceptibility anisotropy observations indicate the acquisition of anisotropic properties occurred before final accumulation of the meteorite. Shock and flow processes were probably important in producing foliation and lineation respectively in the fragments resulting from brecciation, and there could also be a contribution from larger metal fragments and/or veins. The scattered NRM of the iron-nickel fragments also indicates magnetization prior to emplacement, therefore favouring introduction in the solid rather than the molten form.  相似文献   

10.
The current morphology of the martian lithospheric magnetic field results from magnetization and demagnetization processes, both of which shaped the planet. The largest martian impact craters, Hellas, Argyre, Isidis and Utopia, are not associated with intense magnetic fields at spacecraft altitude. This is usually interpreted as locally non- or de-magnetized areas, as large impactors may have reset the magnetization of the pre-impact material. We study the effects of impacts on the magnetic field. First, a careful analysis is performed to compute the impact demagnetization effects. We assume that the pre-impact lithosphere acquired its magnetization while cooling in the presence of a global, centered and mainly dipolar magnetic field, and that the subsequent demagnetization is restricted to the excavation area created by large craters, between 50- and 500-km diameter. Depth-to-diameter ratio of the transient craters is set to 0.1, consistent with observed telluric bodies. Associated magnetic field is computed between 100- and 500-km altitude. For a single-impact event, the maximum magnetic field anomaly associated with a crater located over the magnetic pole is maximum above the crater. A 200-km diameter crater presents a close-to-1-nT magnetic field anomaly at 400-km altitude, while a 100-km diameter crater has a similar signature at 200-km altitude. Second, we statistically study the 400-km altitude Mars Global Surveyor magnetic measurements modelled locally over the visible impact craters. This approach offers a local estimate of the confidence to which the magnetic field can be computed from real measurements. We conclude that currently craters down to a diameter of 200 km can be characterized. There is a slight anti-correlation of −0.23 between magnetic field intensity and impact crater diameters, although we show that this result may be fortuitous. A complete low-altitude magnetic field mapping is needed. New data will allow predicted weak anomalies above craters to be better characterized, and will bring new constraints on the timing of the martian dynamo and on Mars’ evolution.  相似文献   

11.
Abstract– The Lonar crater in Maharashtra state, India, has been completely excavated on the Deccan Traps basalt (approximately 65 Ma) at approximately 570 ± 47 ka by an oblique impact of a possible chondritic asteroid that struck the preimpact target from the east at an angle of approximately 30–45o to the horizon where the total duration of the shock event was approximately 1 s. It is shown by our early work that the distribution of ejecta and deformation of target rocks around the crater rim are symmetrical to the east–west plane of impact ( Misra et al. 2010 ). The present study shows that some of the rock magnetic properties of these shocked target basalts, e.g., low‐field anisotropy of magnetic susceptibility (AMS), natural remanent magnetization (NRM)/bulk susceptibility (χ), and high‐coercivity and high‐temperature (HC_HT) magnetization component, are also almost symmetrically oriented with reference to the plane of impact. Studies on the relative displacements of K3 (minimum) AMS axes of shocked basalts from around the crater rim and from the adjacent target rocks to the approximately 2–3 km west of the crater center suggest that the impact stress could have branched out into the major southwestward and northwestward components in the downrange direction immediately after the impact. The biaxial distribution of AMS axes in stereographic plots for the unshocked basalts transforms mostly into triaxial distribution for the shocked basalts, although transitional type distribution also exists. The degree of anisotropy (P′) of AMS ellipsoids of the shocked basalts decreases by approximately 2% when compared with those of the unshocked target (approximately 1.03). The NRM/χ (Am?1) values of the shocked basalts on the rim of the Lonar crater do not show much change in the uprange or downrange direction on and close to the east–west plane of impact, and the values are only approximately 1.5 times higher on average over the unshocked basalts around the crater. However, the values become approximately 1.4–16.4 times higher for the shocked basalts on the crater rim, which occur obliquely to the plane of impact. The target basalts at approximately 2–3 km west of the crater center in the downrange also show a significant increase (up to approximately 26 times higher) in NRM/χ. The majority of the shocked basalt samples (approximately 73%) from around the crater rim, in general, show a lowering of REM, except those from approximately 2–3 km west of the crater center in the downrange, where nearly half of the sample population shows a higher REM of approximately 3.63% in average. The shocked target basalts around the Lonar crater also acquired an HC_HT magnetization component due to impact. These HC_HT components are mostly oriented in the uprange direction and are symmetrically disposed about the east–west plane of impact, making an obtuse angle with the direction of impact. The low‐coercivity and low‐temperature (LC_LT) components of both the unshocked and shocked basalts are statistically identical to the present day field (PDF) direction. This could be chemical and/or viscous remanent magnetization acquired by the target basalts during the last 570 ± 47 ka, subsequent to the formation of the Lonar crater. The shocked Lonar target basalts appear to have remagnetized under high impact shock pressure and at low temperature of approximately 200–300 °C, where Ti‐rich titanomagnetite was the main magnetic remanence carrier.  相似文献   

12.
Abstract— The only well‐known terrestrial analogue of impact craters in basaltic crusts of the rocky planets is the Lonar crater, India. For the first time, evidence of the impactor that formed the crater has been identified within the impact spherules, which are ?0.3 to 1 mm in size and of different aerodynamic shapes including spheres, teardrops, cylinders, dumbbells and spindles. They were found in ejecta on the rim of the crater. The spherules have high magnetic susceptibility (from 0.31 to 0.02 SI‐mass) and natural remanent magnetization (NRM) intensity. Both NRM and saturation isothermal remanent magnetization (SIRM) intensity are ?2 Am2/Kg. Demagnetization response by the NRM suggests a complicated history of remanence acquisition. The spherules show schlieren structure described by chains of tiny dendritic and octahedral‐shaped magnetite crystals indicating their quenching from liquid droplets. Microprobe analyses show that, relative to the target basalt compositions, the spherules have relatively high average Fe2O3 (by ?1.5 wt%), MgO (?1 wt%), Mn (?200 ppm), Cr (?200 ppm), Co (?50 ppm), Ni (?1000 ppm) and Zn (?70 ppm), and low Na2O (?1 wt%) and P2O5 (?0.2 wt%). Very high Ni contents, up to 14 times the average content of Lonar basalt, require the presence of a meteoritic component in these spherules. We interpret the high Ni, Cr, and Co abundances in these spherules to indicate that the impactor of the Lonar crater was a chondrite, which is present in abundances of 12 to 20 percent by weight in these impact spherules. Relatively high Zn yet low Na2O and P2O5 contents of these spherules indicate exchange of volatiles between the quenching spherule droplets and the impact plume.  相似文献   

13.
The lack of magnetic anomalies within the giant martian impact basins, Hellas, Argyre, and Isidis suggests that the impacts demagnetized the crust. Our analysis of the magnetic anomaly intensity shows that the interior parts of the basins are completely demagnetized, while the outer parts and surroundings are partially demagnetized. We investigate the shock pressure and impact heating resulting from the impacts. The crust has been completely demagnetized within ∼0.8 basin radius by a combination of thermal and shock effects, and the surroundings have been partially demagnetized by shock to a distance of at least 1.4 radii. We also investigate magnetic signatures of intermediate-size craters. From the pressures generated by both the large and intermediate-sized impacts, we conclude that the remanent magnetization is carried at least in part by high coercivity rocks. Since the crust beneath the basins does not appear to have been remagnetized as it cooled following the impacts, we conclude that the martian core dynamo was inactive or very weak for at least 100 Myr following the Hellas impact.  相似文献   

14.
Lon L. Hood 《Icarus》2011,211(2):1109-218
A re-examination of all available low-altitude LP magnetometer data confirms that magnetic anomalies are present in at least four Nectarian-aged lunar basins: Moscoviense, Mendel-Rydberg, Humboldtianum, and Crisium. In three of the four cases, a single main anomaly is present near the basin center while, in the case of Crisium, anomalies are distributed in a semi-circular arc about the basin center. These distributions, together with a lack of other anomalies near the basins, indicate that the sources of the anomalies are genetically associated with the respective basin-forming events. These central basin anomalies are difficult to attribute to shock remanent magnetization of a shocked central uplift and most probably imply thermoremanent magnetization of impact melt rocks in a steady magnetizing field. Iterative forward modeling of the single strongest and most isolated anomaly, the northern Crisium anomaly, yields a paleomagnetic pole position at 81° ± 19°N, 143° ± 31°E, not far from the present rotational pole. Assuming no significant true polar wander since the Crisium impact, this position is consistent with that expected for a core dynamo magnetizing field. Further iterative forward modeling demonstrates that the remaining Crisium anomalies can be approximately simulated assuming a multiple source model with a single magnetization direction equal to that inferred for the northernmost anomaly. This result is most consistent with a steady, large-scale magnetizing field. The inferred mean magnetization intensity within the strongest basin sources is ∼1 A/m assuming a 1-km thickness for the source layer. Future low-altitude orbital and surface magnetometer measurements will more strongly constrain the depth and/or thicknesses of the sources.  相似文献   

15.
The average directions of natural remanent magnetization (NRM) of three texturally distinct layers (72215, 72255, and 72275) of a 2 m-sized breccia boulder were found to be the same, while the directions of their stable components of NRM were found to be widely divergent. One clast from 72275 yielded a stable NRM direction which was different from that of the matrix. Approximate paleointensity measurements showed that 72255 and 72275 could have obtained their stable remanence from an ancient magnetic field of the same magnitude. However, 72215 probably was magnetized by a magnetic field of a different intensity. We concluded that the coincident NRM directions owe their origin to a secondary imprint of less stable magnetization imparted during the assembly of the boulder at moderate temperatures (~ 450°C) on the South Massif. The stable directions, on the other hand, date from the last, higher-temperature (~ 770°C) magnetizing event experienced by the mineral and lithic components while they were part of the immature pre-Serenitatis regolith.  相似文献   

16.
Abstract— We survey the magnetic fields of lunar multi‐ring impact basins using data from the electron reflectometer instrument on the Lunar Prospector spacecraft. As for smaller lunar craters, the primary signature is a magnetic low that extends to ?1.5–2 basin radii, suggesting shock demagnetization of relatively soft crustal magnetization. A secondary signature, as for large terrestrial basins, is the presence of central magnetic anomalies, which may be due to thermal remanence in impact melt rocks and/or shock remanence in the central uplift. The radial extent of the anomalies may argue for the former possibility, but the latter or a combination of the two are also possible. Central anomaly fields are absent for the oldest pre‐Nectarian basins, increase to a peak in early Nectarian basins, and decrease to a low level for Imbrian basins. If basin‐associated anomalies provide a good indication of ambient magnetic fields when the basins formed, this suggests the existence of a “magnetic era” (possibly due to a lunar core dynamo) similar to that implied by paleointensity results from returned lunar samples. However, the central basin anomalies suggest that the fields peaked in early Nectarian times and were low in Imbrian times, while samples provide evidence for high fields in Nectarian and early Imbrian times.  相似文献   

17.
Abstract— Intense magnetic anomalies over Martian surface suggest preservation of large volumes of very old crust (>3 Gyr) that formed in the presence of a global magnetic field. The global distribution of the magnetic intensities observed above the Martian crust suggests a division into three zones. Zone 1 is where the magnetic signature is negligible or of relatively low intensity at Mars Global Surveyor (MGS) satellite mapping altitude (400 km). Zone 2 is the region of intermediate crustal magnetic amplitudes and zone 3 is where the highest magnetic intensities are measured. Crater demagnetization near zone 3 reveals the presence of rocks with both high magnetic intensity and coercivity. Magnetic analyses of terrestrial rocks show that compositional banding in orogenic zones significantly enhances both magnetic coercivity and thermal remanent magnetization (TRM) efficiency. Such enhancement offers a novel explanation for the anomalously large intensities inferred of magnetic sources on Mars. We propose that both large magnetic coercivity and intensity near the South Pole is indicative of the presence of a large degree of deformation. Associated compositional zoning creates conditions for large scale magnetic anisotropy allowing magnetic minerals to acquire magnetization more efficiently, thereby causing the distinct magnetic signatures in zone 3, expressed by intense magnetic anomalies. We use a simple model to verify the magnetic enhancement. We hypothesize that magnetically enhanced zone would reside over the down welling plume at the time of magnetization acquisition.  相似文献   

18.
Abstract— Results of a detailed paleomagnetic and rock magnetic study of samples of the impact breccia sequence cored in the Yaxcopoil‐1 (Yax‐1) borehole between about 800 m and 896 m are presented. The Yax‐1 breccia sequence occurs from 794.63 m to 894.94 m and consists of redeposited melt‐rich, clast‐size sorted, fine‐grained suevites; melt‐rich, no clast‐size sorting, medium‐grained suevites; coarse suevitic melt agglomerates; coarse melt‐rich heterogeneous suevites; brecciated suevites; and coarse carbonate and silicate melt suevites. The low‐field susceptibility ranges from ?0.3 to 4018 times 10?6 SI, and the NRM intensity ranges from 0.02 mA/m up to 37510 mA/m. In general, the NRM intensity and magnetic susceptibility present wide ranges and are positively correlated, pointing to varying magnetic mineral contents and textures of the melt‐rich breccia sequence. The vectorial composition and magnetic stability of NRM were investigated by both stepwise alternating field and thermal demagnetization. In most cases, characteristic single component magnetizations are observed. Both upward and downward inclinations are present through the sequence, and we interpret the reverse magnetization as the primary component in the breccias. Both the clasts and matrix forming the breccia appear to have been subjected to a wide range of temperature/pressure conditions and show distinct rock magnetic properties. An extended interval of remanence acquisition and secondary partial or total remagnetization may explain the paleomagnetic results.  相似文献   

19.
Abstract— The magnetic properties of samples of seven Martian meteorites (EET 79001, Zagami, Nakhla, Lafayette, Governador Valadares, Chassigny and ALH 84001) have been investigated. All possess a weak, very stable primary natural remanent magnetization (NRM), and some have less stable secondary components. In some cases, the latter are associated with magnetic contamination of the samples, imparted since their recovery, and with viscous magnetization, acquired during exposure of the meteorites to the geomagnetic field since they fell. The magnetic properties are carried by a small content (<1%) of titanomagnetite and, in ALH 84001, possibly by magnetite as well. The most likely source of the primary NRM is a thermoremanent magnetization acquired when the meteorite material last cooled from a high temperature in the presence of a magnetic field. Current evidence is that this was 1.3 Ga ago for the nakhlites and Chassigny and 180 Ma for shergottites: the time of the last relevant cooling of ALH 84001 is not presently known. Preliminary estimates of the strength of the magnetizing field are in the range 0.5–5 üT, which is at least an order of magnitude greater than the present field. It is tentatively concluded that the magnetic field was generated by a dynamo process in a Martian core with appropriate structure and properties.  相似文献   

20.
We have examined the magnetic characteristics of representative ureilites, with a view to identify the magnetic effects of shock and to isolate a primary component of the natural remanent magnetization (NRM). As a group, the ureilites show remarkably uniform patterns of magnetic behavior, attesting to a common genesis and history. However, a clearly observed gradation in magnetic properties of the ureilites studied with shock level, parallels their classification based on petrologic and chemical fractionation shock-related trends.The ureilite meteorites possess a strong and directionally stable NRM. Laboratory thermal modelling of this presumably primordial NRM preserved in Goalpara and Kenna produced reliable paleointensity estimates of order 1 Oe, thus providing evidence for strong early, nebular magnetic fields. This paleofield strength is compatible with values obtained previously from carbonaceous chondrites and supports isotopic evidence for a contemporary origin of these two groups of meteorites in the same nebular region. The mechanism for recording nebular fields, manifestly different in carbonaceous chondrite vs. ureilite meteorites, is thus relatively unimportant: violent collisional shock in ureilites seems to have only partially altered an original magnetization, by preferential removal of its least stable portion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号