首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The management of urban rivers which drain contaminated groundwater is suffering from high uncertainties regarding reliable quantification of groundwater fluxes. Independent techniques are combined for estimating these fluxes towards the Zenne River, Belgium. Measured hydraulic gradients, temperature gradients in conjunction with a 1D-heat and fluid transport model, direct flux measurement with the finite volume point dilution method (FVPDM), and a numerical groundwater flow model are applied, to estimate vertical and horizontal groundwater fluxes and groundwater–surface-water interaction. Hydraulic gradient analysis, the temperature-based method, and the groundwater flow model yielded average vertical fluxes of –61, –45 and –40 mm/d, respectively. The negative sign indicates upward flow to the river. Changes in exchange fluxes are sensitive to precipitation but the river remained gaining during the examined period. The FVPDM, compared to the groundwater flow model, results in two very high estimates of the horizontal Darcy fluxes (2,600 and 500 mm/d), depending on the depth of application. The obtained results allow an evaluation of the temporal and spatial variability of estimated fluxes, thereby helping to curtail possible consequences of pollution of the Zenne River as final receptor, and contribute to the setup of a suitable remediation plan for the contaminated study site.  相似文献   

2.
A study was conducted between April 2004 and September 2005 to estimate groundwater and nutrient discharge to the Neuse River estuary in North Carolina. The largest groundwater fluxes were observed to occur generally within 20 m of the shoreline. Groundwater flux estimates based on seepage meter measurements ranged from 2.86?×?108 to 4.33?×?108 m3 annually and are comparable to estimates made using radon, a simple water-budget method, and estimates derived by using Darcy’s Law and previously published general aquifer characteristics of the area. The lower groundwater flux estimate (equal to about 9 m3 s?1), which assumed the narrowest groundwater discharge zone (20 m) of three zone widths selected for an area west of New Bern, North Carolina, most closely agrees with groundwater flux estimates made using radon (3–9 m3 s?1) and Darcy’s Law (about 9 m3 s?1). A groundwater flux of 9 m3 s?1 is about 40% of the surface-water flow to the Neuse River estuary between Streets Ferry and the mouth of the estuary and about 7% of the surface-water inflow from areas upstream. Estimates of annual nitrogen (333 tonnes) and phosphorus (66 tonnes) fluxes from groundwater to the estuary, based on this analysis, are less than 6% of the nitrogen and phosphorus inputs derived from all sources (excluding oceanic inputs), and approximately 8% of the nitrogen and 17% of the phosphorus annual inputs from surface-water inflow to the Neuse River estuary assuming a mean annual precipitation of 1.27 m. We provide quantitative evidence, derived from three methods, that the contribution of water and nutrients from groundwater discharge to the Neuse River estuary is relatively minor, particularly compared with upstream sources of water and nutrients and with bottom sediment sources of nutrients. Locally high groundwater discharges do occur, however, and could help explain the occurrence of localized phytoplankton blooms, submerged aquatic vegetation, or fish kills.  相似文献   

3.
Groundwater response to stream stage fluctuations was studied in two unconfined alluvial aquifers using a year-long time series of stream stages from two pools along a regulated stream in West Virginia, USA. The purpose was to analyze spatial and temporal variations in groundwater/surface-water interaction and to estimate induced infiltration rate and cumulative bank storage during an annual cycle of stream stage fluctuation. A convolution-integral method was used to simulate aquifer head at different distances from the stream caused by stream stage fluctuations and to estimate fluxes across the stream–aquifer boundary. Aquifer diffusivities were estimated by wiggle-matching time and amplitude of modeled response to multiple observed storm events. The peak lag time between observed stream and aquifer stage peaks ranged between 14 and 95 hour. Transient modeled diffusivity ranged from 1,000 to 7,500 m2/day and deviated from the measured and calculated single-peak stage-ratio diffusivity by 14–82 %. Stream stage fluctuation displayed more primary control over groundwater levels than recharge, especially during high-flow periods. Dam operations locally altered groundwater flow paths and velocity. The aquifer is more prone to surface-water control in the upper reaches of the pools where stream stage fluctuations are more pronounced than in the lower reaches. This method could be a useful tool for quick assessment of induced infiltration rate and bank storage related to contamination investigations or well-field management.  相似文献   

4.
The Mahoning River is one of the five most contaminated rivers in the U.S. This study characterized the contaminated sediments in the river banks and investigated the hydraulic interconnection between shallow aquifer in the banks with the river water. The study was conducted along the most polluted section of the river, which is 50-km long, using over 50 monitoring wells. The characterization part of the study investigated the sedimentology, hydraulic conductivity, and spatial distribution of the contaminated sediments. Results of the characterization revealed that the contaminated sediments consist of fine-grained sand, silt, mud, and clay. The spatial distribution of the contaminated sediment is heterogeneous and positively correlates with the hydraulic conductivity values, i.e., the greatest contamination occurs in high conductivity areas. Hydraulic conductivity was determined by the Hazen formula using 82 sediment samples. Bioremediation, which is one of the remedial options considered for the banks, is found to be hydraulically feasible because of sufficient hydraulic conductivity values (≥10?4 cm/s) that ensure reasonable rates of nutrient delivery. Monitoring of water levels in the river and groundwater for a 10-month period shows that flow occurs from the river to groundwater and vice versa. The exchange of flow is influenced by rainfall. Flow of groundwater to the river will continually transport the dissolved contaminants in groundwater to the river. Therefore, findings of this study show that one of the remedial options that proposes dredging of channel sediments and permits no action for bank sediments cannot be chosen due to river water–groundwater interactions.  相似文献   

5.
The Dunhuang Basin, a typical inland basin in northwestern China, suffers a net loss of groundwater and the occasional disappearance of the Crescent Lake. Within this region, the groundwater/surface-water interactions are important for the sustainability of the groundwater resources. A three-dimensional transient groundwater flow model was established and calibrated using MODFLOW 2000, which was used to predict changes to these interactions once a water diversion project is completed. The simulated results indicate that introducing water from outside of the basin into the Shule and Danghe rivers could reverse the negative groundwater balance in the Basin. River-water/groundwater interactions control the groundwater hydrology, where river leakage to the groundwater in the Basin will increase from 3,114?×?104 m3/year in 2017 to 11,875?×?104 m3/year in 2021, and to 17,039?×?104 m3/year in 2036. In comparison, groundwater discharge to the rivers will decrease from 3277?×?104 m3/year in 2017 to 1857?×?104 m3/year in 2021, and to 510?×?104 m3/year by 2036; thus, the hydrology will switch from groundwater discharge to groundwater recharge after implementing the water diversion project. The simulation indicates that the increased net river infiltration due to the water diversion project will raise the water table and then effectively increasing the water level of the Crescent Lake, as the lake level is contiguous with the water table. However, the regional phreatic evaporation will be enhanced, which may intensify soil salinization in the Dunhuang Basin. These results can guide the water allocation scheme for the water diversion project to alleviate groundwater depletion and mitigate geo-environmental problem.  相似文献   

6.
The groundwater abstracted at a well field near the Yamuna River in Central Delhi, India, has elevated ammonium (NH4 +) concentrations up to 35 mg/L and arsenic (As) concentrations up to 0.146 mg/L, constituting a problem with the provision of safe drinking and irrigation water. Infiltrating sewage-contaminated river water is the primary source of the NH4 + contamination in the aquifer, leading to reducing conditions which probably trigger the release of geogenic As. These conclusions are based on the evaluation of six 8–27-m deep drillings, and 13 surface-water and 69 groundwater samples collected during seven field campaigns (2012–2013). Results indicate that losing stream conditions prevail and the river water infiltrates into the shallow floodplain aquifer (up to 16 m thickness), which consists of a 1–2-m thick layer of calcareous nodules (locally known as kankar) overlain by medium sand. Because of its higher hydraulic conductivity (3.7 × 10?3 m/s, as opposed to 3.5 × 10?4 m/s in the sand), the kankar layer serves as the main pathway for the infiltrating water. However, the NH4 + plume front advances more rapidly in the sand layer because of its significantly lower cation exchange capacity. Elevated As concentrations were only observed within the NH4 + plume indicating a causal connection with the infiltrating reducing river water.  相似文献   

7.
Artificial lakes (reservoirs) are regulated water bodies with large stage fluctuations and different interactions with groundwater compared with natural lakes. A novel modelling study characterizing the dynamics of these interactions is presented for artificial Lake Turawa, Poland. The integrated surface-water/groundwater MODFLOW-NWT transient model, applying SFR7, UZF1 and LAK7 packages to account for variably-saturated flow and temporally variable lake area extent and volume, was calibrated throughout 5 years (1-year warm-up, 4-year simulation), applying daily lake stages, heads and discharges as control variables. The water budget results showed that, in contrast to natural lakes, the reservoir interactions with groundwater were primarily dependent on the balance between lake inflow and regulated outflow, while influences of precipitation and evapotranspiration played secondary roles. Also, the spatio-temporal lakebed-seepage pattern was different compared with natural lakes. The large and fast-changing stages had large influence on lakebed-seepage and water table depth and also influenced groundwater evapotranspiration and groundwater exfiltration, as their maxima coincided not with rainfall peaks but with highest stages. The mean lakebed-seepage ranged from ~0.6 mm day?1 during lowest stages (lake-water gain) to ~1.0 mm day?1 during highest stages (lake-water loss) with largest losses up to 4.6 mm day?1 in the peripheral zone. The lakebed-seepage of this study was generally low because of low lakebed leakance (0.0007–0.0015 day?1) and prevailing upward regional groundwater flow moderating it. This study discloses the complexity of artificial lake interactions with groundwater, while the proposed front-line modelling methodology can be applied to any reservoir, and also to natural lake interactions with groundwater.  相似文献   

8.
On 4 July 2013, three catastrophic debris flows occurred in the Hougou, Majingzi, and Xiongjia gullies in Shimian county and produced debris dams and river blockages, resulting in serious casualties and huge economic loss. Though debris flows have been identified prior to the catastrophic events, their magnitudes and destructive power were far beyond early recognition and hazard assessment. Our primary objective for this study was to explore the formation mechanism and typical characteristics and to summarize the lessons learned from these disastrous events in order to avoid the repeat of such disasters in the future. Based on field investigation and imagery interpretation of remote sensing carried out following the catastrophic events, four conclusions were drawn: (1) The catastrophic debris flows were initiated from surface-water runoff, and the triggering factor was attributed to the local intensive rainfall with an hourly intensity of more than 46.7 mm. (2) Entrainment was the most important sediment-supplying method for the debris flow occurrence, and the source materials transported by debris flows from the three gullies were estimated to be about 97?×?104 m3 in volume altogether. (3) As surface-water runoff eroded and entrained hillslope and channel materials persistently, debris flows were characterized by intensive incision at upper or middle reaches and significant magnification effect in flow discharge and volume downstream. Corresponding peak discharge surveyed at the outlets of the Hougou, Majingzi, and Xiongjia gullies was estimated up to 751.0 m3/s, 870.1 m3/s, and 758.7 m3/s, respectively. (4) Debris flows that occurred from the three gullies all belonged to viscous ones and the bulk densities were calculated more than 1.80 g/cm3, indicating a huge carrying capacity and destructive impacting power. In addition, the lessons learned from the catastrophic events were summarized, including recognition and assessment on debris flow hazard and utilization of deposition fan. In this paper, prevention suggestions on debris flow prone valleys with high-vegetation coverage and low occurrence frequency were also put forward. The results of this study contribute to a better understanding on the initiation mechanism, dynamic characteristics, and disaster mitigation of debris flows initiated from intense rainfall and surface-water runoff in mountainous areas.  相似文献   

9.
Investigation of the evolution of the groundwater system and its mechanisms is critical to the sustainable management of water in river basins. Temporal and spatial distributions and characteristics of groundwater have undergone a tremendous change with the intensity of human activities in the middle reaches of the Heihe River Basin (HRB), the second largest arid inland river basin in northwestern China. Based on groundwater observation data, hydrogeological data, meteorological data and irrigation statistical data, combined with geostatistical analyses and groundwater storage estimation, the basin-scaled evolution of the groundwater levels and storage (from 1985 to 2013) were investigated. The results showed that the unbalanced allocation of water sources and expanded cropland by policy-based human activities resulted in the over-abstraction of groundwater, which induced a general decrease in the water table and groundwater storage. The groundwater level has generally fallen from 4.92 to 11.49 m from 1985 to 2013, especially in the upper and middle parts of the alluvial fan (zone I), and reached a maximum depth of 17.41 m. The total groundwater storage decreased by 177.52?×?108 m3; zone I accounted for about 94.7 % of the total decrease. The groundwater balance was disrupted and the groundwater system was in a severe negative balance; it was noted that the groundwater/surface-water interaction was also deeply affected. It is essential to develop a rational plan for integration and management of surface water and groundwater resources in the HRB.  相似文献   

10.
It is important to have both a qualitative and quantitative understanding of the hydraulic exchange between groundwater and surface water to support the development of effective management plans for sustainable use of water resources. Groundwater is a major source of surface-water recharge and plays an important role in maintaining the integrity of ecosystems, especially within wetlands in semi-arid regions. The Ordos Desert Plateau of Inner Mongolia (China) is a vulnerable ecosystem that suffers from an extreme lack of water. The hydraulic exchange between groundwater and lake water in Dakebo Lake (the largest of hundreds of lakes on the Ordos Desert Plateau) was evaluated using multiple environmental methods. Continuous monitoring of the groundwater and lake-water levels indicated that the lake was recharged vertically by groundwater. Application of hydrodynamic and temperature tracing methods to the western side of the lake indicated that the rate of groundwater discharge to the lake was about 2?×?10?6 to 3?×?10?6 m/s in spring, summer, and autumn, but that there was no recharge in winter because the hypolentic zone (HZ) was frozen. Mixing ratios of groundwater and lake water in the HZ, estimated from the 18O and 2H ratios, showed that there were spatial variations in the hydrodynamic exchange between groundwater and lake water within the HZ.  相似文献   

11.
Significant spatial variability of water fluxes may exist at the water-sediment interface in river channels and has great influence on a variety of water issues. Understanding the complicated flow systems controlling the flux exchanges along an entire river is often limited due to averaging of parameters or the small number of discrete point measurements usually used. This study investigated the spatial pattern of the hyporheic flux exchange across a river transect in China, using the heat tracing approach. This was done with measurements of temperature at high spatial resolution during a 64-h monitoring period and using the data to identify the spatial pattern of the hyporheic exchange flux with the aid of a one-dimensional conduction-advection-dispersion model (VFLUX). The threshold of neutral exchange was considered as 126 L m?2 d?1 in this study and the heat tracing results showed that the change patterns of vertical hyporheic flux varied with buried depth along the river transect; however, the hyporheic flux was not simply controlled by the streambed hydraulic conductivity and water depth in the river transect. Also, lateral flow dominated the hyporheic process within the shallow high-permeability streambed, while the vertical flow was dominant in the deep low-permeability streambed. The spatial pattern of hyporheic exchange across the river transect was naturally controlled by the heterogeneity of the streambed and the bedform of the stream cross-section. Consequently, a two-dimensional conceptual illustration of the hyporheic process across the river transect is proposed, which could be applicable to river transects of similar conditions.  相似文献   

12.
Groundwater/surface-water interactions can play an important role in management of water quality and quantity, but the temporal and spatial variability of these interactions makes them difficult to incorporate into conceptual models. There are simple methods for identifying the presence of groundwater/surface-water interactions; however, identifying flow mechanisms and pathways can be challenging. More complex methods are available to better identify these mechanisms and pathways but are often too time consuming or costly. In this work, a simple method for interpreting and identifying flow mechanisms and sources using temporal variations of river response functions is presented. This approach is demonstrated using observations from two sites along the Arkansas River in Kansas, USA. A change in flow mechanisms between the rising and falling limbs of river hydrographs was identified, along with a second surface-water source to the aquifer, a finding that was validated with stable isotope analyses.  相似文献   

13.
Dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) optical properties were analyzed along two estuarine river transects during the wet and dry seasons to better understand DOM dynamics and quantify mangrove inputs. A tidal study was performed to assess the impacts of tidal pumping on DOM transport. DOM in the estuaries showed non-conservative mixing indicative of mangrove-derived inputs. Similarly, fluorescence data suggest that some terrestrial humic-like components showed non-conservative behavior. An Everglades freshwater-derived fluorescent component, which is associated with soil inputs from the Northern Everglades, behaved conservatively. During the dry season, a protein-like component behaved conservatively until the mid-salinity range when non-conservative behavior due to degradation and/or loss was observed. The tidal study data suggests mangrove porewater inputs to the rivers following low tide. The differences in quantity of DOM exported by the Shark and Harney Rivers imply that geomorphology and tidal hydrology may be a dominant factor controlling the amount of DOM exported from the mangrove ecotone, where up to 21 % of the DOC is mangrove-derived. Additionally, nutrient concentrations and other temporal factors may control DOM export from the mangroves, particularly for the microbially derived fluorescent components, contributing to the seasonal differences. The wet and dry season fluxes of mangrove DOM from the Shark River is estimated as 0.27?×?109 mg C d?1 and 0.075?×?109 mg C d?1, respectively, and the Harney River is estimated as 1.9?×?109 mg C d?1 and 0.20?×?109 mg C d?1.  相似文献   

14.
Since the 1990s, Indian farmers, supported by the government, have partially shifted from surface-water to groundwater irrigation in response to the uncertainty in surface-water availability. Water-management authorities only slowly began to consider sustainable use of groundwater resources as a prime concern. Now, a reliable integration of groundwater resources for water-allocation planning is needed to prevent aquifer overexploitation. Within the 11,000-km2 Musi River sub-basin (South India), human interventions have dramatically impacted the hard-rock aquifers, with a water-table drop of 0.18 m/a over the period 1989–2004. A fully distributed numerical groundwater model was successfully implemented at catchment scale. The model allowed two distinct conceptualizations of groundwater availability to be quantified: one that was linked to easily quantified fluxes, and one that was more expressive of long-term sustainability by taking account of all sources and sinks. Simulations showed that the latter implied 13 % less available groundwater for exploitation than did the former. In turn, this has major implications for the existing water-allocation modelling framework used to guide decision makers and water-resources managers worldwide.  相似文献   

15.
Sediment-bound polychlorinated biphenyls (PCBs) measured at several sites in the lower Hudson River Estuary are above equilibrium with the overlying water, providing a thermodynamic driving force for exchange from sediment to water. The fluxes of PCB congeners are estimated for a number potential processes: diffusive release of dissolved and colloidal PCBs from the bed, resuspension and subsequent desorption from resuspended particles, and sediment accumulation and burial. All processes are potentially significant, at least for some congeners. The sediment exchange fluxes of PCB solutes for five sites between Governors Island and Haverstraw Bay are estimated to be 20–860 μm m?2 d?1, which is between 2 and 100 times more than the flux of dissolved PCBs coming down the river at Haverstraw Bay. Much of the exchange from sediment to water may be balanced by burial of sorbed PCBs by sediment accumulation. Advection down the river and sediment exchange dominate other potential sources of PCBs to the lower estuary under current loading conditions. The magnitude of the calculated fluxes is consistent with the nonconservative behavior of PCBs in the same region but is higher than earlier modeling estimates that employed different assumptions.  相似文献   

16.
Hydrological interactions between surface water and groundwater (GW) can be described using hydrochemical and biological methods. Surface water–groundwater interactions and their effects on groundwater invertebrate communities were studied in the Nakdong River floodplain in South Korea. Furthermore, the GW-Fauna-Index, a promising new index for assessing the strength of surface-water influence on groundwater, was tested. The influence of surface water on groundwater decreased with increasing depth and distance from the river. While hydrochemistry prevailingly reflected the origin of the waters in the study area (i.e. whether alluvial or from adjacent rock), faunal communities seemed to display an affinity to surface-water intrusion. Fauna reacted quickly to changes in hydrology, and temporal changes in faunal community structure were significantly linked to the hydrological situation in the floodplain. The metazoan faunal community and the GW-Fauna-Index allow a distinction between surface and subsurface waters with varying degrees of exchange. The results indicate that hydrological conditions are reflected by faunal assemblages on a high spatiotemporal resolution, and that surface-water intrusion can be estimated using the GW-Fauna-Index.  相似文献   

17.
Groundwater/surface-water interaction is receiving increasing focus in Africa due to its importance to ecologic systems and sustainability. In South Africa??s 1998 National Water Act (NWA), water-use licenses, including groundwater, are granted only after defining the Reserve, the amount of water needed to supply basic human needs and preserve some ecological integrity. Accurate quantification of groundwater contributions to ecosystems for successful implementation of the NWA proves challenging; many of South Africa??s aquifers are in heterogeneous and anisotropic fractured-rock settings. This paper reviews the current conceptualizations and investigative approaches regarding groundwater/surface-water interactions in the context of South African policies. Some selected pitfall experiences are emphasized. The most common approach in South Africa is estimation of average annual fluxes at the scale of fourth-order catchments (??500 km2) with baseflow separation techniques and then subtracting the groundwater discharge rate from the recharge rate. This approach might be a good start, but it ignores spatial and temporal variability, potentially missing local impacts associated with production-well placement. As South Africa??s NWA has already been emulated in many countries including Zambia, Zimbabwe and Kenya, the successes and failures of the South African experience dealing with the groundwater/surface-water interaction will be analyzed to guide future policy directions.  相似文献   

18.
Much uncertainty exists in spatial and temporal variations of nitrous oxide (N2O) emissions from coastal marshes in temperate regions. To investigate the spatial and temporal variations of N2O fluxes and determine the environmental factors influencing N2O fluxes across the coastal marsh dominated by Suaeda salsa in the Yellow River estuary, China, in situ measurements were conducted in high marsh (HM), middle marsh (MM), low marsh (LM), and mudflat (MF) in autumn and winter during 2011–2012. Results showed that mean N2O fluxes and cumulative N2O emission indicated intertidal zone of the examined marshes as N2O sources over all sampling seasons with range of 0.0051 to 0.0152 mg N2O m?2 h?1 and 7.58 to 22.02 mg N2O m?2, respectively. During all times of day and the seasons measured, N2O fluxes from the intertidal zone ranged from ?0.0004 to 0.0644 mg N2O m?2 h?1. The freeze/thaw cycles in sediments during early winter (frequent short-term cycle) and midwinter (long-term cycle) were one of main factors affecting the temporal variations of N2O emission. The spatial variations of N2O fluxes in autumn were mainly dependent on tidal fluctuation and plant composition. The ammonia-nitrogen (NH4 +–N) in sediments of MF significantly affected N2O emissions (p < 0.05), and the high concentrations of Fe in sediments might affect the spatial variation of N2O fluxes. This study highlighted the large spatial variation of N2O fluxes across the coastal marsh (coefficient of variation (CV) = 127.86 %) and the temporal variation of N2O fluxes during 2011–2012 (CV = 137.29 %). Presently, the exogenous C and N loadings of the Yellow River estuary are increasing due to human activities; thus, the potential effects of exogenous C and N loadings on N2O emissions during early winter should be paid more attention as the N2O inventory is assessed precisely.  相似文献   

19.
This study investigates the occurrence of greenhouse gases (GHGs) and the role of groundwater as an indirect pathway of GHG emissions into surface waters in a gaining stretch of the Triffoy River agricultural catchment (Belgium). To this end, nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations, the stable isotopes of nitrate, and major ions were monitored in river and groundwater over 8 months. Results indicated that groundwater was strongly oversaturated in N2O and CO2 with respect to atmospheric equilibrium (50.1 vs. 0.55 μg L?1 for N2O and 14,569 vs. 400 ppm for CO2), but only marginally for CH4 (0.45 vs. 0.056 μg L?1), suggesting that groundwater can be a source of these GHGs to the atmosphere. Nitrification seemed to be the main process for the accumulation of N2O in groundwater. Oxic conditions prevailing in the aquifer were not prone for the accumulation of CH4. In fact, the emissions of CH4 from the river were one to two orders of magnitude higher than the inputs from groundwater, meaning that CH4 emissions from the river were due to CH4 in-situ production in riverbed or riparian zone sediments. For CO2 and N2O, average emissions from groundwater were 1.5?×?105 kg CO2 ha?1 year?1 and 207 kg N2O ha?1 year?1, respectively. Groundwater is probably an important source of N2O and CO2 in gaining streams but when the measures are scaled at catchment scale, these fluxes are probably relatively modest. Nevertheless, their quantification would better constrain nitrogen and carbon budgets in natural systems.  相似文献   

20.
Identification and quantification of groundwater and surface-water interactions provide important scientific insights for managing groundwater and surface-water conjunctively. This is especially relevant in semi-arid areas where groundwater is often the main source to feed river discharge and to maintain groundwater dependent ecosystems. Multiple field measurements were taken in the semi-arid Bulang sub-catchment, part of the Hailiutu River basin in northwest China, to identify and quantify groundwater and surface-water interactions. Measurements of groundwater levels and stream stages for a 1-year investigation period indicate continuous groundwater discharge to the river. Temperature measurements of stream water, streambed deposits at different depths, and groundwater confirm the upward flow of groundwater to the stream during all seasons. Results of a tracer-based hydrograph separation exercise reveal that, even during heavy rainfall events, groundwater contributes much more to the increased stream discharge than direct surface runoff. Spatially distributed groundwater seepage along the stream was estimated using mass balance equations with electrical conductivity measurements during a constant salt injection experiment. Calculated groundwater seepage rates showed surprisingly large spatial variations for a relatively homogeneous sandy aquifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号