首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.  相似文献   

2.
The combined use of pumping and tracer test data enabled the derivation of equivalent average hydraulic conductivities (Kavg) for each test in a heterogeneous channelized alluvial aquifer, whereas K values of the preferential flow paths were two orders of magnitude higher. Greater and earlier drawdown was generally observed along preferential flow lines in a pumping test, within an array of 21 wells. The study aim was to characterize hydraulic properties of a channelized aquifer system in New Zealand by combining tracer and pumping test data. Estimates were able to be made of the percentage of highly permeable channels within the profile (~1.2%), effective porosity that reflected the maximum fraction of highly permeable channels within the aquifer (?eff–pc ~0.0038), and flows through highly permeable channels (~98%) and the sandy gravel matrix material (~2%). Using ?eff–pc, a tracer test Kavg value (~93 m/day) was estimated that was equivalent to pumping test values (~100 m/day), but two orders of magnitude smaller than K calculated solely from transport through permeable channels (Kpc ~8,400 m/day). Derived K values of permeable and matrix material were similar to values derived from grain size distribution using the Kozeny-Carman equation.  相似文献   

3.
Analyses are presented of long-term hydrographs perturbed by variable pumping/injection events in a confined aquifer at a municipal water-supply well field in the Region of Waterloo, Ontario (Canada). Such records are typically not considered for aquifer test analysis. Here, the water-level variations are fingerprinted to pumping/injection rate changes using the Theis model implemented in the WELLS code coupled with PEST. Analyses of these records yield a set of transmissivity (T) and storativity (S) estimates between each monitoring and production borehole. These individual estimates are found to poorly predict water-level variations at nearby monitoring boreholes not used in the calibration effort. On the other hand, the geometric means of the individual T and S estimates are similar to those obtained from previous pumping tests conducted at the same site and adequately predict water-level variations in other boreholes. The analyses reveal that long-term municipal water-level records are amenable to analyses using a simple analytical solution to estimate aquifer parameters. However, uniform parameters estimated with analytical solutions should be considered as first rough estimates. More accurate hydraulic parameters should be obtained by calibrating a three-dimensional numerical model that rigorously captures the complexities of the site with these data.  相似文献   

4.
Three approaches for estimating the hydraulic conductivity (K) of the Trifa aquifer, Morocco were investigated: (1) kriging of the K values obtained from pumping tests, (2) cokriging of the pumping test data with electrical resistivity data as a secondary variable, and (3) cokriging of the pumping test data with the slope of the water table. Gauss-transformed values of the variables are used because they provide more robust variograms and transformed values of the primary and secondary variables show correlations higher than the raw values, which is beneficial in cokriging. In cokriging with electrical resistivity, two zones are considered since the geological deposits are different from the north to the south of the aquifer, which is reflected in different correlations between the variables. Comparison of the three approaches is based mainly on the estimation errors, and to a lesser degree on the cross-validations of the corresponding variogram models and general considerations, like the measurements’ reliability and aquifer make-up. The best-estimated K is given by cokriging with the slope of the water table and is therefore preferred for further use in groundwater flow modeling. Thus, electrical resistivity or the slope of the water table can both be used as secondary variables to estimate K, especially in heterogeneous aquifers with lateral variations in lithology, as is the case of the Trifa aquifer.  相似文献   

5.
Non-Darcian flow to a partially penetrating well in a confined aquifer with a finite-thickness skin was investigated. The Izbash equation is used to describe the non-Darcian flow in the horizontal direction, and the vertical flow is described as Darcian. The solution for the newly developed non-Darcian flow model can be obtained by applying the linearization procedure in conjunction with the Laplace transform and the finite Fourier cosine transform. The flow model combines the effects of the non-Darcian flow, partial penetration of the well, and the finite thickness of the well skin. The results show that the depression cone spread is larger for the Darcian flow than for the non-Darcian flow. The drawdowns within the skin zone for a fully penetrating well are smaller than those for the partially penetrating well. The skin type and skin thickness have great impact on the drawdown in the skin zone, while they have little influence on drawdown in the formation zone. The sensitivity analysis indicates that the drawdown in the formation zone is sensitive to the power index (n), the length of well screen (w), the apparent radial hydraulic conductivity of the formation zone (K r2), and the specific storage of the formation zone (S s2) at early times, and it is very sensitive to the parameters n, w and K r2 at late times, especially to n, while it is not sensitive to the skin thickness (r s).  相似文献   

6.
Transmissivity (T) is one of the most important parameters in groundwater studies, and is generally estimated from pumping tests. T can also be deduced from abundantly available specific-capacity (Q/s) data by using analytical and/or empirical approaches, further upscaled by geostatistical methods. A different, remote sensing based, hydrogeomorphological approach is proposed, to upscale T from point- or well-scale to aquifer-scale, and it is applied to the piedmont alluvial aquifer system of Doon Valley in India. In the first step, Q/s and T data-pairs available from aquifer tests were used to establish an empirical, logarithmic relation. Subsequently, satellite imagery along with available data from published and unpublished maps, literature sources and ground surveys were used to divide the aquifer system into major hydrogeomorphological domains that control the groundwater occurrence and flow. Then, the T data derived from Q/s (using the empirical relation) and that available from pumping tests at well-scale were upscaled to aquifer-scale by averaging the T values within each hydrogeomorphological domain. Such a stratification approach is especially useful in areas where availability of only a few data-pairs of known Q/s and T limit the use of geostatistical techniques. A comparative study of the published empirical relations between Q/s and T in various hydrogeologic settings revealed that the relation obtained for Doon Valley aquifer system is close to that found for a similar alluvial aquifer system in Morocco.  相似文献   

7.
Severe land subsidence due to groundwater extraction may occur in multiaquifer systems where highly compressible aquitards are present. The highly compressible nature of the aquitards leads to nonlinear consolidation where the groundwater flow parameters are stress-dependent. The case is further complicated by the heterogeneity of the hydrogeologic and geotechnical properties of the aquitards. The effect of realistic vertical heterogeneity of hydrogeologic and geotechnical parameters on the consolidation of highly compressible aquitards is investigated by means of one-dimensional Monte Carlo numerical simulations where the lower boundary represents the effect of an instant drop in hydraulic head due to groundwater pumping. Two thousand realizations are generated for each of the following parameters: hydraulic conductivity (K), compression index (C c), void ratio (e) and m (an empirical parameter relating hydraulic conductivity and void ratio). The correlation structure, the mean and the variance for each parameter were obtained from a literature review about field studies in the lacustrine sediments of Mexico City. The results indicate that among the parameters considered, random K has the largest effect on the ensemble average behavior of the system when compared to a nonlinear consolidation model with deterministic initial parameters. The deterministic solution underestimates the ensemble average of total settlement when initial K is random. In addition, random K leads to the largest variance (and therefore largest uncertainty) of total settlement, groundwater flux and time to reach steady-state conditions.  相似文献   

8.
The hydrogeologic and hydraulic characteristics of a lateritic terrain in West Bengal, India, were investigated. Test drilling was conducted at ten sites and grain-size distribution curves (GSDCs) were prepared for 275 geologic samples. Performance evaluation of eight grain-size-analysis (GSA) methods was carried out to estimate the hydraulic conductivity (K) of subsurface formations. Finally, the GSA results were validated against pumping-test data. The GSDCs indicated that shallow aquifer layers are coarser than the deeper aquifer layers (uniformity coefficient 0.19–11.4). Stratigraphy analysis revealed that both shallow and deep aquifers of varying thickness exist at depths 9–40 and 40–79 m, respectively. The mean K estimates by the GSA methods are 3.62–292.86 m/day for shallow aquifer layers and 0.97–209.93 m/day for the deeper aquifer layers, suggesting significant aquifer heterogeneity. Pumping-test data indicated that the deeper aquifers are leaky confined with transmissivity 122.69–693.79 m2/day, storage coefficient 1.01?×?10?7–2.13?×?10?4 and leakance 2.01?×?10?7–34.56?×?10?2 day?1. Although the K values yielded by the GSA methods are generally larger than those obtained from the pumping tests, the Slichter, Harleman and US Bureau Reclamation (USBR) GSA methods yielded reasonable values at most of the sites (1–3 times higher than K estimates by the pumping-test method). In conclusion, more reliable aquifers exist at deeper depths that can be tapped for dependable water supply. GSA methods such as Slichter, Harleman and USBR can be used for the preliminary assessment of K in lateritic terrains in the absence of reliable field methods.  相似文献   

9.
This paper examines the influence of porous media deformation on water-table wave dispersion in an unconfined aquifer using a numerical model which couples Richards’ equation to the poro-elastic model. The study was motivated by the findings of Shoushtari et al. (J Hydrol 533:412–440, 2016) who were unable to reproduce the observed wave dispersion in their sand flume data with either numerical Richards’ equation models (assuming rigid porous media) or existing analytic solutions. The water-table wave dispersion is quantified via the complex wave number extracted from the predicted amplitude and phase profiles. A sensitivity analysis was performed to establish the influence of the main parameters in the poro-elastic model, namely Young’s modulus (E) and Poisson’s ratio (ν). For a short oscillation period (T?=?16.4 s), the phase lag increase rate (k i) is sensitive to the chosen values of E and ν, demonstrating an inverse relationship with both parameters. Changes in the amplitude decay rate (k r), however, were negligible. For a longer oscillation period (T?=?908.6 s), variations in the values of E and ν resulted in only small changes in both k r and k i. In both the short and long period cases, the poro-elastic model is unable to reproduce the observed wave dispersion in the existing laboratory data. Hence porous media deformation cannot explain the additional energy dissipation in the laboratory data. Shoushtari SMH, Cartwright N, Perrochet P, Nielsen P (2016) The effects of oscillation period on groundwater wave dispersion in a sandy unconfined aquifer: sand flume experiments and modelling. J Hydrol 533:412–440.  相似文献   

10.
Textural variational pattern of economic and accessible Quaternary aquifer repositories and its conductivity in the south-eastern Nigeria have been assessed through the integration of vertical electrical sounding and laboratory measurements. The results have shown the lithological attributes, pore-water and amount of residual clay minerals in the assumed clean sand; mechanism of charge fixation at the fluid - surface interface; intricate geometry of pores and pore channels; formation’s ability to transmit pore-water and cation exchange capacity.The connections of electrical and hydraulic properties and their distributions have been established. The average interface conductivity contributed by residual clay minerals in assumed clean sands of the aquifer repositories in the study area have been estimated as 30µS/m. Intrinsic average porosity and formation factor have been respectively deduced as 12% and 14.75. Comparing the simulated aquifer formation factor obtained from the observed porosity data with the observed aquifer formation factor, indicates the that study area has 0.5 ≤ a ≤ 0.8 pore geometry factor and 1.5 ≤ m ≤ 2.0 cementation factor as the best fitting values. The interrelations between aquifer parameters have been established through different plots and the aquifer have been empirically proved to be associated with residual clay minerals as the interface conductivity Cq is not equal to zero. The wide ranges of parameters estimated are an indication of variations in grain size. The estimated intrinsic average porosity, formation factor and the average BQv are viable in characterizing the aquifer flow dynamics and contaminant modelling in the associated aquifer sands For low pore geometry factors a (0.2) and low cementation factor m (0.5) the formation factor remains fairly constant. However, marked variability is noticed at higher a (1.0) and m (2.5). Despite the observed variability in formation factors at the indicated porosities, the spatial or geometrical spread of the formation factor remains unchanged in the aquifer units. The Tables for geoelectric and petrophysical parameters and the associated mathematical models generated in this study can be used for groundwater contaminant modelling and simulation of pore space parameters with reasonable accuracy.  相似文献   

11.
A numerical groundwater model of the weathered crystalline aquifer of Ursuya (a major water source for the north-western Pyrenees region, south-western France) has been computed based on monitoring of hydrological, hydrodynamic and meteorological parameters over 3 years. The equivalent porous media model was used to simulate groundwater flow in the different layers of the weathered profile: from surface to depth, the weathered layer (5?·?10?8?≤?K?≤?5?·? 10?7 m s?1), the transition layer (7?·?10?8?≤?K?≤?1?·? 10?5 m s?1, the highest values being along major discontinuities), two fissured layers (3.5?·?10?8?≤?K?≤?5?·?? 10?4 m s?1, depending on weathering profile conditions and on the existence of active fractures), and the hard-rock basement simulated with a negligible hydraulic conductivity (K = 1 10 ?9 ). Hydrodynamic properties of these five calculation layers demonstrate both the impact of the weathering degree and of the discontinuities on the groundwater flow. The great agreement between simulated and observed hydraulic conditions allowed for validation of the methodology and its proposed use for application on analogous aquifers. With the aim of long-term management of this strategic aquifer, the model was then used to evaluate the impact of climate change on the groundwater resource. The simulations performed according to the most pessimistic climatic scenario until 2050 show a low sensitivity of the aquifer. The decreasing trend of the natural discharge is estimated at about ?360 m3 y?1 for recharge decreasing at about ?5.6 mm y?1 (0.8 % of annual recharge).  相似文献   

12.
Despite advanced development in computational techniques, the issue of how to adequately calibrate and minimize misfit between system properties and corresponding measurements remains a challenging task in groundwater modeling. Two important features of the groundwater regime, hydraulic conductivity (k) and specific yield (S y), that control aquifer dynamic vary spatially within an aquifer system due to geologic heterogeneity. This paper provides the first attempt in using an advanced swarm-intelligence-based optimization algorithm (cuckoo optimization algorithm, COA) coupled with a distributed hydrogeology model (i.e., MODFLOW) to calibrate aquifer hydrodynamic parameters (S y and k) over an arid groundwater system in east Iran. Our optimization approach was posed in a single-objective manner by the trade-off between sum of absolute error and the adherent swarm optimization approach. The COA optimization algorithm further yielded both hydraulic conductivity and specific yield parameters with high performance and the least error. Estimation of depth to water table revealed skillful prediction for a set of cells located at the middle of the aquifer system whereas showed unskillful prediction at the headwater due to frequent water storage changes at the inflow boundary. Groundwater depth reduced from east toward west and southwest parts of the aquifer because of extensive pumping activities that caused a smoothening influence on the shape of the simulated head curve. The results demonstrated a clear need to optimize arid aquifer parameters and to compute groundwater response across an arid region.  相似文献   

13.
Analytical formulae are proposed to describe the first-order temporal evolution of the head in large groundwater systems (such as those found in North Africa or eastern Australia) that are subjected to drastic modifications of their recharge conditions (such as those in Pleistocene and Holocene times). The mathematical model is based on the hydrodynamics of a mixed-aquifer system composed of a confined aquifer connected to an unconfined one with a large storage capacity. The transient behaviour of the head following a sudden change of recharge conditions is computed with Laplace transforms for linear one-dimensional and cylindrical geometries. This transient evolution closely follows an exponential trend exp(?t/τ). The time constant τ is expressed analytically as a function of the various parameters characterizing the system. In many commonly occurring situations, τ depends on only four parameters: the width a c of the main confined aquifer, its transmissivity T c, the integrated storage situated upstream in the unconfined aquifer M?=?S u a u, and a curvature parameter accounting for convergence/divergence effects. This model is applied to the natural decay of large aquifer basins of the Sahara and Australia following the end of the mid-Holocene humid period. The observed persistence of the resource is discussed on the basis of the time constant estimated with the system parameters. This comparison confirms the role of the upstream water reserve, which is modelled as an unconfined aquifer, and highlights the significant increase of the time constant in case of converging flow.  相似文献   

14.
The sound velocity (V P) of liquid Fe–10 wt% Ni and Fe–10 wt% Ni–4 wt% C up to 6.6 GPa was studied using the ultrasonic pulse-echo method combined with synchrotron X-ray techniques. The obtained V P of liquid Fe–Ni is insensitive to temperature, whereas that of liquid Fe–Ni–C tends to decrease with increasing temperature. The V P values of both liquid Fe–Ni and Fe–Ni–C increase with pressure. Alloying with 10 wt% of Ni slightly reduces the V P of liquid Fe, whereas alloying with C is likely to increase the V P. However, a difference in V P between liquid Fe–Ni and Fe–Ni–C becomes to be smaller at higher temperature. By fitting the measured V P data with the Murnaghan equation of state, the adiabatic bulk modulus (K S0) and its pressure derivative (K S ) were obtained to be K S0 = 103 GPa and K S  = 5.7 for liquid Fe–Ni and K S0 = 110 GPa and K S  = 7.6 for liquid Fe–Ni–C. The calculated density of liquid Fe–Ni–C using the obtained elastic parameters was consistent with the density values measured directly using the X-ray computed tomography technique. In the relation between the density (ρ) and sound velocity (V P) at 5 GPa (the lunar core condition), it was found that the effect of alloying Fe with Ni was that ρ increased mildly and V P decreased, whereas the effect of C dissolution was to decrease ρ but increase V P. In contrast, alloying with S significantly reduces both ρ and V P. Therefore, the effects of light elements (C and S) and Ni on the ρ and V P of liquid Fe are quite different under the lunar core conditions, providing a clue to constrain the light element in the lunar core by comparing with lunar seismic data.  相似文献   

15.
The classical aquitard-drainage model COMPAC has been modified to simulate the compaction process of a heterogeneous aquitard consisting of multiple sub-units (Multi-COMPAC). By coupling Multi-COMPAC with the parameter estimation code PEST++, the vertical hydraulic conductivity (K v) and elastic (S ske) and inelastic (S skp) skeletal specific-storage values of each sub-unit can be estimated using observed long-term multi-extensometer and groundwater level data. The approach was first tested through a synthetic case with known parameters. Results of the synthetic case revealed that it was possible to accurately estimate the three parameters for each sub-unit. Next, the methodology was applied to a field site located in Changzhou city, China. Based on the detailed stratigraphic information and extensometer data, the aquitard of interest was subdivided into three sub-units. Parameters K v, S ske and S skp of each sub-unit were estimated simultaneously and then were compared with laboratory results and with bulk values and geologic data from previous studies, demonstrating the reliability of parameter estimates. Estimated S skp values ranged within the magnitude of 10?4 m?1, while K v ranged over 10?10–10?8 m/s, suggesting moderately high heterogeneity of the aquitard. However, the elastic deformation of the third sub-unit, consisting of soft plastic silty clay, is masked by delayed drainage, and the inverse procedure leads to large uncertainty in the S ske estimate for this sub-unit.  相似文献   

16.
We analyze three-phase flow of immiscible fluids taking place within an elementary capillary tube with circular cross-section under water- and oil-wet conditions. We account explicitly for momentum transfer between the moving phases, which leads to the phenomenon of viscous coupling, by imposing continuity of velocity and shear stress at fluid-fluid interfaces. The macroscopic flow model which describes the system at the Darcy scale includes three-phase effective relative permeabilities, K i j,r , accounting for the flux of the ith phase due to the presence of the jth phase. These effective parameters strongly depend on phase saturations, fluid viscosities, and wettability of the solid matrix. In the considered flow setting, K i j,r reduce to a set of nine scalar quantities, K i j,r . Our results show that K i j,r of the wetting phase is a function only of the fluid phase own saturation. Otherwise, K i j,r of the non-wetting phase depends on the saturation of all fluids in the system and on oil and water viscosities. Viscous coupling effects (encapsulated in K i j,r with ij) can be significantly relevant in both water- and oil-wet systems. Wettability conditions influence oil flow at a rate that increases linearly with viscosity ratio between oil and water phases.  相似文献   

17.
The excitation of methanol in the absence of external radiation is analyzed, and LTE methods for probing interstellar gas considered. It is shown that rotation diagrams correctly estimate the gas kinetic temperature only if they are constructed using lines whose upper levels are located in the same K-ladders, such as the J0?J?1E lines at 157 GHz, the J1?J0E lines at 165 GHz, and the J2?J1E lines at 25 GHz. The gas density must be no less than 107 cm?3. Rotation diagrams constructed from lines with different K values for their upper levels (e.g., 2K?1K at 96 GHz, 3K?2K at 145 GHz, 5K?4K at 241 GHz) significantly underestimate the temperature, but enable estimation of the density. In addition, diagrams based on the 2K?1K lines can be used to estimate the methanol column density within a factor of about two to five. It is suggested that rotation diagrams should be used in the following manner. First, two rotation diagrams should be constructed, one from the lines at 96, 145, or 241 GHz, and another from the lines at 157, 165, or 25 GHz. The former diagram is used to estimate the gas density. If the density is about 107 cm?3 or higher, the latter diagram reproduces the temperature fairly well. If the density is around 106 cm?3, the temperature obtained from the latter diagram should be multiplied by a factor of 1.5–2. If the density is about 105 cm?3 or lower, then the latter diagram yields a temperature that is lower than the kinetic temperature by a factor of three or more, and should be used only as a lower limit for the kinetic temperature. The errors in the methanol column density determined from the integrated intensity of a single line can be more than an order of magnitude, even when the gas temperature is well known. However, if the J0?(J ? 1)0E lines, as well as the J1?(J ? 1)1A+ or A? lines are used, the relative error in the column density is no more than a factor of a few.  相似文献   

18.
Unlike the studies in small parcels by systematic measurements, the spatial variability of soil properties is expected to increase in those over relatively large areas or scales. Spatial variability of soil hydraulic conductivity (K h) is of significance for the environmental processes, such as soil erosion, plant growth, transport of the plant nutrients in a soil profile and ground water levels. However, its variability is not much and sufficiently known at basin scale. A study of testing the performance of cokriging of K h compared with that of kriging was conducted in the catchment area of Sarayköy II Irrigation Dam in Cank?r?, Turkey. A total of 300 soil surface samples (0–10 cm) were collected from the catchment with irregular intervals. Of the selected soil properties, because the water-stable aggregates (WSA) indicated the highest relationship with the hydraulic conductivity by the Pearson correlation analysis, it is used as an auxiliary variable to predict K h by the cokriging procedure. In addition, the sampling density was reduced randomly to n = 175, n = 150, n = 75 and n = 50 for K h to determine if the superiority of cokriging over kriging would exist. Statistically, the results showed that all reduced K h was as good as the complete K h when its auxiliary relations with WSA were used in cokriging. Particularly, the results of the “Relative Reduction in MSE” (RMSE) revealed that the reduced data set of n = 75 produced the most accurate map than the others. In this basin-scaled study, there was a clear superiority of the cokriging procedure by the reduction in data although a very undulating topography and topographically different aspects, two different land uses with non-uniform vegetation density, different parent materials and soil textures were present in the area. Hence, using the statistically significant auxiliary relationship between K h and WSA might bring about a very useful data set for watershed hydrological researches.  相似文献   

19.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the PV data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed.  相似文献   

20.
A technique for IR spectroscopic determination of the total nitrogen content N S in the form of A-and B 1-defects is suggested. It provides for the computer processing and decomposition of IR spectra into constituent bands, calculation of the total absorption band area S N and individual areas S A and S B1 and their normalization with respect to the total area of the diamond intrinsic absorption S 0, with the normalization coefficients K S , K A , and K B1 being calculated. Based on the analysis of the IR spectra of 60 octahedral diamond crystals from the Mir and Yubileinaya pipes (Sakha-Yakutiya), the empirical functions N S = 911.85 K S 0.9919 ppm (R 2 = 0.9859), N A = 1185.6 K A 1.1511 ppm (R 2 = 0.8703), and N B1 = 911.85 K S 0.9919 ? 1185.6 K A 1.1511 ppm have been defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号