首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
More than 2,600 relict rock glaciers are known in the Austrian Alps but the knowledge of their hydraulic properties is severely limited. The relict Schöneben Rock Glacier (Niedere Tauern Range, Austria), with an extension of 0.17 km2, was investigated based on spring data (2006–2014) and seismic refraction survey. Spring-discharge hydrographs and natural and artificial tracer data suggest a heterogeneous aquifer with a layered internal structure for the relict rock glacier. The discharge behavior exhibits a fast and a delayed flow component. The spring discharge responds to recharge events within a few hours but a mean residence time of several months can also be observed. The internal structure of the rock glacier (up to several tens of meters thick) consists of: an upper blocky layer with a few meters of thickness, which lacks fine-grained sediments; a main middle layer with coarse and finer-grained sediments, allowing for fast flow; and an approximately 10-m-thick basal till layer as the main aquifer body responsible for the base flow. The base-flow component is controlled by (fine) sandy to silty sediments with low hydraulic conductivity and high storage capacity, exhibiting a difference in hydraulic conductivity to the upper layer of about three orders of magnitude. The high storage capacity of relict rock glaciers has an impact on water resources management in alpine catchments and potentially regulates the risk of natural hazards such as floods and related debris flows. Thus, the results highlight the importance of such aquifer systems in alpine catchments.  相似文献   

2.
The quantification of submarine and intertidal groundwater discharge (SiGD) or purely submarine groundwater discharge (SGD) from coastal karst aquifers presents a major challenge, as neither is directly measurable. In addition, the expected heterogeneity and intrinsic structure of such karst aquifers must be considered when quantifying SGD or SiGD. This study applies a set of methods for the coastal karst aquifer of Bell Harbour in western Ireland, using long-term onshore and offshore time series from a high-resolution monitoring network, to link catchment groundwater flow dynamics to groundwater discharge as SiGD. The SiGD is estimated using the “pollution flushing model”, i.e. a mass-balance approach, while catchment dynamics are quantified using borehole hydrograph analysis, single-borehole dilution tests, a water balance calculation, and cross-correlation analysis. The results of these analyses are then synthesised, describing a multi-level conduit-dominated coastal aquifer with a highly fluctuating overflow regime draining as SiGD, which is in part highly correlated with the overall piezometric level in the aquifer. This concept was simulated using a hydraulic pipe network model built in InfoWorks ICM [Integrated Catchment Modeling]® version 7.0 software (Innovyze). The model is capable of representing the overall highly variable discharge dynamics, predicting SiGD from the catchment to range from almost 0 to 4.3 m3/s. The study emphasises the need for long-term monitoring as the basis for any discharge studies of coastal karst aquifers. It further highlights the fact that multiple discharge locations may drain the aquifer, and therefore must be taken into consideration in the assessment of coastal karst aquifers.  相似文献   

3.
岩溶介质具有较强的非均质性,其地表及地下的岩溶结构形态多样。通过对钻孔结构描述、钻孔水物化性质分析,不仅能够掌握区域上岩溶含水层的结构特征,而且对于岩溶地下水演化过程的揭示亦有重要作用。文章以桂林岩溶水文地质试验场西南部峰丛山区与峰林平原交界处的钻孔为例,通过野外便携式多参数仪原位测试钻孔垂向水物化指标(pH值、水温T、电导率EC),探索浅部(地面以下约50 m内)地下岩溶较为发育条件下钻孔水物化指标的垂向变化特征,揭示岩溶介质非均质性对钻孔垂向水物化指标的影响。结果表明:岩溶地区小范围内不同钻孔间的水物化性质有所差异,且岩溶发育相似的钻孔(如ZK4/ZK5、ZK7/ZK8),其水物化指标垂向变化具有一定的相似性,但不同指标(T、pH、EC)的变化幅度存在差异;钻孔水物化性质受到试验场区岩溶介质结构非均质性的控制,即岩溶介质结构影响了地下水的赋存条件和水力联系而导致水物化性质的差异;在对岩溶地区地下水物化性质进行研究时应充分考虑岩溶介质的非均质性特征,根据实际的水文地质条件选取具有代表性的钻孔含水段进行取样和监测。   相似文献   

4.
Flow and solute transport monitoring in the karst aquifer in SW Slovenia   总被引:1,自引:0,他引:1  
The role of the unsaturated zone in the karst aquifer hydraulic behaviour was brought into focus in these studies of the catchment of the Hubelj spring (SW Slovenia). The variations of natural tracers in precipitation and in groundwater during a summer storm event made it possible to trace local flow and solute transport in the observed aquifer. The results produced data on the aquifer recharge, storage and discharge processes, as well as on mechanisms that affected them, which reflects a karst groundwater dynamics also at a regional scale. They point out the significance of effects of the fast preferential flow—epiflow that is the main factor controlling solute/contaminant transport towards the aquifer saturated zone. Numerous arguments indicate that the karst aquifer flow and solute transport mechanisms depend on the hydraulic behaviour of the epikarst zone.  相似文献   

5.
基于离散裂隙网络模型的裂隙水渗流计算   总被引:1,自引:1,他引:0  
离散裂隙网络模型(Discrete Fracture Network(DFN))是研究裂隙水渗流最为有效的手段之一。文章根据裂隙几何参数和水力参数的统计分布,利用Monte Carlo随机模拟技术生成二维裂隙网络,基于图论无向图的邻接矩阵判断裂隙网络的连通,利用递归算法提取出裂隙网络的主干网或优势流路径。基于立方定律和渗流连续性方程,利用数值解析法建立了二维裂隙网络渗流模型,分析不同边界条件下裂隙网络中的流体流动。结果表明,该方法可以模拟区域宏观水力梯度和边界条件下,裂隙网络水力梯度方向总的流量,以及节点的水位、节点间的流量和流动方向的变化特征,为区域岩溶裂隙水渗流计算提供了一种实用、可行的方法。   相似文献   

6.
《Quaternary Science Reviews》2007,26(9-10):1384-1397
To investigate the drainage conditions that might be expected to develop beneath soft-bedded ice sheets, we modeled the subglacial hydrology of the James Lobe of the Laurentide Ice Sheet from Hudson Bay to the Missouri River. Simulations suggest the James Lobe had little effect on regional groundwater flow because the poorly conductive Upper-Cretaceous shale that occupies the upper layer of the bedrock would have functioned as a regional aquitard. This implies that general northward groundwater flow out of the Williston Basin has likely persisted throughout the Quaternary. Moreover, the simulations indicate that the regional aquifer system could not have drained even the minimum amount of basal meltwater that might have been produced from at the glacier bed. Therefore, excess drainage must have occurred by some sort of channelized drainage network at the ice–till interface. Using a regional groundwater model to determine the hydraulic conductivity for an equivalent porous medium in a 1-m thick zone between the ice and underlying sediment, and assuming conduit dimensions from previous theoretical work, we use a theoretical karst aquifer analog as a heuristic approach to estimate the spacing of subglacial conduits that would have been required at the ice–till interface to evacuate the minimum water flux. Results suggest that for conduits assumed to be on the order of a tenth of a meter deep and up to a meter wide, inter-conduit spacing must be on the order of tens–hundreds of meters apart to maintain basal water pressures below the ice overburden pressure while evacuating the hypothesized minimum meltwater flux.  相似文献   

7.
Geological structures can be of great influence groundwater movement and accumulation in the surface and subsurface, and should therefore be taken into consideration in studies related to groundwater contamination impact. This study attempts to investigate the influence of geological structures on groundwater flow and groundwater salinity in Al Jaaw Plain, United Arab Emirates. A set of thematic maps derived from digital elevation model (DEM), LANDSAT, and Spaceborn Imagine Radar-C/X-Band Synthetic Aperture Radar were enhanced by applying Soble filter with 10 % threshold and equalization enhancement to reveal and map geological structures crosscut the entire region. Drainage pattern was derived from DEM automatically using D8 algorithm. The algorithm determines in which neighboring pixel any water in a central pixel will flow naturally. The trends of geological structures and drainage pattern extracted from remote sensing data were correlated with the spatial variation of hydraulic head, thickness aquifer, and groundwater salinity in the region. The results of the study reveal that the wadi courses, thickness of the aquifer, and topography are structural controlled by NNW–SSE, NE–SW, and ENE–WSW trending fault zones, significantly influencing the groundwater flow and groundwater contamination in Al Jaaw Plain.  相似文献   

8.
Steelmaking-coal waste rock placed in mountain catchments in the Elk Valley, British Columbia, Canada, drain constituents of interest (CIs) to surface water downgradient of the waste rock dumps. The role of groundwater in transporting CIs in the headwaters of mountain catchments is not well understood. This study characterizes the physical hydrogeology of a portion of a 10-km2 headwater catchment (West Line Creek) downgradient of a 2.7-km2 waste rock dump placed over a natural headwater valley-bottom groundwater system. The study site was instrumented with 13 monitoring wells. Drill core samples were collected to determine subsurface lithology and geotechnical properties. The groundwater system was characterized using field testing and water-level monitoring. The valley-bottom sediments were composed of unconsolidated glacial and meltwater successions (<64 m thick) deposited as a series of cut and fill structures overlying shale bedrock. An unconfined basal alluvial aquifer located above fractured bedrock was identified as the primary conduit for groundwater flow toward Line Creek (650 m from the toe of the dump). Discharge through the basal alluvial aquifer was estimated using the geometric mean hydraulic conductivity (±1 standard deviation). These calculations suggest groundwater discharge could account for approximately 15% (ranging from 2 to 60%) of the total water discharged from the watershed. The residence time from the base of the waste rock dump to Line Creek was estimated at <3 years. The groundwater system was defined as a snowmelt (i.e., nival) regime dominated by direct recharge (percolation of precipitation) across the catchment.  相似文献   

9.
Fracture network connectivity is a spatially variable property that is difficult to quantify from standard hydrogeological datasets. This critical property is related to the distributions of fracture density, orientation, dimensions, intersections, apertures and roughness. These features that determine the inherent connectivity of a fracture network can be modified by secondary processes including weathering, uplift and unloading and other mechanisms that lead to fracture deformation in response to in situ stress. This study focussed on a fractured rock aquifer in the Clare Valley, South Australia, and found that fracture network connectivity could be discriminated from several geological, geophysical and hydrogeological field datasets at various scales including single well and local- to regional-scale data. Representative hydromechanical models of the field site were not only consistent with field observations but also highlighted the strong influence of in situ stress in determining the distribution of fracture hydraulic apertures and the formation of hydraulic chokes that impede fluid flow. The results of this multi-disciplinary investigation support the notion that the hydraulic conductivity of a fracture network is limited to the least hydraulically conductive interconnected fractures, which imposes a physical limit on the bulk hydraulic conductivity of a fractured rock aquifer.  相似文献   

10.
Groundwater of the Tafilalet oasis system (TOS) is an important water resource in the lower Ziz and Rheris valleys of arid southeastern Morocco. The unconfined aquifer is exploited for domestic consumption and irrigation. A groundwater flow model was developed to assess the impact of climatic variations and development, including the construction of hydraulic structures, on the hydrodynamic behavior of the aquifer. Numerical simulations were performed by implementing a spatial database within a geographic information system and using the Arc Hydro Groundwater tool with the code MODFLOW-2000. The results of steady-state and transient simulations between 1960 and 2011 show that the water table is at equilibrium between recharge, which is mainly by surface-water infiltration, and discharge by evapotranspiration. After the commissioning of the Hassan Addakhil dam in 1971, hydraulic heads became more sensitive to annual variations than to seasonal variations. Heads are also influenced by recurrent droughts and the highest water-level changes are recorded in irrigated areas. The model provides a way of managing groundwater resources in the TOS. It can be used as a tool to predict the impact of different management plans for the protection of groundwater against overexploitation and deterioration of water quality.  相似文献   

11.
韩家哨村位于河北滦县李家屿灰场北部谷地,地势低于灰场,距离约800m。灰场运行期间,该区地下水出现水位升高及水质变差等问题。本文从水文地质条件角度,详细研究灰水的运移途径及其对该区地下水的影响。韩家哨村区域地下水系统分为上层滞水和孔隙一裂隙(溶隙)潜水含水层系统。潜水含水层系统水力传导系数为172.6~203.4m^2/d。地下水补给主要来源于韩家哨村以南坝后地形较高区域及灰水。灰水渗漏优势区韩家哨村南部宽约200m的带状区域。灰场堆灰形成新的地下水分水岭致使灰水在20副坝坝前垂直下渗进入风化带,沿白云岩裂隙(溶隙)补给潜水含水层,并向韩家哨村区域流动补给孔隙含水层,改变后的潜水部分通过民井向外排泄。  相似文献   

12.
《Quaternary Science Reviews》2007,26(7-8):1067-1090
OverallThis work is presented in two parts. Part I presents observations on the coupling between subglacial channel flow and groundwater flow in determining subglacial hydraulic regime and creating eskers from an Icelandic glacier that is suggested as an analogue for many parts of Pleistocene ice sheets. Part II develops a theory of perennial subglacial stream flow and the origin of esker systems, and models the evolution of the subglacial stream system and associated groundwater flow in a glacier of the type described in Part I. It is suggested that groundwater flow may be the predominant mechanism whereby meltwater at the glacier bed finds its way to the major subglacial streams that discharge water to glacier margins.Part IBoreholes drilled through an Icelandic glacier into an underlying till and aquifer system have been used to measure variations in head in the vicinity of a perennial subglacial stream tunnel during late summer and early winter. They reveal a subglacial groundwater catchment that is drained by a subglacial stream along its axis. The stream tunnel is characterised by low water pressures, and acts as a drain for the groundwater catchment, so that groundwater flow is predominantly transverse to ice flow, towards the channel.These perennial streams flow both in summer and winter. Their portals have lain along the same axes for the 5 km of retreat that has occurred since the end of the Little Ice Age, 100 years ago, suggesting that the groundwater catchments have been relatively stable for at least this period. In the winter season, stream discharges are largely derived from basal melting, but during summer, water derived from the glacier surface finds its way, via fractures and moulins, to the glacier bed, where it dominates the meltwater flux. Additional subglacial streams are created in summer to help drain this greater flux from beneath the glacier, through poorly integrated and unstable networks. Summer streams cease to flow during winter and tend not to form in the same places in the following summer. Perennial streams are the stable component of the system and are the main sources of extensive esker systems.Strong flow of groundwater towards low-pressure areas along channels and the ice margin is a source of major upwelling that can produce sediment liquefaction and instability. A theory is developed to show how this could have a major effect on subglacial sedimentary processes.  相似文献   

13.
A groundwater flow model of the Alpine valley aquifer in the Aosta Plain (NW Italy) showed that well pumping can induce river streamflow depletions as a function of well location. Analysis of the water budget showed that ~80% of the water pumped during 2 years by a selected well in the downstream area comes from the baseflow of the main river discharge. Alluvial aquifers hosted in Alpine valleys fall within a particular hydrogeological context where groundwater/surface-water relationships change from upstream to downstream as well as seasonally. A transient groundwater model using MODFLOW2005 and the Streamflow-Routing (SFR2) Package is here presented, aimed at investigating water exchanges between the main regional river (Dora Baltea River, a left-hand tributary of the Po River), its tributaries and the underlying shallow aquifer, which is affected by seasonal oscillations. The three-dimensional distribution of the hydraulic conductivity of the aquifer was obtained by means of a specific coding system within the database TANGRAM. Both head and flux targets were used to perform the model calibration using PEST. Results showed that the fluctuations of the water table play an important role in groundwater/surface-water interconnections. In upstream areas, groundwater is recharged by water leaking through the riverbed and the well abstraction component of the water budget changes as a function of the hydraulic conditions of the aquifer. In downstream areas, groundwater is drained by the river and most of the water pumped by wells comes from the base flow component of the river discharge.  相似文献   

14.
In a coastal zone an understanding of the distance of the fresh water–salt water interface and its extension inland is important for prevention of sea water intrusion. In this article estimating methods are described for calculating the distance of a fresh water–salt water interface in a coastal confined aquifer based on the submarine fresh groundwater discharge. This groundwater discharge is controlled not only by the aquifer properties and hydraulic head difference, but also by the position of the fresh water–salt water interface in the coastal zone. A homogeneous and isotropic coastal confined aquifer is considered and fresh groundwater flow in the confined aquifer is thought to be at a steady state. Two observation wells at different distances in a profile perpendicular to the coastline are required in calculation of the distance of the interface toe in the coastal zone. Four coastal confined aquifers with horizontal and sloping confining beds and with varying thickness are also considered. Reasonable results are obtained when examples are used to illustrate the application of the methods. The methods require hydraulic head data at the two wells and thickness of the confined aquifers, but the hydraulic conductivity and fresh groundwater flow rate of the confined aquifers are not needed.  相似文献   

15.
Process-based groundwater models are useful to understand complex aquifer systems and make predictions about their response to hydrological changes. A conceptual model for evaluating responses to environmental changes is presented, considering the hydrogeologic framework, flow processes, aquifer hydraulic properties, boundary conditions, and sources and sinks of the groundwater system. Based on this conceptual model, a quasi-three-dimensional transient groundwater flow model was designed using MODFLOW to simulate the groundwater system of Mahanadi River delta, eastern India. The model was constructed in the context of an upper unconfined aquifer and lower confined aquifer, separated by an aquitard. Hydraulic heads of 13 shallow wells and 11 deep wells were used to calibrate transient groundwater conditions during 1997–2006, followed by validation (2007–2011). The aquifer and aquitard hydraulic properties were obtained by pumping tests and were calibrated along with the rainfall recharge. The statistical and graphical performance indicators suggested a reasonably good simulation of groundwater flow over the study area. Sensitivity analysis revealed that groundwater level is most sensitive to the hydraulic conductivities of both the aquifers, followed by vertical hydraulic conductivity of the confining layer. The calibrated model was then employed to explore groundwater-flow dynamics in response to changes in pumping and recharge conditions. The simulation results indicate that pumping has a substantial effect on the confined aquifer flow regime as compared to the unconfined aquifer. The results and insights from this study have important implications for other regional groundwater modeling studies, especially in multi-layered aquifer systems.  相似文献   

16.
In a confined alluvial aquifer located between two rivers, discrete zones of anomalously high concentrations of redox species such as iron, are thought to be a result of groundwater flow dynamics rather than a chemical evolution along continuous flow paths. This new hypothesis was confirmed at a study site located between Nan and Yom rivers in Phitsanulok, Thailand, by analyzing concentrations of redox species in comparison with dynamic groundwater flow patterns. River incision into the confined alluvial aquifer and seasonally varying river stages result in truncated flow paths. The groundwater flow dynamics between two rivers has four phases that are cyclic, including: aquifer discharge into both rivers, direct flow from one river toward another, aquifer recharge from both rivers, and reverse of river-to-river flow. The resulting groundwater flow direction has a zigzag pattern and its general trend is almost parallel to the river flow. High iron anomaly appears as discrete zones in the transition areas of the confined alluvial aquifer because the lateral recharge from rivers penetrates into the aquifer only by tens of meters. The high iron anomaly, which is nearly constant in space and time, is a result of groundwater/surface-water interactions and related groundwater flow dynamics.  相似文献   

17.
 The Judea Group, a limestone and dolomite karstic aquifer of late Albian–Turonian age, is one of the most important sources of water in Israel. In the western part of the country, the Judea Group aquifer is also known as the Yarkon–Taninim basin. In the northern Negev, the Judea Group is a recipient for fresh water flowing southward from the Hebron Mountains and of brackish paleowater flowing northward from Sinai. Very little is known of the hydraulic properties of this aquifer. In order to outline assumed natural flow paths that existed in this karstic environment prior to groundwater exploitation, use was made of lithological, structural, and paleomorphological features. A detailed hydrogeological conceptual model of the Judea Group aquifer in northern Negev was established by the geological interpretation of high-resolution seismic reflection and by analysis of lithological evidence from boreholes. Isopach, isolith-contour, and isolith-ratio maps were compiled for the main lithological components. Increase in transmissivity values is inversely proportional with the cumulative thickness of argillaceous components. The lithological and hydraulic evidence provides the basis for subdividing the subsurface into distinctive permeability zones for the upper and lower sections of the aquifer; for outlining possible preferential groundwater flow paths for both subaquifers; and for improving understanding of groundwater-salinty variations that result from lithological variability, direction of groundwater flow paths, groundwater flow rates, and the duration of rock/water interactions. In an earlier conceptual model of the basin, the Judea Group aquifer was regarded as a continuous and undisturbed entity. The present study reveals an intricate groundwater flow pattern that is controlled by lithological and structural factors that create zones of preferential flow. This interpretation bears on the overall evaluation of groundwater resources and their management and exploitation. Received, December 1996 · Revised, October 1997, June 1998 · Accepted, July 1998  相似文献   

18.
A model is presented that calculates a base level for an aquifer, assuming that the aquifer can be approximated by a linear reservoir. The base level is geologically dependent and can be seen as a drainage level for the aquifer that represents the lowest groundwater level that will occur from groundwater flow only. The base level affects groundwater-level variations and can be used to help estimate flow paths. Types of information needed to estimate this parameter are groundwater-level records, from which recession rates are calculated, and a recession curve. The recession curve is a function of the properties of the aquifer, and from it the base level is evaluated together with an aquifer parameter that describes the hydrogeological properties. Data from an area in the Groundwater Network in Sweden are used as an example. The results are consistent with the topography and hydrology of the area. Two factors affect the accuracy of the results: the time resolution of the groundwater-level data and the length of the water-level record.  相似文献   

19.
岩溶含水层具有高度的非均质性和各向异性,为定量识别济南泉域岩溶含水层发育状况,通过选取泉域岩溶水补给区和排泄区的地下水位动态数据,采用相关分析和频谱分析,研究其对降雨补给的响应特征.地下水位-降雨量的自相关和互相关分析表明,系统对降雨输入信号的敏感程度自补给区至排泄区逐渐降低,但记忆作用逐渐增强.相位分析结果表明泉域地下水位对降雨信号的响应存在滞后现象,自补给区至排泄区滞后时间逐渐延长,补给区地下水位与降雨具有更好的线性相关性.交叉振幅分析结果表明补给区地下水流中快速流约占20%~30%,而在排泄区快速流占比减少至2.5%~10.0%.岩溶含水系统地下水动力条件主要受岩溶发育程度等介质内部结构影响,济南泉域岩溶含水层岩溶发育程度较低,含水介质和水流通道以岩溶裂隙为主,地下水运动以基质流为主.   相似文献   

20.
Understanding groundwater/surface-water interactions in wetlands is crucial because wetlands provide not only a high potential for agricultural production, but also sensitive and valuable ecosystems. This is especially true for the Kilombero floodplain wetland in Tanzania, which represents a data-scarce region in terms of hydrological and hydrogeological data. A comprehensive approach combining hydrogeological with tracer-based assessments was conducted, in order to develop a conceptual hydrogeological wetland model of the area around the city of Ifakara in the north-eastern region of Kilombero catchment. Within the study site, a heterogeneous porous aquifer, with a range of hydraulic conductivities, is underlain by a fractured-rock aquifer. Groundwater chemistry is mainly influenced by silicate weathering and depends on groundwater residence times related to the hydraulic conductivities of the porous aquifer. Groundwater flows from the hillside to the river during most of the year. While floodwater close to the river is mainly derived from overbank flow of the river, floodwater at a greater distance from the river mainly originates from precipitation and groundwater discharge. Evaporation effects in floodwater increase with increasing distance from the river. In general, the contribution of flood and stream water to groundwater recharge is negligible. In terms of an intensification of agricultural activities in the wetland, several conclusions can be drawn from the conceptual model. Results of this study are valuable as a base for further research related to groundwater/surface-water interactions and the conceptual model can be used in the future to set up numerical flow and transport models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号