首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Marine pollution bulletin》2012,64(5-12):255-261
Mussels were maintained for 4 weeks under different combinations of dissolved oxygen concentration (1.5, 3.0 and 6.0 mg O2 l−1) and salinity (15, 20, 25 and 30) in a 3 × 4 factorial design experiment. Clearance rate (CR), absorption efficiency (AE), respiration rate (RR) and scope for growth (SFG) decreased with decreasing salinity and dissolved oxygen concentration (DO), while excretion rate (ER) increased with decreasing salinity and increasing DO. The O:N ratio was <10 at salinities of 15 and 20, irrespective of DO levels. SFG was negative in most of the treatments, except for those under 6.0 mg O2 l−1 or at a salinity of 30 when DO was lower. The results may help explain the distribution pattern of Perna viridis in Hong Kong waters and provide guidelines for mussel culture site selection.  相似文献   

2.
Changes in the water properties and biological characteristics of the highly acidic Hromnice Lake (Western Bohemia) were investigated. This 110-year-old lake, formed as a consequence of the mining of pyritic shales, is permanently meromictic. Two chemoclines separate an extremely acidic (pH  2.6) mixolimnion from a metal-rich anoxic monimolimnion. The absence of spring mixolimnetic turnover due to ice melting and very slow heat propagation through the chemocline with a 6-month delay were observed. Extreme mixolimnetic oxygen maxima (up to 31 mg l?1) in phosphorus-rich lake (PO43? up to 1.6 mg l?1) well correlated with outbursts of phytoplankton. Phytoplankton consist of several acido-tolerant species of the genera Coccomyxa, Lepocinclis, Chlamydomonas and Chromulina. Surface phytoplankton biomass expressed as chlorophyll-a varies from 2 to 140 μg l?1. Multicellular zooplankton are almost absent with the exception of Cephalodella acidophila, a small rotifer occurring in low numbers. Large red larvae of the midge Chironomus gr. plumosus were found at the bottom close to the shore, with larvulae in the open water. Developmental stages (protonemata) of a moss, resembling filamentous algae, dwell in the otherwise plant-free littoral zone.  相似文献   

3.
Lake metabolism scales with lake morphometry and catchment conditions   总被引:1,自引:0,他引:1  
We used a comparative data set for 25 lakes in Denmark sampled during summer to explore the influence of lake morphometry, catchment conditions, light availability and nutrient input on lake metabolism. We found that (1) gross primary production (GPP) and community respiration (R) decline with lake area, water depth and drainage ratio, and increase with algal biomass (Chl), dissolved organic carbon (DOC) and total phosphorus (TP); (2) all lakes, especially small with less incident light, and forest lakes with high DOC, have negative net ecosystem production (NEP < 0); (3) daily variability of GPP decreases with lake area and water depth as a consequence of lower input of nutrients and organic matter per unit water volume; (4) the influence of benthic processes on free water metabolic measures declines with increasing lake size; and (5) with increasing lake size, lake metabolism decreases significantly per unit water volume, while depth integrated areal rates remain more constant due to a combination of increased light and nutrient limitation. Overall, these meta-parameters have as many significant but usually weaker relationships to whole-lake and benthic metabolism as have TP, Chl and DOC that are directly linked to photosynthesis and respiration. Combining water depth and Chl to predict GPP, and water depth and DOC to predict R, lead to stronger multiple regression models accounting for 57–63% of the variability of metabolism among the 25 lakes. It is therefore important to consider differences in lake morphometry and catchment conditions when comparing metabolic responses of lakes to human impacts.  相似文献   

4.
This study tested the hypothesis that the flood pulse affects the diet composition and the niche breadth of Moenkhausia forestii, a small characid fish inhabiting the littoral zone of lakes. To this end, we compared the diet composition (at the population and individual levels) between hydrological periods (high and low water phases) in a floodplain lake of the Upper Paraná River. PERMANOVA revealed differences in the diet between periods (pseudoF1,38 = 8.5; p < 0.001), with predominant consumption of chironomid larvae and Ephemeroptera (aquatic resources) in the low-water period and an increase in the contribution of terrestrial resources (Hymenoptera, Coleoptera, and Orthoptera) during the high-water period. Based on the PERMDISP results, inter-individual variability in M. forestii diet also differed between periods (F1,38 = 5.80; p = 0.02), with higher values during the high-water period resulting in a dietary niche expansion. During the low-water period, we observed the dominance of chironomid larvae in the diets of most individuals, resulting in lower inter-individual variability and thus narrower niche breadth. The diet of M. forestii was affected by the flood pulse at both the population and individual levels. The most important difference was found in the origin of food items; during the low-water period, the diet consisted mainly of aquatic resources, and during the high-water period, there was a large contribution of terrestrial resources. This variation is related to the increased availability of allochthonous resources in the high period, when terrestrial areas are flooded by the overflow of the river, thereby increasing the input of resources into the aquatic environment. The increased availability of food resources during this period allowed the expansion of the trophic niche of M. forestii, accompanied by the highest richness (19 items) and the highest evenness of food items. Our findings demonstrated that the flood pulse affected the composition of the M. forestii diet at both the population and individual levels. These results support the importance of the flood pulse, which connects aquatic and terrestrial ecosystems, in providing food resources for fish.  相似文献   

5.
The lake monitoring programme compliant with the Water Framework Directive has been implemented in Poland since 2007. Currently, the methods for three biological quality elements (BQEs): phytoplankton (the Phytoplankton Multimetric for Polish Lakes, PMPL), macrophytes (the Ecological State Macrophyte Index, ESMI) and phytobenthos (the Diatom Index for Lakes, IOJ) are officially applied and internationally intercalibrated. Based on the monitoring data from 256 lakes surveyed in 2010–2013 and assessed for all the three BQEs, we tested whether the assessment results obtained by the three biological methods were consistent and we searched for the causes of inconsistencies which we found. The lake classifications obtained from the PMPL and ESMI were highly consistent and the relationship between these metrics was relatively strong (R = 0.66, p < 0.001). Both metrics correlated equally strongly with water quality indicators. However, the PMPL and ESMI indicated systematic dissimilarities in the sensitivity to eutrophication between shallow and deep lakes. In shallow lakes, the alarming symptoms of macrophyte community deterioration (lower values of ESMI) occurred at lower nutrient and Chla concentrations and were accompanied by a better status of phytoplankton (higher values of PMPL) than in deep lakes that can be explained by a synergistic effect of inorganic suspended solids and algal growth on water transparency. As a consequence, the positions of phytoplankton and macrophytes as early warning indicators in the eutrophication gradient in shallow lakes were inverted compared to those in deep lakes. Compared to the PMPL and ESMI, the IOJ method gave the least stringent assessment results, with 22% of lakes failing to meet the environmental objectives. The relationships between IOJ and PMPL, and ESMI were relatively weak (R = 0.17, p = 0.008 and R = 0.17, p = 0.007, respectively). Moreover, the phytobenthos index IOJ correlated significantly more weakly with all the water quality indicators than either PMPL or ESMI did. The poor performance of the phytobenthos method in this study may suggest a limited indicator value of this BQE for lake assessment or inappropriate sampling design.  相似文献   

6.
Previous studies have used sondes to measure diel changes in dissolved oxygen and thereby estimate gross primary production (GPP), ecosystem respiration (R), and net ecosystem production (NEP). Most of these studies estimate rates for the surface layer and require knowing the depth of the mixed layer (Zmix), which is usually determined from discrete daily or weekly temperature profiles. However, Zmix is dynamic, as the thermal structure of lakes may change at scales of minutes rather than days or weeks. We studied two thermally stratified lakes that exhibited intermittent microstratification in the mixed layer. We combined sonde-based estimates of metabolism with high-frequency measurements of stratification using thermistor chains to determine how the short-term dynamics of stratification affect metabolic rates. We calculated estimates of metabolism using time series of Zmix measured at seasonal, weekly, daily, and 5-min intervals. Areal rates of GPP and R were up to 24 and 29% less, respectively, using the 5-min measurements of Zmix rather than weekly Zmix, while NEP was not significantly different. These reduced areal rates are mostly the consequence of the reduction in the depth of the mixed layer. Microstratification occurred frequently in both lakes and affected volumetric rates in one lake where R was significantly lower, NEP was significantly higher, and GPP was marginally lower compared to days without microstratification. Hence, microstratification not only affects the depth of the mixed layer, but also alters the processes that influence photosynthesis and respiration. Future studies should consider microstratification and possibly employ multiple sondes with thermistor chains that enable integrating metabolic rates to a specific depth, rather than assuming a stable upper mixed layer as the basis for calculations.  相似文献   

7.
Lakes Chivero and Manyame are amongst Zimbabwe’s most polluted inland water bodies. MEdium Resolution Imaging Spectrometry level 1b full resolution imagery for 2011 and 2012 were used to derive chlorophyll-a (chl_a) and phycocyanin (blue-green algae) concentrations using a semi-empirical band ratio model; total suspended matter (TSM) concentrations were derived from the MERIS processor. In-situ measured chl_a was used to validate the remotely sensed values. Results indicate that remote sensing measurements are comparable with in situ measurements. A strong positive correlation (R2 = 0.91; MAE = 2.75 mg/m3 (8.5%)) and p < 0.01 (highly significant)) between measured and modeled chl_a concentrations was obtained. Relationships between optically active water constituents were assessed. Measured chl_a correlated well with MERIS modeled phycocyanin (PC) concentration (R2 = 0.9458; p < 0.01 (highly significant)) whilst chl_a and TSM gave (R2 = 0.7344; p < 0.05 (significant)). Modeled TSM and PC concentrations manifested a good relationship with each other (R2 = 9047; p < 0.001 (very highly significant)). We conclude that remote sensing data allow simultaneous retrieval of different water quality parameters as well as providing near real time and space results that can be used by water managers and policy makers to monitor water bodies.  相似文献   

8.
We characterized the seasonal cycle of productivity in Reloncaví Fjord (41°30′S), Chilean Patagonia. Seasonal surveys that included measurements of gross primary production, community respiration, bacterioplankton secondary production, and sedimentation rates along the fjord were combined with continuous records of water-column temperature variability and wind forcing, as well as satellite-derived data on regional patterns of wind stress, sea surface temperatures, and surface chlorophyll concentrations. The hydrography and perhaps fjord productivity respond to the timing and intensity of wind forcing over a larger region. Seasonal changes in the direction and intensity of winds, along with a late-winter improvement in light conditions, may determine the timing of phytoplankton blooms and potentially modulate productivity cycles in the region.Depth-integrated gross primary production estimates were higher (0.4–3.8 g C m?2 d?1) in the productive season (October, February, and May), and lower (0.1–0.2 g C m?2 d?1) in the non-productive season (August). These seasonal changes were also reflected in community respiration and bacterioplankton production rates, which ranged, respectively, from 0.3 to 4.8 g C m?2 d?1 and 0.05 to 0.4 g C m?2 d?1 during the productive and non-productive seasons and from 0.05 to 0.6 g C m?2 d?1 and 0.05 to 0.2 g C m?2 d?1 during the same two periods. We found a strong, significant correlation between gross primary production and community respiration (Spearman, r=0.95; p<0.001; n=12), which suggests a high degree of coupling between the synthesis of organic matter and its usage by the planktonic community. Similarly, strong correlations were found between bacterioplankton secondary production and both gross primary production (Spearman, r=0.7, p<0.05, n=9) and community respiration (Spearman, r=0.8, p<0.05, n=9), indicating that bacterioplankton may be processing an important fraction (8–59%) of the organic matter produced by phytoplankton in Reloncaví Fjord. In winter, bacterial carbon utilization as a percentage of gross primary production was >100%, suggesting the use of allochthonous carbon sources by bacterioplankton when the levels of gross primary production are low. Low primary production rates were associated with a greater contribution of small cells to autotrophic biomass, highlighting the importance of small-sized plankton and bacteria for carbon cycling and fluxes during the less productive winter months. Fecal pellet sedimentation was minimal during this period, also suggesting that most of the locally produced organic carbon is recycled within the microbial loop. During the productive season, on the other hand, the area exhibited a great potential to export organic matter, be it to higher trophic levels or vertically towards the bottom.  相似文献   

9.
Metazoans normally avoid anaerobic environments, at least when they are combined with toxic stress due to hydrogen sulfide. In Lake Speldrop, a small but deep gravel pit lake at the Lower Rhine, Daphnia galeata was found not only to dominate the zooplankton community, but was also regularly found in anoxic and even sulfidic layers during summer. We conducted field experiments with a newly developed “Zooplankton In-situ Incubator”, simulating vertical migrations of D. galeata. When daphnids were exposed to sulfidic conditions, mortality increased with exposure time, revealing LT50-values between 129 and 42 min in relation to increasing concentrations of sulfide. Additionally, those experimental individuals originating from 12.5 m depth showed significantly higher mortality rates than those from 7.5 m depth. Further migration experiments showed that an interruption period of sulfidic exposition in less stressful environments reduced mortality rates significantly. Daphnids found in the hypolimnion belonged partly to moribund parts of the population; however, the majority of daphnids showed regular mowing activity and was able to withstand sulfidic conditions in the hypolimnion for a limited time. It is so far unclear what maybe the major ultimate factor for this type of short term migratory behavior, to seek for shelter or to use high amounts of sulfur bacteria as an alternative food resource.  相似文献   

10.
Most rivers in Italy are segmented by dams that need rehabilitation because of (1) safety requirements by increasingly risk-averse societies, (2) changes in the downstream river and riparian system after dams building, (3) poor initial design at the time of completion and (4) modified priorities of watershed management. Safe design of flood spillways is a major concern, and requires to cope with low frequency flood hazard. One must estimate flood figures with high return periods (R  1000–10,000 years) but statistical methods involve large uncertainties because of the short length of the available records. This paper investigates the return period of the design flood of existing spillways RS of large dams in Italy. We used re-normalized flood frequency approach and regionalization using the Generalized Extreme Value distribution. The estimation of the site specific index flood is carried out by simple scaling with basin area at the regional level. The result show that 55% (245) of the 448 examined dams are equipped by spillway with RS > 10,000; and 71% (315) of the dams have RS > 1000. Conversely, 29% (130) of the dams display RS < 1000 years, lower than acceptable hazard. The spillway of 14% (62) of the dams has RS < 100 years, indicating potential exceedance of spillways capacity. Reservoir routing may dampen the outflow hydrograph, but one should carefully account for the need of achieving accurate dam safety assessment of these dams based on site specific investigations, also accounting for global change forcing.  相似文献   

11.
Respiration rates (mg O2 g?1 AFDW h?1) of Leuctra hippopus, Sericostoma personatum, Helodes minuta, Gammarus pulex and Asellus aquaticus were studied across an oxygen gradient at 2.8 and 6.3 °C, corresponding to an expected 3.5 °C increase in Danish winter stream temperature. Species were selected from the Danish Stream Fauna Index (DSFI), representing an expected hierarchy of tolerance towards water quality degradation. We expected that low-ranking, tolerant species (i.e. indicators of bad water quality) would have the capacity to regulate their oxygen uptake relatively independently of oxygen availability (oxy-regulators) and high-ranking, sensitive species (i.e. indicators of good water quality) would be less able to do so (oxy-conformers). For all species respiration rate was higher (although non-significantly) at 6.3 °C. The species’ oxy-regulatory capacity did not consistently reflect their DSFI ranking. As expected, and in accordance with its DSFI ranking, A. aquaticus had the highest oxy-regulatory capacity with the ability to regulate O2 uptake until an oxygen saturation of only 20%, which did not change with increasing temperature, emphasizing the robustness of A. aquaticus towards changes in the environment. S. personatum, H. minuta and G. pulex revealed no oxy-regulatory capacity. In contrast, the plecopteran L. hippopus did display an unexpected oxy-regulatory capacity. Though an increase in temperature changed L. hippopus’ capacity to oxy-regulate (the critical limit increased from 32.5 to 43.5% oxygen), respiration rates did not change significantly in spite of the temperature increase. This result contradicts the general belief that stoneflies, because of their affinity to well oxygenated habitats, are conformers. Our findings call for further studies on the respiratory conformer–regulator concept and its role as an eco-physiological trait for bio-assessment.  相似文献   

12.
The study analyses the long-term biophysical and demographic changes in Dal lake, located in the heart of Srinagar city, Kashmir India, using a repository of historical, remote sensing, socio-economic and water quality data supported by the extensive field observations. The lake faces multiple pressures from the unplanned urbanization, high population growth, nutrient load from intensive agriculture and tourism. The data showed that the lake has shrunk from 31 km2 in 1859–24 km2 in 2013. Significant changes were observed in the land use and land cover (LULC) within the lake (1859–2013) and in the vicinity of the lake (1962–2013). Analysis of the demographic data indicates that the human population within the lake has shown more than double the national growth rate. Additionally, 7 important water quality parameters from 82 well distributed sites across the lake were analyzed and compared with the past data to determine the historical changes in the water quality from 1971 to 2014. The changes in the LULC and demography have adversely affected the pollution status of this pristine lake. Ortho-phosphate phosphorous concentration has increased from 16.75 μg L−1 in 1977–45.78 μg L−1 in 2014 and that of the nitrate-nitrogen from 365 μg L−1 to 557 μg L−1, indicating nutrient enrichment of the lake over the years. Built-up area within the lake has increased 40 times since 1859, which, together with the changes in the population and settlements, have led to the high discharge of untreated nutrient-rich sewage into the lake. Similarly the expansion of floating gardens within the lake and agriculture lands in the catchment has contributed to the increased nutrient load into the lake due to the increasing use of fertilizers. The information about the existing land cover, demography and water quality was integrated and analyzed in GIS environment to identify the trophic status of the lake. The analysis indicated that 32% of the lake falls under sever degradation, 48% under medium degradation while as 20% of the lake waters are relatively clean. It is believed that the results provide improved knowledge and insights about the lake health and causal factors of its degradation necessary for effectively restoring its ecological and hydrological functionality.  相似文献   

13.
《Marine pollution bulletin》2009,58(6-12):313-324
This study investigated the seasonal and spatial dynamics of nutrients and phytoplankton biomass at 12 stations in Hong Kong (HK) waters during a three year period from 2004 to 2006 after upgraded sewage treatment and compared these results to observations before sewage treatment. Pearl River estuary (PRE) discharge significantly increased NO3 and SiO4 concentrations, particularly in western and southern waters when rainfall and river discharge was maximal in summer. Continuous year round discharge of sewage effluent resulted in high NH4 and PO4 in Victoria Harbour (VH) and its vicinity. In winter, spring and fall, the water column at all stations was moderately mixed by winds and tidal currents, and phytoplankton biomass was relatively low compared to summer. In summer, the mean surface phytoplankton chl biomass was generally >9 μg L−1 in most areas as a result of thermohaline stratification, and high nutrients, light, and water temperature. In summer, the potential limiting nutrient is PO4 in the most productive southern waters and it seldom decreased to limiting levels (∼0.1 μM), suggesting that phytoplankton growth may be only episodically limiting. The mean bottom dissolved oxygen (DO) remained >3.5 mg L−1 at most stations, indicating that the eutrophication impact in HK waters was not as severe as expected for such a eutrophic area. After the implementation of chemically enhanced primary sewage treatment in 2001, water quality in VH improved as indicated by a significant decrease in NH4 and PO4 and an increase in bottom DO. In contrast, there were an increase in chl a and NO3, and a significant decrease in bottom DO in southern waters in summer, suggesting that hypoxic events are most likely to occur in this region if phytoplankton biomass and oxygen consumption keep increasing and exceed the buffering capacity of HK waters maintained by monsoon winds, tidal mixing and zooplankton grazing. Therefore, future studies on the long-term changes in nutrient loading from PRE and HK sewage discharge will be crucial for developing future strategies of sewage management in HK waters.  相似文献   

14.
The spectral attenuation of solar irradiation was measured during summer in two types of coastal waters in southern Chile, a north Patagonian fjord (Seno Reloncaví) and open coast (Valdivia). In order to relate the light availability with the light requirements of upper subtidal seaweeds, the saturating irradiance for photosynthesis (Ek) from PI curves was measured. In addition the UV risk was assessed. Based on the z1% of PAR, the lower limit of the euphotic zone in the studied systems averaged 21 m (Kd 0.24 m?1) in Seno Reloncaví and 18 m (Kd 0.27 m?1) in the coast of Valdivia. Photosynthesis of the studied seaweeds was saturated at markedly lower irradiances than found in their natural depths at the time of the study. Solar radiation penetrating into these depths at both locations largely supports the light requirements for the photosynthesis of subtidal species: 50–160 μmol m?2 s?1 for seaweeds from Seno Reloncaví (7 m tidal range) and 20–115 μmol m?2 s?1 for Valdivia assemblages (2 m tidal range). Optimal light conditions to saturate photosynthesis (Ek) were present at 10–16 m water depth. The attenuation of solar irradiation did not vary significantly between the fjord and coastal sites of this study. However, the underwater light climates to which seaweeds are exposed in these sites vary significantly because of the stronger influence of tidal range affecting the fjord system as compared with the open coastal site. The patterns of UV-B penetration in these water bodies suggest that seaweeds living in upper littoral zones such as the intertidal and shallow subtidal (<3 m) may be at risk.  相似文献   

15.
Our study summarizes data from six small water reservoirs in West Slovakia and analyzes the occurrence of zooplankton groups in relation to physico-chemical and catchment variables. The reservoirs are in two different catchments – of the Morava and Váh rivers. A total of 103 species were identified; 64 crustaceans (in both the pelagic and littoral zones) and 39 planktonic Rotifera in the pelagic zones. Significant differences were observed in species richness, abundance and biomass of planktonic crustaceans: 48 species were characteristic of the Váh catchment, while 53 were found in the Morava catchment. The density of zooplankton in the three reservoirs of the Váh River catchment ranged from 102 ind L?1 to 21,488 ind L?1 and the zooplankton biomass ranged from 0.12 mg L?1 to 103.29 mg L?1. The density of zooplankton in three Morava River catchment reservoirs ranged from 2 ind L?1 to 3928 ind L?1 and the zooplankton biomass ranged from 0.1 mg L?1 to 27.3 mg L?1. The differences were found to be related to catchment (altitude and catchment affiliation), chemical (BOD5, DO) and biological (Chromophyta, Chlorophyta) factors. Eutrophication of reservoirs in the Váh catchment was mainly due to agriculture and fish management, resulting in high nutrient concentrations. Species richness showed an unimodal response to BOD5 and N-NH4 with near optimum low values, 4.6 and 0.19 respectively. The relationship to oxygen content reflects preferences for less eutrophic waters and species richness tended to decrease with increasing DO and to decrease with increasing nutrient content.  相似文献   

16.
Acid deposition during the 20th century led to the gradual elimination of fish in Brooktrout Lake (Adirondack Mountains, New York State). Thereafter, the lake was colonized by Chaoborus americanus, a dipteran with an aquatic larval stage that typically resides in the pelagic zone in fishless lakes. During subsequent chemical recovery from acidification, the lake was stocked with Brook Trout (Salvelinus fontinalis). For seven years following this reintroduction we examined the re-adaptation of the food chain. The C. americanus abundance and distribution was quantified utilizing a combination of hydroacoustics, traditional vertical net tows and Schindler-Patalas trap collections. Hydroacoustic backscattering signals were repeatable and correlated (r = 0.86, p = 0.003) with C. americanus abundance. Backscattering, depth, month and year were used to develop a random forest model that predicted the C. americanus density (r2 = 0.67,  p< 0.05). The hydroacoustic signal revealed a clear but limited diurnal vertical migration of C. americanus. The signal continued in the presence of the fish population beginning with reintroduction in 2005 and extending through 2011. In 2012, the hydroacoustic signal no longer was present in the lake, suggesting that the fish had eliminated the C. americanus population, which was verified with net tows. Using novel and traditional survey methods, we demonstrate that the reintroduction of fish can alter the lake community structure significantly through the extirpation of the major component of the pelagic zone.  相似文献   

17.
Observations are presented of large-amplitude internal waves (LAIWs) generated by the steepening of the internal tide on the Australian North West Shelf (NWS) over a 4-month period extending from strongly stratified summer conditions to weakly stratified winter conditions. The observations are from a site in water depth of 124 m where current and temperature measurements were made from a fixed vertical mooring and a benthic L-shaped spatial array. The observations show the LAIWs at this site to be characterized by strong seasonal variability, with energetic LAIWs of depression being dominant during summer and weaker LAIWs of elevation being dominant during the winter months as the stratification weakens, the upper mixed layer deepens, and the thermocline is close to the bottom. Waves were also seen to propagate from a range of directions towards the observation site. Modeling using the Regional Ocean Modeling System (ROMS v2.1) revealed that internal tide generation in the area occurred at water depths of between 400 and 600 m along an arc of approximately 120 km in length, some 70 km to the northwest of our experimental site. The results demonstrate both the 3D nature as well as the seasonal variation of the LAIW field.  相似文献   

18.
Drinking water wells indiscriminatingly placed adjacent to fecal contaminated surface water represents a significant but difficult to quantify health risk. Here we seek to understand mechanisms that limit the contamination extent by scaling up bacterial transport results from the laboratory to the field in a well constrained setting. Three pulses of Escherichia coli originating during the early monsoon from a freshly excavated pond receiving latrine effluent in Bangladesh were monitored in 6 wells and modeled with a two-dimensional (2-D) flow and transport model conditioned with measured hydraulic heads. The modeling was performed assuming three different modes of interaction of E. coli with aquifer sands: (1) irreversible attachment only (best-fit ki = 7.6 day−1); (2) reversible attachment only (ka = 10.5 and kd = 0.2 day−1); and (3) a combination of reversible and irreversible modes of attachment (ka = 60, kd = 7.6, ki = 5.2 day−1). Only the third approach adequately reproduced the observed temporal and spatial distribution of E. coli, including a 4-log10 lateral removal distance of ∼9 m. In saturated column experiments, carried out using aquifer sand from the field site, a combination of reversible and irreversible attachment was also required to reproduce the observed breakthrough curves and E. coli retention profiles within the laboratory columns. Applying the laboratory-measured kinetic parameters to the 2-D calibrated flow model of the field site underestimates the observed 4-log10 lateral removal distance by less than a factor of two. This is promising for predicting field scale transport from laboratory experiments.  相似文献   

19.
In the frame of the R&D activities performed on the Boom Clay for assessing the suitability of deep clayey formations for radioactive waste disposal, the transferability of the scientific results obtained on the Boom Clay in Mol to the whole Campine Basin is investigated. Boreholes were drilled at different locations (e.g. Mol, Doel, Essen) and cores were sampled over the entire thickness of the Boom Clay formation on which the migration parameters for iodide and tritiated water (HTO) are determined.At Essen, the transport parameters in the Boom Clay can be considered as homogeneous in the range from 159 m to 241 m Below Drilling Table. The average hydraulic conductivity is (5.4 ± 1.7) × 10−12 m/s. The average ηR value for iodide is 0.25 ± 0.03 and 0.42 ± 0.05 for HTO. For HTO, this high value is mainly due to a higher value in the Putte Member (0.46 ± 0.03) compared to the other members (0.39 ± 0.02). The apparent diffusion coefficient is (1.3 ± 0.1) × 10−10 m2/s for HTO and (1.1 ± 0.2) × 10−10 m2/s for iodide. The expected effect of ionic strength (increasing with depth) on the ηR value of iodide is of the same size as the measurement error, what might explain why it was not observed.On a lateral (horizontal) level, the hydraulic conductivity at the Essen-1 borehole (5.4 × 10−12 m/s) lies between that of Boom Clay in Mol-1 (2.5 × 10−12 m/s) and that of Boom Clay in Doel-2b (1.4 × 10−11 m/s). For iodide, the higher ηR value in Essen-1 and Doel-2b (ηR  0.25) than in Mol-1 (ηR  0.16) can partly be explained by a higher ionic strength of the pore water. Apart from the Putte Member at Essen-1, the HTO porosities of the Terhagen Member and the Transition zone in Essen are in the range of the average porosities observed in Mol and Doel (ηR  0.37–0.39). For both iodide and HTO, the value of the apparent diffusion coefficient Dapp is similar in Mol-1 and in Doel-2b, with a clearly higher value for HTO than for iodide. In Essen-1, the apparent diffusion coefficients for iodide and HTO are nearly equal, and slightly smaller than the iodide value in Mol-1/Doel-2b. Accordingly, the HTO apparent diffusion coefficient is considerably smaller in Essen-1 than in Mol-1/Doel-2b.  相似文献   

20.
In the past decades, archaeologists have found evidences for prehistorical human activity in the Qinghai–Tibetan Plateau (QTP). In 1982, some Paleolithic stone tools were found in a section from a terrace of the Xiao Qaidam Lake in the Qaidam Basin, NE of the QTP. The age of this Paleolithic site has remained unknown by far. Some believed that the age of human inhabitation in this Paleolithic site was about 30 ka. In this study, quartz optically stimulated luminescence was used to date 10 samples collected from four sections in the Xiao Qaidam Lake, using the single-aliquot regeneration-dose protocol. The two samples from section XCDH2, which is from a lake terrace about ~7–8 m above the present lake level and in which the top gravel layer contains stone tools, were not well-bleached before deposition. Their ages (>101 and >159 ka) determined by SAR should be considered minimums. OSL dating results of six samples from two sections (XCDH1 and XCDH3) of an adjacent lake terrace, which is ~12 m above the present lake level, suggest two possibilities for the age of the tool-bearing gravel layer: (1) younger than ~3 ka if the lake terrace of XCDH2 is younger than the terrace represented by XCDH1 and XCDH3; or (2) between ~3 and 11 ka if these two terraces are part of the deposit of the same time period. In either case, the age of the archaeological layer should be much younger than the previously proposed ~30 ka. As the climate in the early Holocene after 11 ka was increasingly warm and the Xiao Qaidam Lake area could be suitable for human inhabitation then, we deduce that the age range of ~3–11 ka is more likely the time frame for this archaeological site. The age of 3.1 ± 0.3 ka for the surface of terrace XCDH1/XCDH3 suggests a significant lake level decrease after this time and a corresponding arid event at ~3 ka; the lake level did not reach this level again after that time. Section XCDH4 is more than 40 m above the present lake level, and two samples gave ages of 37 ± 4 and 51 ± 4 ka. These two dates and the dates from the other sections demonstrate that two lake levels higher than present existed for Xiao Qaidam Lake, one at ~12 m and dated ~3–11 ka and the another at >40 m and dated ~37–51 ka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号