首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We start from the Hankel transform of Stefanescu's integral written in the convolutionintegral form suggested by Ghosh (1971). In this way it is possible to obtain the kernel function by the linear electric filter theory. Ghosh worked out the sets of filter coefficients in frequency domain and showed the very low content of high frequencies of apparent resistivity curves. Vertical soundings in the field measure a series of apparent resistivity values at a constant increment Δx of the logarithm of electrode spacing. Without loss of information we obtain the filter coefficient series by digital convolution of the Bessel function of exponential argument with sine function of the appropriate argument. With a series of forty-one values we obtain the kernel functions from the resistivity curves to an accuracy of better than 0.5%. With the digital method it is possible to calculate easily the filter coefficients for any electrode arrangement and any cut-off frequency.  相似文献   

2.
The interpretation of vertical electrical sounding data can be facilitated by the application of the reciprocal geoelectric section. If an apparent resistivity field curve has a descending right end, the apparent resistivity curve of the reciprocal geoelectric section can be obtained by the application of linear filter theory; from this the total transverse resistance of the geoelectric section can be calculated without having to interpret the field curve. In addition, Orellana's auxiliary point method can now be extended to interpret three and four layer apparent resistivity curves of all types. This paper summarizes the properties of the resistivity transform curve, the apparent resistivity curve, and the apparent resistivity curve of the reciprocal geoelectric section, with several new applications.  相似文献   

3.
This paper describes certain procedures for deriving from the apparent resistivity data as measured by the Wenner electrode configuration two functions, known as the kernel and the associated kernel respectively, both of which are functions dependent on the layer resistivities and thicknesses. It is shown that the solution of the integral equation for the Wenner electrode configuration leads directly to the associated kernel, from which an integral expression expressing the kernel explicitly in terms of the apparent resistivity function can be derived. The kernel is related to the associated kernel by a simple functional equation where K1(λ) is the kernel and B1(λ) the associated kernel. Composite numerical quadrature formulas and also integration formulas based on partial approximation of the integrand by a parabolic arc within a small interval are developed for the calculation of the kernel and the associated kernel from apparent resistivity data. Both techniques of integration require knowledge of the values of the apparent resistivity function at points lying between the input data points. It is shown that such unknown values of the apparent resistivity function can satisfactorily be obtained by interpolation using the least-squares method. The least-squares method involves the approximation of the observed set of apparent resistivity data by orthogonal polynomials generated by Forsythe's method (Forsythe 1956). Values of the kernel and of the associated kernel obtained by numerical integration compare favourably with the corresponding theoretical values of these functions.  相似文献   

4.
Following up our recent study of an indirect procedure for the practical determination of the maximum frequency-effect, defined as fe = 1 ? pρdc with ρ the resistivity at infinite frequency, we show at first how, through the Laplace transform theory, ρ can be related to stationary field vectors in the simple form of Ohm's law. Then applying the equation of continuity for stationary currents with a suitable set of boundary conditions, we derive the integral expression of the apparent resistivity at infinite frequency ρ,a in the case of a horizontally layered earth. Finally, from the definition of the maximum apparent frequency-effect, analytical expressions of feα are obtained for both Schlumberger and dipole arrays placed on the surface of the multi-layered earth section in the most general situation of vertical changes in induced polarization together with dc resistivity variations not at the same interfaces. Direct interpretation procedures are suggested for obtaining the layering parameters directly from the analysis of the sounding curves.  相似文献   

5.
In a previous paper it has been shown that we can relate the transient IP electric field Ep , existing in a rock after a step wave of polarizing current, with the steady-state current density Jss during the current step wave as follows: Ep =ρ' Jss . This relation may be interpreted as a generalized Ohm's law, valid in linear cases, in which ρ’(fictitious resistivity) is defined as the product of the true resistivity ρ with the chargeability m. Supposing E p=— grad Up and applying the divergence condition div Jss = o, one can, for a layered earth, obtain a general expression for the depolarization potential Up as a solution of Laplace's equation ?2Up= o. Since the mathematical procedure for the solution of this last equation is identical to that used in resistivity problems, we propose now the introduction of an apparent fictitious resistivity ρ'a (defined as the product of the apparent resistivity ρa with the apparent chargeability ma) as a new parameter for the interpretations of IP soundings carried out over layered structures with a common electrode array. The most general expression of ρ'a as a function of the electrode distance turns out to be mathematically identical to the general expression of ρ'a. Therefore it is possible to interpret a ρ'a field curve using the same standard graphs for resistivity prospecting with the usual method of complete curve matching. In this manner a great deal of work is saved since there is no need to construct proper ma graphs for the interpretation of IP soundings, as it has been done up to now. Finally some field examples are reported.  相似文献   

6.
The difficulty to use master curves as well as classical techniques for the determination of layer distribution (ei, ρi) from a resistivity sounding arises when the presumed number of layers exceeds five or six. The principle of the method proposed here is based on the identification of the resistivity transform. This principle was recently underlined by many authors. The resistivity transform can be easily derived from the experimental data by the application of Ghosh's linear filter, and another method for deriving the filter coefficientes is suggested. For a given theoretical resistivity transform corresponding to a given distribution of layers (thicknesses and resistivities) various criteria that measure the difference between this theoretical resistivity transform and an experimental one derived by the application of Ghosh's filter are given. A discussion of these criteria from a physical as well as a mathematical point of view follows. The proposed method is then exposed; it is based on a gradient method. The type of gradient method used is defined and justified physically as well as with numerical examples of identified master curves. The practical use for the method and experimental confrontation of identified field curves with drill holes are given. The cost as well as memory occupation and time of execution of the program on CDC 7600 computer is estimated.  相似文献   

7.
In this paper a theorem is demonstrated which allows—after the introduction of a suitable dipole kernel function or dipole resistivity transform function—to write the apparent resistivity function as an Hankel transformable integral expression. As a practical application of the theorem a procedure of quantitative interpretation of dipole soundings is suggested in which the dipole resistivity transform function obtained after inversion of the original dipole apparent resistivity data is used to control the goodness of the set of layering parameters which have been derived with our previous method of transformation of dipole sounding curves into equivalent Schlumberger diagrams.  相似文献   

8.
Different sets of filter coefficients for the linear filter technique for the computations of resistivity and EM sounding curves are evaluated for several electrode and coil configurations. Instead of this procedure, the two-electrode filter can be used for computations of Wenner, Schlumberger, and dipole—dipole apparent resistivity model curves by defining convolutional expressions which contain the new input functions in terms of the resistivity transform function. Similarly, the Schlumberger filter performs the computations of dipole—dipole apparent resistivity model curves. The Wenner, Schlumberger, and dipole—dipole filter functions are defined in terms of the two-electrode filter using the new convolutional expressions. A relationship between the Schlumberger and dipole—dipole filter functions is given. The above arguments are adopted for the computations of EM sounding curves. It is shown that the EM filter for the horizontal coplanar loop system (which is identical to the two-electrode filter) performs the computations of the mutual coupling ratios for perpendicular, vertical coplanar, and vertical coaxial loop systems. In the same way, the Schlumberger filter can be used to compute vertical coaxial sounding curves. The corresponding input functions are defined in terms of the EM kernel for all convolutional expressions presented. After these considerations, integral expressions of the mutual coupling ratios involving zero-order Bessel function are derived. The mutual coupling ratio for the vertical coaxial loop system is given in the same form as the mutual coupling ratio for the vertical coplanar loop system.  相似文献   

9.
Forward filters to transform the apparent resistivity function over a layered half-space into the resistivity transform have been derived for a number of sample intervals. The filters have no apparent Gibbs' oscillations and hence require no phase shift. In addition, the end points of the filter were modified to compensate for truncation. The filters were tested on simulated ascending and descending two-layer cases. As expected, “dense” filters with sample spacing of In (10)/6 or smaller performed very well. However, even “sparse” filters with spacing of In (10)/2 and a total of nine coefficients have peak errors of less than 5% for p1:p2 ratios of 10–6 to 106. If a peak error of 5.5% is acceptable, then an even sparser filter with only seven coefficients at a spacing of 3 In (10)/5 may be used.  相似文献   

10.
This paper deals with a new method of quantitative interpretation of induced polarization soundings in the frequency-domain. From the general expression of the apparent frequency-effect for soundings carried out on a multi-layered earth the application of Hankel's inversion theorem allows to introduce a new function, called here the “frequency-effect transform”. The new interpretation method consists of two steps: 1) the inversion of field data to obtain the frequency-effect transform graph and 2) the analysis of this graph to derive the layering parameters. The first step is performed by means of a slightly revised version of a simple numerical procedure, previously suggested by the author for the inversion of d.c. resistivity sounding data. The second step is carried out by a complete curve-matching procedure, applied directly on the transform graph. This implies suitable master curves, whose preparation doesn't meet all the mathematical difficulties which are present when preparing master curves of the apparent frequency-effect function.  相似文献   

11.
本文提出了计算水平层状介质电阻率权系数的一种新方法,阐述了这种计算方法的原理,说明了这种方法的计算速度和精度。文中还给出了三层、四层介质权系数的一些计算结果,并简要分析了权系数的变化特征,特别是负效应和峰值增强效应。  相似文献   

12.
The technique of linear digital filtering developed for the computation of standard curves for conventional resistivity and electromagnetic depth soundings is applied to the determination of filter coefficients for the computation of dipole curves from the resistivity transform function by convolution. In designing the filter function from which the coefficients are derived, a sampling interval shorter than the one used in the earlier work on resistivity sounding is found to be necessary. The performance of the filter sets is tested and found to be highly accurate. The method is also simple and very fast in application.  相似文献   

13.
A method to calculate the resistivity transform of Schlumberger VES curves has been developed. It consists in approximating the field apparent resistivity data by utilizing a linear combination of simple functions, which must satisfy the following requirements: (i) they must be suitable for fitting the resistivity data; (ii) once the fitting function has been obtained they allow the kernel to be determined in an analytic way. The fitting operation is carried out by the least mean squares method, which also accomplishes a useful smoothing of the field curve (and therefore a partial noise filtering). It gives the possibility of assigning different weights to the apparent resistivity values to be approximated according to their different reliability. For several examples (theoretical resistivity curves in order to estimate the precision of the method and with field data to verify the practicality) yield good results with short execution time independent of shape the apparent resistivity curve.  相似文献   

14.
A numerical technique to compute the resistivity transform directly from the observed Wenner sounding data has been developed. In principle, the procedure is based on a decomposition method and consists of two steps: the first step determines a function that approximates the apparent resistivity data and the second step transforms this function into the corresponding kernel by an analytical operation. The proposed method is tested on some theoretical master curves. A high degree of precision is achieved with very little computer time. The applicability is shown on two field examples.  相似文献   

15.
A numerical method is presented for direct interpretation of resistivity sounding measurements. The early part of the resistivity transform curve derived from field observations by standard methods is approximated by a two-layer curve. The resistivity of the first layer is determined from the arithmetic mean of the successive computations which are carried on each of three successive discrete values of the resistivity transform curve. Using this mean value of the resistivity, the thickness of the first layer is computed from the sample values in pairs of the resistivity transform curve. After these determinations, the top layer is removed by Pekeris's reduction equation. The parameters of the second layer are obtained from the discrete values of the reduced transform curve (which corresponds to the second part of the resistivity transform curve) by the same procedure as described for the first layer. The same computational scheme is repeated until the parameters of all intermediate layers are obtained. The resistivity of the substratum is determined from the reduction equation.  相似文献   

16.
The technique of digital linear filtering is used for transformation of apparent resistivity data from one electrode configuration into another. Usually filter spectra are determined via the discrete Fourier transforms of input and output functions: the filter characteristic is the quotient of the spectra of the output function and input function. In this paper, the transformation of the apparent resistivities is presented for four electrode configurations (Wenner, the two-electrode, Schlumberger, and dipole configurations). In our method, there is no need to use the discrete Fourier transform of the input and output functions in order to determine the filter spectrum for converting apparent resistivity in one electrode configuration to any other configuration. Sine responses for determination of the derivative of apparent resistivities are given in analytical form. If the filter spectrum for converting the apparent resistivity to the resistivity transform for one electrode configuration is known, the filter spectra for transforming the apparent resistivity to the resistivity transform for any electrode configurations can be calculated by using newly derived expressions.  相似文献   

17.
It is shown how to interpret, without curve-matching, Schlumberger resistivity soundings carried out with the array parallel to the surface trace of a vertical boundary plane separating two media with different resistivities (the vertical fault problem). To this end, it is demonstrated that the apparent resistivity function can be expressed as an Hankel-transformable integral that allows to invert the apparent resistivity curve into an associated resistivity transform curve. The study of the asymptotical properties of this function and of some mathematical properties of a related reduced transform function allows to realize a simple procedure for deriving the parameters of the model. In practice, this procedure consists in fitting a straight-line to a semi-logarithmic plot of the reduced transform function and in evaluating the intercept along the vertical axis and the slope.  相似文献   

18.
In this paper a fast method is developed for computing apparent resistivity curves for known layer configurations. The method is based on the application of a linear filter to determine the apparent resistivity curve from, the kernel function.  相似文献   

19.
电阻率测深的数字解释   总被引:3,自引:0,他引:3       下载免费PDF全文
本文主要介绍了应用积分变换的方法和采样定理将视电阻率ρs曲线作线性滤波,得出一新的电阻率转换函数T′曲线,然后,以层参数(各层的电阻率和厚度)算得的T用最优化数值方法在DJS-6型电子计算机上与其进行自动拟合,以达到解释电测深曲线的目的。 文中简述了戈什(Ghosh)提出的对ρs作线性滤波的原理,介绍了与国外不同的取样间距和滤波系数的确定以及阻尼最小二乘法和变尺度最优化法的计算框图和应用,最后附有实例和简要的讨论。  相似文献   

20.
In this paper a numerical method of direct interpretation of geoelectrical soundings is described. It has similarities with already existing direct methods, but owing to its simplicity and, in particular, to the possibility of applying it also without digital computers, it proves useful mostly in the field, where very often an accurate method for the interpretation of multi-layer curves is required. The direct interpretation system splits up into three steps: i) the evaluation of the resistivity transform after application of Hankel's inversion theorem; ii) the determination of the layer distribution after application of Koefoed's recurrent procedure; iii) the control of the solution. Each step is considered and the practical procedures suggested. Finally two field examples are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号