首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fluctuations in the brightness of the background radiation can lead to confusion with real point sources. This type of confusion with background emission is relevant when making infrared (IR) observations with relatively large beam sizes, since the amount of fluctuation tends to increase with the angular scale. To quantitively assess the effect of the background emission on the detection of point sources for current and future far-IR observations by space-borne missions such as Spitzer , ASTRO-F , Herschel and Space Infrared Telescope for Cosmology and Astrophysics ( SPICA ), we have extended the Galactic emission map to a higher level of angular resolution than that of the currently available data. Using this high-resolution map, we estimate the sky confusion noise owing to the emission from interstellar dust clouds or cirrus, based on fluctuation analysis and detailed photometry over realistically simulated images. We find that the confusion noise derived by simple fluctuation analysis agrees well with the results from realistic simulations. Although sky confusion noise becomes dominant in long wavelength bands  (>100 μm)  with 60–90 cm aperture missions, it is expected to be two orders of magnitude lower for the next generation of space missions (with larger aperture sizes) such as Herschel and SPICA .  相似文献   

2.
We present a statistical analysis of the largest X-ray survey of nearby spiral galaxies in which diffuse emission has been separated from discrete source contributions. Regression and rank-order correlation analyses are used to compare X-ray properties, such as total, source and diffuse luminosities and diffuse emission temperature, with a variety of physical and multiwavelength properties, such as galaxy mass, type and activity, and optical and infrared luminosity.
The results are discussed in terms of the way in which hot gas and discrete X-ray sources scale with the mass and activity of galaxies, and with the star formation rate. We find that the X-ray properties of starburst galaxies are dependent primarily on their star-forming activity, whilst for more quiescent galaxies, galaxy mass is the more important parameter. One of the most intriguing results is the tight linear scaling between far-infrared and diffuse X-ray luminosity across the sample, even though the hot gas changes from a hydrostatic corona to a free wind across the activity range sampled here.  相似文献   

3.
We use the results of the SCUBA Local Universe Galaxy Survey, a submillimetre (submm) survey of galaxies in the nearby Universe, to investigate the relationship between the far-infrared (FIR)–submm and radio emission of galaxies at both low and high redshift. At low redshift we show that the correlation between radio and FIR emission is much stronger than the correlation between radio and submm emission, which is evidence that massive stars are the source of both the FIR and radio emission. At high redshift we show that the submm sources detected by SCUBA are brighter sources of radio emission than are predicted from the properties of galaxies in the local Universe. We discuss possible reasons for the cosmic evolution of the relationship between radio and FIR emission.  相似文献   

4.
The first observations to detect a population of distant galaxies directly in the submillimetre waveband have recently been made using the new Submillimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope (JCMT). The results indicate that a large number of distant galaxies are radiating strongly in this waveband. Here we discuss their significance for source confusion in future millimetre/submillimetre-wave observations of both distant galaxies and cosmic microwave background radiation (CMBR) anisotropies. Earlier estimates of such confusion involved significant extrapolation of the results of observations of galaxies at low redshifts; our new estimates do not, as they are derived from direct observations of distant galaxies in the submillimetre waveband. The results have important consequences for the design and operation of existing and proposed millimetre/submillimetre-wave telescopes: the Planck Surveyor survey will be confusion-limited at frequencies greater than 350 GHz, even in the absence of Galactic dust emission; a 1σ confusion noise limit of about 0.44 mJy beam−1 is expected for the JCMT/SCUBA at a wavelength of 850 μm; and the subarcsecond resolution of large millimetre/submillimetre-wave interferometer arrays will be required in order to execute very deep galaxy surveys.  相似文献   

5.
We present multiwaveband photometric and optical spectropolarimetric observations of the R =15.9 narrow emission-line galaxy R117_A which lies on the edge of the error circle of the ROSAT X-ray source R117. The overall spectral energy distribution of the galaxy is well modelled by a combination of a normal spiral galaxy and a moderate-strength burst of star formation. The far-infrared and radio emission is extended along the major axis of the galaxy, indicating an extended starburst.
On positional grounds, the galaxy is a good candidate for the identification of R117, and the observed X-ray flux is very close to what would be expected from a starburst of the observed far-infrared and radio fluxes. Although an obscured high-redshift QSO cannot be entirely ruled out as contributing some fraction of the X-ray flux, we find no candidates to K =20.8 within the X-ray error box, and so conclude that R117_A is responsible for a large fraction, if not all, of the X-ray emission from R117.
Searches for indicators of an obscured AGN in R117_A have so far proven negative; deep spectropolarimetric observations show no signs of broad lines to a limit of 1 per cent and, for the observed far-infrared and radio emission, we would expect 10 times greater X-ray flux if the overall emission were powered by an AGN. We therefore conclude that the X-ray emission from R117 is dominated by starburst emission from the galaxy R117_A.  相似文献   

6.
We report the results of a spectropolarimetric survey of a complete far-infrared-selected sample of Seyfert 2 galaxies. We have found polarized broad H α emission in one new source, NGC 5995. In the sample as a whole, there is a clear tendency for galaxies in which we have detected broad H α in polarized light to have warm mid–far-infrared colours     in agreement with our previous results. However, a comparison of the optical, radio and hard X-ray properties of these systems leads us to conclude that this is a secondary consequence of the true mechanism governing our ability to see scattered light from the broad-line region. We find a strong trend for galaxies showing such emission to lie above a critical value of the relative luminosity of the active core to the host galaxy (as measured from the [O  iii ] 5007-Å equivalent width) which varies as a function of the obscuring column density as measured from hard X-ray observations. The warmth of the infrared colours is then largely due to a combination of the luminosity of the active core, the obscuring column and the relative importance of the host galaxy in powering the far-infrared emission, and not solely orientation as we inferred in our previous paper. Our data may also provide an explanation as to why the most highly polarized galaxies, which appear to have tori that are largely edge-on, are also the most luminous and have the most easily detectable scattered broad H α .  相似文献   

7.
We describe improved modelling of the emission by dust in a toroidal-like structure heated by a central illuminating source within active galactic nuclei (AGNs). We have chosen a simple but realistic torus geometry, a flared disc, and a dust grain distribution function including a full range of grain sizes. The optical depth within the torus is computed in detail taking into account the different sublimation temperatures of the silicate and graphite grains, which solves previously reported inconsistencies in the silicate emission feature in type 1 AGNs. We exploit this model to study the spectral energy distributions (SEDs) of 58 extragalactic (both type 1 and type 2) sources using archival optical and infrared data. We find that both AGN and starburst contributions are often required to reproduce the observed SEDs, although in a few cases they are very well fitted by a pure AGN component. The AGN contribution to the far-infrared luminosity is found to be higher in type 1 sources, with all the type 2 requiring a substantial contribution from a circumnuclear starburst. Our results appear in agreement with the AGN unified scheme, because the distributions of key parameters of the torus models turn out to be compatible for type 1 and type 2 AGNs. Further support to the unification concept comes from comparison with medium-resolution infrared spectra of type 1 AGNs by the Spitzer observatory, showing evidence for a moderate silicate emission around 10 μm, which our code reproduces. From our analysis we infer accretion flows in the inner nucleus of local AGNs characterized by high equatorial optical depths  ( AV ≃ 100)  , moderate sizes  ( R max < 100 pc)  and very high covering factors (   f ≃ 80  per cent) on average.  相似文献   

8.
Extracting sources with low signal-to-noise ratio (S/N) from maps with structured background is a non-trivial task which has become important in studying the faint end of the submillimetre (submm) number counts. In this paper, we study the source extraction from submm jiggle-maps from the Submillimetre Common-User Bolometer Array (SCUBA) using the Mexican hat wavelet (MHW), an isotropic wavelet technique. As a case study, we use a large (11.8-arcmin2) jiggle-map of the galaxy cluster Abell 2218 (A2218), with a 850-μm 1σ rms sensitivity of 0.6–1 mJy. We show via simulations that MHW is a powerful tool for the reliable extraction of low-S/N sources from the SCUBA jiggle-maps and nine sources are detected in the A2218 850-μm image. Three of these sources are identified as images of a single background source with an unlensed flux of 0.8 mJy. Further, two single-imaged sources also have unlensed fluxes <2 mJy, below the blank-field confusion limit. In this ultradeep map, the individual sources detected resolve nearly all of the extragalactic background light at 850 μm, and the deep data allow to put an upper limit of 44 sources arcmin−2 to 0.2 mJy at 850 μm.  相似文献   

9.
We present the wide-field imaging and polarimetry at  ν= 20 GHz  of seven most extended, bright  ( S total≥ 0.50 Jy)  , high-frequency selected radio sources in the southern sky with declinations  δ < −30°  . Accompanying the data are brief reviews of the literature for each source. The results presented here aid in the statistical completeness of the Australia Telescope 20-GHz Survey: the Bright Source Sample. The data are of crucial interest for future cosmic microwave background missions as a collection of information about candidate calibrator sources. We were able to obtain data for seven of the nine sources identified by our selection criteria. We report that Pictor A is thus far the best extragalactic calibrator candidate for the Low Frequency Instrument of the Planck European Space Agency mission due to its high level of integrated polarized flux density  (∼0.50 ± 0.06 Jy)  on a scale of 10 arcmin. Six out of the seven sources have a clearly detected compact radio core in our images, with either a null detection or less than 2 per cent detection of polarized emission from the nuclei. Most sources with detected jets have magnetic field alignments running in a longitudinal configuration, however, PKS 1333−33 exhibits transverse fields and an orthogonal change in field geometry from nucleus to jets.  相似文献   

10.
We present mid- and far-infrared photometry of the high-redshift     dusty quasar BR 1202−0725. The quasar was detected in the near-infrared, at a flux level     consistent with an average radio-quiet quasar at its redshift. Only upper limits for the emission were obtained in the far-infrared. These upper limits, when combined with data from ground-based telescopes, are the first direct evidence for a turnover in the far-infrared emission, and hence confirm that a blackbody dominates the spectral energy distribution at far-infrared wavelengths. This blackbody is most probably cool dust, constrained to have a temperature below 80 K, for a β of 1.5.  相似文献   

11.
We investigate a number of potential foregrounds for an ambitious goal of future radio telescopes such as the Square Kilometer Array (SKA) and the Low Frequency Array (LOFAR): spatial tomography of neutral gas at high redshift in 21-cm emission. While the expected temperature fluctuations due to unresolved radio point sources is highly uncertain, we point out that free–free emission from the ionizing haloes that reionized the Universe should define a minimal bound. This emission is likely to swamp the expected brightness temperature fluctuations, making proposed detections of the angular patchwork of 21-cm emission across the sky unlikely to be viable. Hα observations with JWST could place an upper bound on the contribution of high-redshift sources to the free–free background. An alternative approach is to discern the topology of reionization from spectral features due to 21-cm emission along a pencil-beam slice. This requires tight control of the frequency-dependence of the beam in order to prevent foreground sources from contributing excessive variance. We also investigate potential contamination by galactic and extragalactic radio recombination lines (RRLs). These are unlikely to be show-stoppers, although little is known about the distribution of RRLs away from the Galactic plane. The mini-halo emission signal is always less than that of the intergalactic medium (IGM), making mini-haloes unlikely to be detectable. If they are seen, it will be only in the very earliest stages of structure formation at high redshift, when the spin temperature of the IGM has not yet decoupled from the cosmic microwave background.  相似文献   

12.
We present a detailed analysis of high-resolution Chandra observations of the merger system NGC 3256, the most infrared-luminous galaxy in the nearby universe. The X-ray data show that several discrete sources embedded in complex diffuse emission contribute ≳20 per cent of the total emission     in the  0.5–10 keV  energy range). The compact sources are hard and extremely bright and their emission is probably dominated by accretion-driven processes. Both galaxy nuclei are detected with  LX∼3–10×1040 erg s−1  . No evidence is found for the presence of an active nucleus in the southern nucleus, contrary to previous speculation. Once the discrete sources are removed, the diffuse component has a soft spectrum that can be modelled by the superposition of three thermal plasma components with temperatures   kT =0.6  , 0.9 and 3.9 keV. Alternatively, the latter component can be described as a power law with index  Γ∼3  . Some evidence is found for a radial gradient of the amount of absorption and temperature of the diffuse component. We compare the X-ray emission with optical, H α and NICMOS images of NGC 3256 and find a good correlation between the inferred optical/near-infrared and X-ray extinctions. Although inverse Compton scattering could be important in explaining the hard X-rays seen in the compact sources associated with the nuclei, the observed diffuse emission is probably of thermal origin. The observed X-ray characteristics support a scenario in which the powerful X-ray emission is driven solely by the current episode of star formation.  相似文献   

13.
We present XMM–Newton observations of NGC 891, a nearby edge-on spiral galaxy. We analyse the extent of the diffuse emission emitted from the disc of the galaxy, and find that it has a single-temperature profile with best-fitting temperature of 0.26 keV, though the fit of a dual-temperature plasma with temperatures of 0.08 and 0.30 keV is also acceptable. There is a considerable amount of diffuse X-ray emission protruding from the disc in the north-west direction out to approximately 6 kpc. We analyse the point-source population using a Chandra observation, using a maximum-likelihood method to find that the slope of the cumulative luminosity function of point sources in the galaxy is  −0.77+0.13−0.1  . Using a sample of other local galaxies, we compare the X-ray and infrared properties of NGC 891 with those of 'normal' and starburst spiral galaxies, and conclude that NGC 891 is most likely a starburst galaxy in a quiescent state. We establish that the diffuse X-ray luminosity of spirals scales with the far-infrared luminosity as   L X∝ L 0.87±0.07FIR  , except for extreme starbursts, and NGC 891 does not fall in the latter category. We study the supernova SN1986J in both XMM–Newton and Chandra observations, and find that the X-ray luminosity has been declining with time more steeply than expected  ( L X∝ t −3)  .  相似文献   

14.
We analyse a UV observation with FAUST in the direction of the North Galactic Pole. The region includes a cirrus cloud (G251.2+73.3) and a dark globule, and the FAUST image contains 75 UV sources. We discuss the UV source detection and their identification with optical counterparts. We use, for the first time, low-resolution spectral information as the primary means of identifying possible optical counterparts. This is complemented, and sometimes modified, by optical information available from existing data bases. The results are interpreted with the help of maps of the distribution of far-infrared emission and of the neutral hydrogen gas. We discuss the types of objects found, the degree of matching with the predictions of our UV Galaxy model, and the general behaviour of the Galactic UV extinction in this Milky Way part. We compare the UV results for this region with similar observations in the same neighbourhood, which are less affected by dust, and attempt to explain the peculiar distribution of UV magnitudes as a result of a peculiar distribution of foreground dust, which does not follow the accepted dust-to-gas relation.  相似文献   

15.
We study the growth of black holes and stellar population in spheroids at high redshift using several (sub)mm-loud QSO samples. Applying the same criteria established in an earlier work, we find that, similar to IR QSOs at low redshift, the far-infrared emission of these (sub)mm-loud QSOs mainly originates from dust heated by starbursts. By combining low-z IR QSOs and high-z (sub)mm-loud QSOs, we find a trend that the star formation rate (M) increases with the accretion rate (Macc). We compare the values of M/Macc for submm emitting galaxies (SMGs), far-infrared ultraluminous/hyperluminous QSOs and typical QSOs, and construct a likely evolution scenario for these objects. The (sub)mm-loud QSO transition phase has both high Macc and M and hence is important for establishing the correlation between the masses of black holes and spheroids.  相似文献   

16.
We have produced radio maps, using the Australia Telescope Compact Array, of the central regions of six southern type 2 Seyfert galaxies (NGC 1365, 4945, 6221, 6810, 7582 and Circinus) with circumnuclear star formation, to estimate the relative contribution of star formation activity compared to activity from the active galactic nucleus (AGN). The radio morphologies range from extended diffuse structures to compact nuclear emission, with no evidence, even in the relatively compact sources, for synchrotron self-absorption. In each case the radio to far-infrared (FIR) ratio has a value consistent with star formation, and in all but one case the radio to [Fe  II ] ratio is also consistent with star formation. We derive supernova rates and conclude that, despite the presence of a Seyfert nucleus in these galaxies, the radio, FIR and [Fe  II ] line emissions are dominated by processes associated with the circumnuclear star formation (i.e. supernova remnants and H  II regions) rather than with the AGN.  相似文献   

17.
We have conducted a submillimetre mapping survey of faint, gravitationally lensed sources, where we have targeted 12 galaxy clusters and additionally the New Technology Telescope (NTT) Deep Field. The total area surveyed is 71.5 arcmin2 in the image plane; correcting for gravitational lensing, the total area surveyed is 40 arcmin2 in the source plane for a typical source redshift z ≈ 2.5. In the deepest maps, an image plane depth of 1σ rms ∼0.8 mJy is reached. This survey is the largest survey to date to reach such depths. In total 59 sources were detected, including three multiply imaged sources. The gravitational lensing makes it possible to detect sources with flux density below the blank field confusion limit. The lensing-corrected fluxes range from 0.11 to 19 mJy. After correcting for multiplicity, there are 10 sources with fluxes <2 mJy of which seven have submJy fluxes, doubling the number of such sources known. Number counts are determined below the confusion limit. At 1 mJy, the integrated number count is  ∼104 deg−2  , and at 0.5 mJy it is  ∼2 × 104 deg−2  . Based on the number counts, at a source plan flux limit of 0.1 mJy, essentially all of the 850-μm background emission has been resolved. The dominant contribution (>50 per cent) to the integrated background arises from sources with fluxes S 850 between 0.4 and 2.5 mJy, while the bright sources S 850 > 6 mJy contribute only 10 per cent.  相似文献   

18.
We present extensive observations of a sample of distant, submillimetre (submm) galaxies detected in the field of the massive cluster lens Abell 1835, using the Submm Common-User Bolometer Array (SCUBA). Taken in conjunction with earlier observations of other submm-selected sources, we now have detailed, multiwavelength observations of seven examples of the submm population, having exploited the combination of achromatic amplification by cluster lenses and lavish archival data sets. These sources, all clearly at z ≳1, illustrate the wide range in the radio and optical properties of distant submm-selected galaxies. We include detailed observations of the first candidate 'pure' starburst submm galaxy at high redshift, a z =2.56 interacting galaxy which shows no obvious sign of hosting an AGN. The remaining sources have varying degrees of inferred AGN activity (three out of seven of the most luminous show some evidence of the presence of an AGN), although even when an AGN is obviously present it is still not apparent whether reprocessed radiation from this source dominates the submm emission. In contrast with the variation in the spectral properties, we see relatively homogeneous morphologies for the population, with a large fraction of merging or interacting systems. Our study shows that virtually identical spectral energy distributions are seen for galaxies that exhibit strikingly different optical/UV spectral-line characteristics. We conclude that standard optical/UV spectral classifications are misleading when applied to distant, highly obscured galaxies, and that we must seek other means of determining the various contributions to the overall energy budget of submm galaxies and hence to the far-infrared extragalactic background.  相似文献   

19.
We present radio observations at frequencies ranging from 240 to 8460 MHz of the radio galaxy 4C 29.30 (J0840+2949) using the Giant Metrewave Radio Telescope (GMRT), the Very Large Array (VLA) and the Effelsberg telescope. We report the existence of weak extended emission with an angular size of ∼520 arcsec (639 kpc) within which a compact edge-brightened double-lobed source with a size of 29 arcsec (36 kpc) is embedded. We determine the spectrum of the inner double from 240 to 8460 MHz and show that it has a single power-law spectrum with a spectral index of ∼0.8. Its spectral age is estimated to be ≲33 Myr. The extended diffuse emission has a steep spectrum with a spectral index of ∼1.3 and a break frequency ≲240 MHz. The spectral age is ≳200 Myr, suggesting that the extended diffuse emission is due to an earlier cycle of activity. We re-analyse archival X-ray data from Chandra and suggest that the X-ray emission from the hotspots consists of a mixture of non-thermal and thermal components, the latter being possibly due to gas which is shock heated by the jets from the host galaxy.  相似文献   

20.
Hard X-ray selection is the most efficient way to discriminate between accretion-powered sources, such as active galactic nuclei (AGN), and sources dominated by starlight. Hard X-rays are also less affected than other bands by obscuration. We have therefore carried out the BeppoSAX High Energy Large Area Survey (HELLAS) in the largely unexplored 5–10 keV band, finding 180 sources in ∼50 deg2 of sky with flux≳5×10−14 erg cm−2 s−1. After correction for the non-uniform sky coverage this corresponds to resolving about 30 per cent of the hard cosmic X-ray background (XRB). Here we report on a first optical spectroscopic identification campaign, finding 12 AGN out of 14 X-ray error boxes studied. Seven AGN show evidence for obscuration in X-ray and optical bands, a fraction higher than in previous ROSAT or ASCA – ROSAT surveys (at 95–99 and 90 per cent confidence levels respectively), thus supporting the scenario in which a significant fraction of the XRB is created by obscured AGN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号