首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Modelling and modal analysis of seismic vibrator baseplate   总被引:1,自引:0,他引:1  
The vibroseis method must be extended to its limits as the search for oil and gas continues on land. To successfully improve vibroseis data quality, it is crucial to evaluate each element in the vibroseis data acquisition system and ensure that the contribution from each element is successful. Vibroseis systems depend greatly upon the ability of vibrators to generate synchronous, repeatable ground-force sweeps over a broad frequency range. This requires that the reaction mass and the baseplate of the vibrator move as rigid bodies. However, rigid-body motion is not completely true for high- frequency vibrations, especially for the vibrator baseplate. In order to accurately understand the motion of the vibrator baseplate, a finite element analysis model of the vibrator baseplate and the coupled ground has been developed. This model is useful for simulating the vibrator baseplate dynamics, evaluating the impact of the baseplate on the coupled ground and vibrator baseplate design. Model data demonstrate that the vibrator baseplate and its stilt structure are subject to six significant resonant frequencies in the range of 10–80 Hz. Due to the low rigidity of the baseplate, the baseplate stilt structure experiences severe rocking motions at lower frequencies and the baseplate pad experiences severe flexing motions at higher frequencies. Flexing motions cause partial decoupling, which gives rise to increased levels of harmonic distortion and less useable signal energy. In general, the baseplate pad suffers more bending and flexing motions at high frequencies than low frequencies, leading less efficiency in transmitting the useable energy into the ground.  相似文献   

2.
The output from the hydraulic vibrators typically used for land seismic surveys is controlled by monitoring the acceleration measured by accelerometers mounted on the reaction mass and baseplate. The considerable energy output by such vibrators, which are coupled with the sensitivity of the accelerometers used, results in crosstalk if more than one vibrator is being used. In this paper, we present the results of a field experiment in which we measured the crosstalk between two adjacent vibrators. We found that the level of crosstalk was approximately ‐20 dB when the vibrators were adjacent but decreased with increasing frequency and separation. This result has implications for measurements of vibrator performance, source‐signature deconvolution, and in particular, estimates of the total energy output by a fleet of vibrators.  相似文献   

3.
Since its introduction in the late 1950s, hydraulic vibrators have become the dominant source for land seismic surveys. The hydraulic vibrators typically used for commercial land seismic acquisition, however, are large, costly to operate and expensive to purchase. This inhibits their use for small-scale and short-duration surveys as well as Vibroseis research. In this paper we describe, in detail, the construction of a portable vibrator from commercially available components for a cost of less than $US2,000. Data shows that the vibrator is able to successfully transmit sweeps from 15 to 180 Hz with different spectral contents. The vibrator produces a stronger signal than a sledgehammer and we estimate its output to be around 1 kN. The frequency content of the data was concentrated at lower frequencies (<100 Hz) and the ground-roll was far more energetic than that produced using a sledgehammer.  相似文献   

4.
It is well recognized that in order to realize the full potential of the Vibroseis technique, one needs to ensure accurate phase locking and a meaningful cross-correlation. To achieve these two important objectives we require an accurate estimate of the compressional stress wave radiated by the vibrator into the ground. In this paper a simple method (subject of a patent application) is developed for predicting the compressional stress waves radiated by a vertical vibrator. The main feature of the proposed method is that it involves the field measurement of the acceleration of the reaction mass and the baseplate, respectively. The method is illustrated by computing the compressional stress waves generated by a typical vertical vibrator radiating into ice, chalk, sand, and mud. It is shown that for a seismic vibrator radiating into hard ground the pressure of the downgoing P-wave is 180° out of phase with the baseplate velocity. It is also shown that when the driving force of the seismic vibrator has a flat amplitude spectrum, the amplitude spectrum of the downgoing P-wave falls off by 6 dB/octave towards low frequencies.  相似文献   

5.
Controlled rocking steel frames have been proposed as an efficient way to avoid the structural damage and residual deformations that are expected in conventional seismic force resisting systems. Although the base rocking response is intended to limit the force demands, higher mode effects can amplify member design forces, reducing the viability of the system. This paper suggests that seismic forces may be limited more effectively by providing multiple force‐limiting mechanisms. Two techniques are proposed: detailing one or more rocking joints above the base rocking joint and providing a self‐centring energy dissipative (SCED) brace at one or more levels. These concepts are applied to the design of an eight‐storey prototype structure and a shake table model at 30% scale. A simple numerical model that was used as a design tool is in good agreement with frequency characterization and low‐amplitude seismic tests of the shake table model, particularly when multiple force‐limiting mechanisms are active. These results suggest that the proposed mechanisms can enable better capacity design by reducing the variability of peak seismic force demands without causing excessive displacements. Similar results are expected for other systems that rely on a single location of concentrated nonlinearity to limit peak seismic loads. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
7.
The Pelton DRTM Servovalve Enhancement causes the natural output of a vibrator to resemble the desired output more closely. This simplifies the control problem and reduces harmonic distortion. The traditional type of servovalve used on seismic vibrators is a flow-control servovalve. Flow is proportional to a vibrator's baseplate velocity, with respect to its reaction mass. The new servovalve control parameter is pressure rather than flow. The differential pressure applied to a vibrator's actuator piston, multiplied by the area of the piston, equals the force applied to the vibrator's baseplate structure. This may be defined as actuator force. There is a simpler and more linear relationship between actuator force and ground force than between actuator velocity and ground force. Thus, it is better for the servovalve to control pressure into the actuator rather than flow. A flow-control servovalve can be made to control pressure by sensing the differential pressure across a vibrator's actuator piston and applying it as a negative feedback around the servovalve main stage. This has been carried out and tested. The result is more accurate vibrator control and reduced harmonic distortion.  相似文献   

8.
The amplitude and phase response of a simple model is compared with the performance of a real vibrator working in the field. The field results show a characteristic phase response which confirms that the real drive force applied to the baseplate and its load impedance is faithfully represented by the acceleration of the reaction mass. It follows that all the parameters necessary to calculate the load impedance and the true power dissipated in the earth can be measured at the output of the vibrator. It also follows that the current method of baseplate phase compensation should be reconsidered.  相似文献   

9.
Side lobes of the wavelets arise from the lack of low frequency content in a reflection wavelet. They tend to increase the time span of an individual reflection event and interfere with the other primary reflections or side lobes. Furthermore, their trace-by-trace consistency may produce pseudo-reflections and may cause misinterpretations of the side lobes as weak reflections.A procedure in order to improve the low frequency content of the seismic traces by suppressing the side lobe amplitudes based on the complex trace envelope is proposed. Using the average energies of the seismic trace and its envelope, the polarity table of the trace is obtained and used to correct the phase of the envelope. The resultant trace is termed “side lobe reduced (SLR) trace”. The method can be applied to the stack or migrated seismic data by a trace-by-trace basis. The only required parameter of the method is the moving average operator length which is used to calculate average energies of the input traces. In general, shorter operator lengths yield better results when the dominant frequency of the input increases.Results from synthetics and real seismic data sets show that the procedure improves the low frequency components of the input trace and side lobes in the output SLR trace are significantly suppressed. The method may be considered as a seismic amplitude attribute, which aids the interpreter to obtain the true seismic signature of the geological formations by removing the side lobes of the wavelet and restoring the low frequency components if the lower frequencies of deeper reflections are of primary concern.  相似文献   

10.
地震勘探中相控阵震源的方向特性研究   总被引:9,自引:3,他引:6       下载免费PDF全文
电磁驱动式可控震源在城市浅层地震勘探中所面临的最突出的困难是微弱的反射信号常常淹没在很强的背景噪声之中.为了提高地震记录的信噪比,可以利用多台可控震源阵列实施相位控制形成定向地震波束以增强地震波的能量.本文讨论这种相控阵震源的波束形成机制.引入了地震波场的边际能量密度的概念,利用地震波场的时间切片技术,对模型空间各个方向上的能量强度进行了定量分析.用有限差分法对相控阵震源Chirp信号扫描的地震响应进行了数值模拟.当定向地震波束的汇聚带与观测排列的空间范围相一致时,相控阵震源合成地震记录的能量强度要显著高于单个可控震源情形的能量强度,波形振幅的均匀性要明显优于常规组合激发震源情形波形振幅的均匀性.  相似文献   

11.
How do hydraulic vibrators work? A look inside the black box   总被引:1,自引:0,他引:1  
In order to have realistic expectations of what output is achievable from a seismic vibrator, an understanding of the machine's limitations is essential. This tutorial is intended to provide some basics on how hydraulic vibrators function and the constraints that arise from their design. With these constraints in mind, informed choices can be made to match machine specifications to a particular application or sweeps can be designed to compensate for performance limits.  相似文献   

12.
Vibrator is an excitation equipment of the vibratory source in the seismic exploration[1―3]. In order to ap-proach the δ function, dynamite can be used to release high energy in an instantaneous explosion and form the seismic wavelet. On the other hand, a portable vi-brator sweeps a low energy signal for a long time to simulate the function of an explosion source. The re-flection signal of the portable vibrator is estimated for time-delay by digital cross correlation technology, and the disp…  相似文献   

13.
利用零偏移VSP资料估计介质品质因子方法研究   总被引:18,自引:3,他引:15       下载免费PDF全文
利用峰值频率移动法估算零偏VSP资料的品质因子Q.该方法用Ricker子波和匹配地震子波分别逼近零相位和混合相位的震源子波,得到了峰值频率移动法估计Q值的公式.进而针对常规方法估计的地震子波峰值频率精度不高的问题,提出了估计地震子波峰值频率的特征结构法.通过合成零偏VSP资料的仿真试验,验证了峰值频率移动法估计Q值的正确性.仿真结果表明,与快速Fourier变换和Burg最大熵方法相比较,特征结构法得到的峰值频率和Q值精度高一些.仿真结果也表明,用峰值频率移动法估计Q值时需要选取恰当的子波参数,否则影响Q值估计的精度.  相似文献   

14.
Developments in vibrator control   总被引:1,自引:0,他引:1  
Hydraulic limitations, non-rigidity of the baseplate as well as variable characteristics of the ground constantly distort the downgoing energy output by vibrators. Therefore, a real time feedback control must be performed to continuously adjust the emitted force to the reference pilot signal. This ground force is represented by the weighted sum of the reaction mass and the baseplate accelerations. It was first controlled with an amplitude and phase locked loop system, poorly reactive and sensitive to noise. Later on, new vibrator electronics based on a digital model of the vibrator were introduced. This model is based on the physical equations of the vibrator and of the ground. During an 'identification' process, the model is adjusted to each particular vibrator. Completed by a Kalman adaptive filter to remove the noise, it computes ten estimated states via a linear quadratic estimator. These states are used by a linear quadratic control to compute the torque motor input and to compare the ground force estimated from the states with the pilot signal. Test results using downhole geophones demonstrate the benefit of filtered mode operation.  相似文献   

15.
Marine seismic vibrators are generally considered to be less intrusive than airguns from an environmental perspective. This is because they emit their energy spread out in time, rather than in a single, high-intensity pulse. There are also significant geophysical benefits associated with marine vibrators, and they stem from the ability to specify in detail the output acoustic waveform. The phase can be specified independently at each frequency. Such detailed control cannot be achieved with conventional airgun sources, where the phase can only be modified using simple overall time delays. The vibrator phase can be employed in several different ways: it can be applied to the overall source phase in a sequence so that it varies from one source point to the next; it can be applied to the individual vibrators within the source array so the source directivity is changed; it can be applied to the overall source phase of each source in a simultaneous source acquisition. Carefully designed phase sequences can attenuate the residual source noise, and this in turn allows extra source points to be interleaved between the conventional ones. For these extra source points, the relative phase of the vibrators within the array can be chosen to create a transverse gradient source, which illuminates the earth predominantly in directions out of the plane of the sail line without left/right ambiguity. If seismic vibrator data are acquired using interleaved conventional and transverse gradient sweeps, more information is collected per kilometre of vessel travel than is the case in conventional acquisition. This richer data acquisition leads to the possibility of acquiring all the necessary seismic data in a shorter time. Three-dimensional reconstruction techniques are used to recover the same image quality that would have been obtained using the conventional, more time-consuming acquisition. For a marine vibrator to be suitable for these techniques it must, in general terms, have ‘high fidelity’. The precise device specifications are defined through realistic end-to-end simulations of the physical systems and the processing. The specifications are somewhat more onerous than for a conventional vibrator, but they are achievable. A prototype vibrator that satisfies these requirements has been built. In a simulated case study of a three-dimensional deep-water ocean bottom node survey, the seismic data could have been acquired using marine vibrators in one third of the time that it would have taken using airguns.  相似文献   

16.
具有较高自然频率的高灵敏度检波器在采集数据时可以通过压制低频信号来相对提高高频能量,但这也造成了其低频响应差的问题,如果将高灵敏度数据与常规数据进行优势组合,就可以达到拓宽频带的目的。为此,本文提出分频段匹配滤波的方法,即在保持常规数据低频优势的前提下,对其高频端进行匹配滤波,实现不同频带范围内的优势互补,从而改善地震记录。通过引入不同主频的雷克子波模拟得到具有常规数据和高灵敏度数据特点的理论模型,论证了分频匹配滤波方法的可行性。在对野外单炮地震记录处理中发现,分频匹配滤波方法拓宽了地震记录的有效频带宽度,提高了地震记录的分辨率。  相似文献   

17.
针对电磁式可控震源地震数据的相关检测,研究发现,在地下结构复杂、基板-大地耦合不佳时,常规方法——基于震源控制信号或基板附近信号作为参考信号检测得到的地震记录中,存在子波到时误差和虚假多次波问题.本文分析了上述问题的理论原因,并提出基于重构激发信号的相关检测参考信号方法(Correlation Detection Reference Signal Based on the Reconstructed Excitation Signal,CDRSBRES).首先,利用直达波与其他地震波到时不一致的特点,从震源基板附近信号中分离、提取直达波.然后,利用直达波重构震源激发信号并作为参考信号对地震数据进行相关检测.最后,应用谱白化技术提高检测结果质量.数值模拟研究表明,重构激发信号与理想激发信号的相关系数为0.9869,达到高度线性相关,CDRSBRES方法检测的地震记录在子波到时和波形特征上均与模型相符.随后,在某金属矿区开展了可控震源对比实验.与液压式可控震源MiniVib T15000检测结果相比,电磁式可控震源PHVS 500的检测结果中:基于震源控制信号的检测结果存在子波到时误差约0.012s,对应垂向精度误差约11.16m;基于基板附近信号的检测结果部分区域出现虚假多次波,信噪比降低;而CDRSBRES方法的检测结果子波到时误差约0.001s,对应垂向精度误差约0.93m,波形特征一致,相同区域无虚假多次波.综上,本方法适用于电磁式可控震源地震数据的高精度检测,尤其对于地下结构复杂区域的高分辨率地震勘探具有重要意义.  相似文献   

18.
High Fidelity Vibratory Seismic (HFVS) acquisition and separation can play an important role in today's land acquisition schemes. The method – in which multiple vibrators are swept simultaneously using sweeps with known phase encoding and then the data are inverted and separated into individual records – can improve productivity in the field and at the same time improve signal characteristics in the data. It relies on the measured weighted sum of accelerations (base plate and reaction mass) to invert the acquired data and separate the individual vibrator responses. Separation can be sub-optimal if the measured motions vary from the 'true source' input into the ground. Differences in true source and measured source can arise due to poor coupling between vibrators and ground, soil compaction or other factors. Using both a synthetic model and real data, we show that if the true source changes between sweeps but is not measured, vibrator responses can leak into adjacent vibrator responses upon separation. In a recent survey with HFVS acquisition, we observed a 25–30 dB separation between adjacent vibrators, which could be improved with greater reliability of the source measurement. The vibrator leakage can reduce the data quality considerably. We discuss the results of this survey and show that separation is affected by source measurement error. Further, we conclude that it is necessary either 1) to use source measurements that can capture the variability of the true source between sweeps or 2) to compensate for the source measurement variations in processing or in acquisition.  相似文献   

19.
Although seismic sources typically consist of identical broadband units alone, no physical constraint dictates the use of only one kind of device. We propose an acquisition method that involves the simultaneous exploitation of multiple types of sources during seismic surveys. It is suggested to replace (or support) traditional broadband sources with several devices individually transmitting diverse and reduced frequency bands and covering together the entire temporal and spatial bandwidth of interest. Together, these devices represent a so‐called dispersed source array. As a consequence, the use of simpler sources becomes a practical proposition for seismic acquisition. In fact, the devices dedicated to the generation of the higher frequencies may be smaller and less powerful than the conventional sources, providing the acquisition system with increased operational flexibility and decreasing its environmental impact. Offshore, we can think of more manageable boats carrying air guns of different volumes or marine vibrators generating sweeps with different frequency ranges. On land, vibrator trucks of different sizes, specifically designed for the emission of particular frequency bands, are preferred. From a manufacturing point of view, such source units guarantee a more efficient acoustic energy transmission than today's complex broadband alternatives, relaxing the low‐ versus high‐frequency compromise. Furthermore, specific attention can be addressed to choose shot densities that are optimum for different devices according to their emitted bandwidth. In fact, since the sampling requirements depend on the maximum transmitted frequencies, the appropriate number of sources dedicated to the lower frequencies is relatively small, provided the signal‐to‐noise ratio requirements are met. Additionally, the method allows to rethink the way to address the ghost problem in marine seismic acquisition, permitting to tow different sources at different depths based on the devices' individual central frequencies. As a consequence, the destructive interference of the ghost notches, including the one at 0 Hz, is largely mitigated. Furthermore, blended acquisition (also known as simultaneous source acquisition) is part of the dispersed source array concept, improving the operational flexibility, cost efficiency, and signal‐to‐noise ratio. Based on theoretical considerations and numerical data examples, the advantages of this approach and its feasibility are demonstrated.  相似文献   

20.
文中针对单层偏心框架结构,利用正弦行波激励研究了质量偏心率和激励频率对偏心框架结构行波扭转响应的影响规律.建立了行波激励下单层偏心框架结构的振动方程,采用相对运动法求解给出了正弦行波激励下单层偏心框架结构楼板的质心平动位移和转角位移以及楼板扭矩和柱剪力的解析解.计算了一个钢筋混凝凝土单层偏心框架结构的峰值楼板扭矩和峰值...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号