首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Sierras Pampeanas orogen, in northwestern Argentina, hosts significant Sn–W mineralization in a variety of mostly epizonal granite stocks emplaced in variably metamorphosed country rocks. The San Blas, Huaco and El Durazno granite stocks in the Sierra de Velasco, the La Quebrada granite in the Sierra de Mazán, the Cerro Colorado granite in the Cerro Negro, and the Los Mudaderos and Sauce Guacho granite stocks in the Sierra de Ancasti, are largely peraluminous (ASI between 1.05 and 1.38) and represent S-type granites, are strongly fractionated (i.e., high Rb–Sr ratio), have a low oxidation state (low Fe2O3/Fe2O3 ratio) and are geotectonically linked to syncollisional magmatism. The U–Pb SHRIMP analyses on zircons from the Cerro Colorado and La Quebrada granites, located in the Cerro Negro and Sierra de Mazán, respectively, revealed ages from Lower Ordovician (Tremadocian) to Carboniferous. All granites display elevated LREE values, low HREE values and negative Eu anomalies. With regards to total REE values, two groups of granite stocks can be recognized. The granites with lower REE contents are highly evolved granites and are related to Sn–W mineralization. The mineralized granites display higher values of Sn, W and Rb, and lower values of Sr and Ba compared to barren granites. These trace element characteristics appear to be diagnostic for Sn–W mineralized granite stocks in the western Sierras Pampeanas. The western Sierras Pampeanas contains locally geochemically evolved Carboniferous granites, which are interpreted to be the main control of significant Sn–W mineralization. The Carboniferous age of western Sierras Pampeanas Sn–W mineralization sets it apart from the Triassic age of the Sn–W mineralization in the Eastern Tin belt of Bolivia.  相似文献   

2.
The Eastern Sierras Pampeanas were structured by three main events: the Ediacaran to early Cambrian (580?C510?Ma) Pampean, the late Cambrian?COrdovician (500?C440?Ma) Famatinian and the Devonian-Carboniferous (400?C350?Ma) Achalian orogenies. Geochronological and Sm?CNd isotopic evidence combined with petrological and structural features allow to speculate for a major rift event (Ediacaran) dividing into two Mesoproterozoic major crustal blocks (source of the Grenvillian age peaks in the metaclastic rocks).This event would be coeval with the development of arc magmatism along the eastern margin of the eastern block. Closure of this eastern margin led to a Cambrian active margin (Sierra Norte arc) along the western margin of the eastern block in which magmatism reworked the same crustal block. Consumption of a ridge segment (input of OIB signature mafic magmas) which controlled granulite-facies metamorphism led to a final collision (Pampean orogeny) with the western Mesoprotrozoic block. Sm?CNd results for the metamorphic basement suggest that the T DM age interval of 1.8?C1.7?Ga, which is associated with the less radiogenic values of ??Nd(540) (?6 to ?8), can be considered as the mean average crustal composition for the Eastern Sierras Pampeanas. Increasing metamorphic grade in rocks with similar detrital sources and metamorphic ages like in the Sierras de Córdoba is associated with a younger T DM age and a more positive ??Nd(540) value. Pampean pre-540?Ma granitoids form two clusters, one with T DM ages between 2.0 and 1.75?Ga and another between 1.6 and 1.5?Ga. Pampean post-540?Ma granitoids exhibit more homogenous T DM ages ranging from 2.0 to 1.75?Ga. Ordovician re-activation of active margin along the western part of the block that collided in the Cambrian led to arc magmatism (Famatinian orogeny) and related ensialic back-arc basin in which high-grade metamorphism is related to mid-crustal felsic plutonism and mafic magmatism with significant contamination of continental crust. T DM values for the Ordovician Famatinian granitoids define a main interval of 1.8?C1.6, except for the Ordovician TTG suites of the Sierras de Córdoba, which show younger T DM ages ranging from 1.3 to 1.0?Ga. In Devonian times (Achalian orogeny), a new subduction regime installed west of the Eastern Sierras Pampeanas. Devonian magmatism in the Sierras exhibit process of mixing/assimilation of depleted mantle signature melts and continental crust. Achalian magmatism exhibits more radiogenic ??Nd(540) values that range between 0.5 and ?4 and T DM ages younger than 1.3?Ga. In pre-Devonian times, crustal reworking is dominant, whereas processes during Devonian times involved different geochemical and isotopic signatures that reflect a major input of juvenile magmatism.  相似文献   

3.
Whole-rock geochemical analyses using major and trace elements in combination with the Sm–Nd and Pb–Pb isotope systems, together with SHRIMP age dating on metasedimentary rocks from the Sierras de Chepes, the Sierras de Córdoba, the Sierra Norte and the San Luis Formation in the Sierra de San Luis, have been carried out to unravel the provenance and the geodynamic history of the Eastern Sierras Pampeanas, Central Argentina. The geochemical and the Sm–Nd data point to a slightly stronger mafic and less-fractionated material in the provenance area of the Sierras de Córdoba when compared to the other units. The TDM model ages from the Sierras de Chepes (~1.82 Ga) and the Sierra Norte (~1.79 Ga) are significantly older than the data from the Sierras de Córdoba (1.67 Ga). The Pb data are homogeneous for the different units. Only the 208Pb/204Pb ratios of some samples from the Sierras de Córdoba are higher. A late Pampean detrital zircon peak around 520 Ma from the Sierras de Chepes is in accordance with the new data from the San Luis Formation. This is similar to the literature data from the Famatina Belt located to the northwest of the Sierras de Chepes and also fits the detrital zircon peaks in the Mesón group. These maximum depositional ages were also reported from some locations in the Puncoviscana Formation but are absent in the Sierras de Córdoba. An improved model for the development of the Eastern Sierras Pampeanas in the area between the Sierras de Córdoba and the Puncoviscana Formation is provided. This gives new insights into the late Pampean development of the Sierra de San Luis and the complex development of the Eastern Sierras Pampeanas. This new model explains the younger detrital ages in the Puncoviscana Formation compared with the older ages of the Sierras de Córdoba. Another model of the Sierra de San Luis explains the younger depositional ages of the Pringles Metamorphic Complex and the San Luis Formation when compared to the Nogolí Metamorphic Complex and the Conlara Metamorphic Complex. Additionally, the rather fast change of the high-grade metamorphic conditions in the Pringles Metamorphic Complex and the low-grade metamorphic conditions in the San Luis Formation is explained by extension, the ascent of (ultra) mafic material and later folding and erosion.  相似文献   

4.
A deformed ca. 570 Ma syenite–carbonatite body is reported from a Grenville-age (1.0–1.2 Ga) terrane in the Sierra de Maz, one of the Western Sierras Pampeanas of Argentina. This is the first recognition of such a rock assemblage in the basement of the Central Andes. The two main lithologies are coarse-grained syenite (often nepheline-bearing) and enclave-rich fine-grained foliated biotite–calcite carbonatite. Samples of carbonatite and syenite yield an imprecise whole rock Rb–Sr isochron age of 582 ± 60 Ma (MSWD = 1.8; Sri = 0.7029); SHRIMP U–Pb spot analysis of syenite zircons shows a total range of 206Pb–238U ages between 433 and 612 Ma, with a prominent peak at 560–580 Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525 ± 7 Ma (Pampean orogeny) and at ca. 430–440 Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neo-proterozoic lower continental crust.  相似文献   

5.
New U–Pb SHRIMP zircon ages combined with geochemical and isotope investigation in the Sierra de Maz and Sierra de Pie de Palo and a xenolith of the Precordillera basement (Ullún), provides insight into the identification of major Grenville-age tectonomagmatic events and their timing in the Western Sierras Pampeanas. The study reveals two contrasting scenarios that evolved separately during the 300 Ma long history: Sierra de Maz, which was always part of a continental crust, and the juvenile oceanic arc and back-arc sector of Sierra de Pie de Palo and Ullún. The oldest rocks are the Andino-type granitic orthogneisses of Sierra de Maz (1330–1260 Ma) and associated subalkaline basic rocks, that were part of an active continental margin developed in a Paleoproterozoic crust. Amphibolite facies metamorphism affected the orthogneisses at ca. 1175 Ma, while granulite facies was attained in neighbouring meta-sediments and basic granulites. Interruption of continental-edge magmatism and high-grade metamorphism is interpreted as related to an arc–continental collision dated by zircon overgrowths at 1170–1230 Ma. The next event consisted of massif-type anorthosites and related meta-jotunites, meta-mangerites (1092 ± 6 Ma) and meta-granites (1086 ± 10 Ma) that define an AMCG complex in Sierra de Maz. The emplacement of these mantle-derived magmas during an extensional episode produced a widespread thermal overprint at ca. 1095 Ma in neighbouring country rocks. In constrast, juvenile oceanic arc and back-arc complexes dominated the Sierra de Pie de Palo–Ullún sector, that was fully developed ca. 1200 Ma (1196 ± 8 Ma metagabbro). A new episode of oceanic arc magmatism at ~1165 Ma was roughly coeval with the amphibolite high-grade metamorphism of Sierra de Maz, indicating that these two sectors underwent independent geodynamic scenarios at this age. Two more episodes of arc subduction are registered in the Pie de Palo–Ullún sector: (i) 1110 ± 10 Ma orthogneisses and basic amphibolites with geochemical fingerprints of emplacement in a more mature crust, and (ii) a 1027 ± 17 Ma TTG juvenile suite, which is the youngest Grenville-age magmatic event registered in the Western Sierras Pampeanas. The geodynamic history in both study areas reveals a complex orogenic evolution, dominated by convergent tectonics and accretion of juvenile oceanic arcs to the continent.  相似文献   

6.
In the northwest of the Sierras Pampeanas of Córdoba (Central Argentina), in the Tuclame area, rocks called ‘banded schists’ are recognized. They are known since 120 years ago and are one of the most important lithologies of the metamorphic complex in this region. The compositional banding is the most conspicuous structural mesoscopic feature, composed of quartz-rich and mica-rich layers. It is a tectonic banding produced by pressure solution during a compressive event. P–T conditions of 557 ± 25 °C and 3.9 ± 1 kb were obtained for the main metamorphic event. A detailed field checking allowed recognition of the banded schists as decimetric or centimetric xenoliths isolated within the regional migmatites and the anatectic granitoids and as kilometric-scale belts within Sierras de Córdoba and San Luis. The authors have also identified banded schists in the Sierras de Aconquija, Ambato, Ancasti and Guasayán. Other workers recognized them in the Puna, Cumbres Calchaquíes, Sierras de Quilmes and Fiambalá, among the most well known outcrops. The banded schists have systematic petrological features and a distinctive mesoscopic structure that allow their identification and correlation with the other outcrops, which are arranged as a huge belt 2000 km long and 150 km wide, between 64°00′–66°30′W and 25°00′–41°34′S. In this work, all these rocks are proposed to be integrated into the Puncoviscana Basin, since field evidence indicated that the banded schists transitionally pass by transposition to phyllitic rocks typical of this metamorphosed basin, which would cover a region of about 300,000 km2. At present, there is no accurate geochronology available for the metamorphic and deformation events proposed in this work for the Tuclame banded schists. However, considering the regional geological evidence, the great spread of the petrostructural process forming these rocks, the transition between the Puncoviscana Formation and the banded schists, and the earlier idea that the Puncoviscana Formation is the shallowest equivalent of deeper structural levels in the Sierras Pampeanas, we favor for the moment the hypothesis that the banded schists could be part of the oldest evolution of the Pampean orogeny (early Pampean stage) and could represent different structural levels of the same orogen, probably a late Precambrian–early Palaeozoic orogen. The events of migmatization and emplacement of anatectic granitoids could represent a late Pampean stage of early Palaeozoic age. Thus, the Pampean orogeny could have lasted around 30–40 Ma (570–530 Ma).  相似文献   

7.
《Gondwana Research》2013,23(3-4):992-1008
A recently discovered granitic intrusion at Cerro La Gloria in western Sierra de Famatina (NW Argentina) is representative of sub- to mid-alkaline Carboniferous magmatism in the region. The main rock type consists of microcline, quartz and plagioclase, with amphibole, magnetite, ilmenite, biotite, epidote, zircon, allanite and sphene as accessory minerals. We report a U–Pb zircon SHRIMP age for the pluton of 349 ± 3 Ma (MSWD = 1.1), i.e., Tournaisian. Whole-rock chemical composition and Nd isotope analyses are compatible with an origin by melting of older mafic material in the lower crust (εNdt between − 0.58 and + 0.46 and TDM values of about 1.1 Ga). The pluton is intruded by penecontemporaneous to late alkaline mafic dykes that are classified as back-arc basalts. Coeval, Early Carboniferous A-type granites occur farther east in the Sierras Pampeanas, probably generated during lithospheric stretching. Overall, the Early Carboniferous granitic rocks show a west-to-east mineralogical and isotopic zonation indicating that magma genesis involved a greater contribution of juvenile material of mantle character to the west. Based on the observed patterns of geochronology, geochemistry and field relationships we suggest that A-type magma genesis in the Eastern Sierras Pampeanas was linked to an Andean-type margin where the lithospheric mantle played a role in its generation.  相似文献   

8.
Provenance studies have been performed utilising major and trace elements, Nd systematics, whole rock Pb–Pb isotopes and zircon U/Pb SHRIMP data on metasedimentary rocks of the Sierra de San Luis (Nogolí Metamorphic Complex, Pringles Metamorphic Complex, Conlara Metamorphic Complex and San Luis Formation) and the Puncoviscana Formation of the Cordillera Oriental. The goal was the characterisation of the different domains in the study area and to give insights to the location of the source rocks. An active continental margin setting with typical composition of the upper continental crust is depicted for all the complexes using major and trace elements. The Pringles Metamorphic Complex shows indications for crustal recycling, pointing to a bimodal provenance. Major volcanic input has to be rejected due to Th/Sc, Y/Ni and Cr/V ratios for all units. The εNd(540 Ma) data is lower for the San Luis Formation and higher for the Conlara Metamorphic Complex, as compared to the other units, in which a good consistency is given. This is similar to the TDM ages, where the metapsammitic samples of the San Luis Formation are slightly older. The spread of data is largest for the Pringles Metamorphic Complex, again implying two different sources. The whole rock 207Pb/206Pb isotopic data lies in between the South American and African sources, excluding Laurentian provenances. The whole rock Pb–Pb data is almost indistinguishable in the different investigated domains. Only the PMC shows slightly elevated 208Pb/204Pb values. Possible source rocks for the different domains could be the Quebrada Choja in the Central Arequipa–Antofalla domain, the Southern domain of the Arequipa–Antofalla basement, the Brazilian shield or southern Africa. Zircon SHRIMP data point to a connection between the Puncoviscana Formation and the Conlara Metamorphic Complex. Two maxima around 600 Ma and around 1000 Ma have been determined. The Nogolí Metamorphic Complex and the Pringles Metamorphic Complex show one peak of detrital zircons around 550 Ma, and only a few grains are older than 700 Ma. The detrital zircon ages for the San Luis Formation show age ranges between 590 and 550 Ma. A common basin can be assumed for the Conlara Metamorphic Complex and the Puncoviscana Formation, but the available data support different sources for the rest of the Complexes of the Sierra de San Luis. These share the diminished importance or the lack of the Grenvillian detrital peak, a common feature for the late Cambrian–early Ordovician basins of the Eastern Sierras Pampeanas, in contrast to the Sierras de Córdoba, the PVF and the Conlara Metamorphic Complex.  相似文献   

9.
This paper discusses new structural, kinematic and geochronological data from polymetallic (Pb-Zn-Cu-Ag ± Au) vein-type deposits hosted in the metamorphic basement of the southern Sierras de Córdoba. A Carboniferous age was established for the hydrothermal event between ∼329 and 315 Ma (Late Mississippian-Early Pennsylvanian) by the K/Ar fine-fraction dating method of sericitic alteration related to metallic ore deposition in the Las Guindas and Oro districts. The obtained ages postdate the spatially associated Devonian magmatism and overlap the A-type Early Carboniferous magmatism defined for the Eastern Sierras Pampeanas. The presence of non-exhumed granitic bodies at shallow depths, possibly related to mineralization, is supported by available geophysical and field evidence.The strain fabric and 3-D kinematic analyses constitute first kinematic data for the Carboniferous basement of the Southern Sierras Pampeanas demonstrating that mineralization was controlled by NNW- and ENE-trending brittle-ductile transtensional shear zones that overprint the earlier high-strain deformation fabrics of the basement. Transtensional deformation has accommodated large amounts of strike-slip movements and subordinated extensional components. The calculated kinematic axes indicate a coherent kinematic pattern of the mineralized systems in the two studied districts, with a maximum extension direction oriented NNE- to NE and maximum shortening direction oriented WNW- to NW. This deformation regime, active during mineralization, point to a non-compressive setting at the Late Mississippian-Early Pennsylvanian boundary. In line with other regional evidence, we propose a distinctive Carboniferous deformational phase in the Eastern Sierras Pampeanas, dominated by transtension. This period would have occurred after the transition with the Devonian compressional/transpressional orogenic regime.  相似文献   

10.
The central-eastern part of the Sierra de Velasco (Sierras Pampeanas, NW Argentina) is formed by the large Huaco (40 × 30 km) and Sanagasta (25 × 15 km) granite massifs and the small La Chinchilla stock (2 × 2 km). The larger granites intrude into Ordovician metagranitoids and crosscut Devonian (?) mylonitic shear zones, whereas the small stock sharply intrudes into the Huaco granite. The two voluminous granites are biotitic-muscovitic and biotitic porphyritic syeno- to monzogranites. They contain small and rounded tonalitic and quartz-dioritic mafic microgranular enclaves. The small stock is an equigranular, zinnwaldite- and fluorite-bearing monzogranite. The studied granites are silica-rich (SiO2 >70%), potassium-rich (K2O >4%), ferroan, alkali-calcic to slightly calk-alkalic, and moderately to weakly peraluminous (A/CNK: 1.06–1.18 Huaco granite, 1.01–1.09 Sanagasta granite, 1.05–1.06 La Chinchilla stock). They have moderate to strong enrichments in several LIL (Li, Rb, Cs) and HFS (Nb, Ta, Y, Th, U) elements, and low Sr, Ba and Eu contents. U–Pb monazite age determinations indicate Lower Carboniferous crystallization ages: 350–358 Ma for the Huaco granite, 352.7 ± 1.4 Ma for the Sanagasta granite and 344.5 ± 1.4 Ma for the La Chinchilla stock. The larger granites have similar ?Nd values between ?2.1 and ?4.3, whereas the younger stock has higher ?Nd of ?0.6 to ?1.4, roughly comparable to the values obtained for the Carboniferous San Blas granite (?1.4 to ?1.7), located in the north of the sierra. The Huaco and Sanagasta granites have a mainly crustal source, but with some participation of a more primitive, possibly mantle-derived, component. The main crustal component can be attributed to Ordovician peraluminous metagranitoids. The La Chinchilla stock derives from a more primitive source, suggesting an increase with time in the participation of the primitive component during magma genesis. The studied granites were generated during a post-orogenic period in a within-plate setting, possibly as a response to the collapse of the previous Famatinian orogen, extension of the crust and mantle upwelling. They are part of the group of Middle Devonian–Lower Carboniferous granites of the Sierras Pampeanas. The distribution and U–Pb ages of these granites suggests a northward arc-parallel migration of this mainly post-orogenic magmatism with time.  相似文献   

11.
The provenance of Neoproterozoic to Early Paleozoic sedimentary rocks in the Sierras Pampeanas has been established using U–Pb SHRIMP age determination of detrital zircons in twelve metasedimentary samples, with supplementary Hf and O isotope analyses of selected samples. The detrital zircon age patterns show that the western and eastern sectors of the Sierras Pampeanas are derived from different sources, and were juxtaposed during the Early Cambrian ‘Pampean’ collision orogeny, thus defining initiation of the supercontinent stage of southwestern Gondwana. The Western Sierras Pampeanas (WSP), which extend northwards to the southern Puna (Antofalla) and the Arequipa Massif (Peru), constitute a single large continental basement of Paleoproterozoic age — the MARA block — that was reworked during the Grenvillian orogeny. The MARA block probably extends eastwards to include the Río Apa block (southern Brazil), but in this case without a Mesoproterozoic overprint. Detrital zircons from the WSP and Antofalla yield age peaks between 1330 and 1030 Ma, remarkably similar to the range of ages in the Grenville province of eastern Laurentia. The WSP Neoproterozoic sedimentary cover to this basement shows the same 1330–1030 component, but also includes important 1430–1380 Ma zircons whose juvenile Hf and O isotopic signatures strongly suggest derivation from the Grenville and the Southern Granite–Rhyolite provinces of eastern Laurentia. In contrast the Eastern Sierras Pampeanas metasedimentary rocks have a typically bimodal detrital zircon pattern with peaks at ca. 1000 and 600 Ma, which respectively indicate sources in the Natal–Namaqua belt and the East African orogen and/or the Dom Feliciano belt of SE Brazil and Uruguay. Sedimentary rocks in the Eastern Sierras Pampeanas and Patagonia deposited during the Late Early Cambrian–Early Ordovician interval, after the Pampean orogeny, have detrital patterns common to many sectors along the Terra Australis orogen, reflecting increasingly dominant input to the Paleozoic basins from the Neoproterozoic to Early Cambrian orogenic belts of the Gondwana margin.  相似文献   

12.
《Ore Geology Reviews》2003,22(1-2):41-59
In the eastern Central Andes and its foreland (6°–34°S), abundant quartz veins emplaced along brittle–ductile deformation zones in Ordovician to Carboniferous granites and gneisses and in saddle-reefs in lower Paleozoic turbidites represent a coherent group of middle to late Paleozoic structurally hosted gold deposits that are part of three major Au (±Sb±W) metallogenic belts. These belts, extending from northern Peru to central Argentina along the Eastern Andean Cordillera and further south in the Sierras Pampeanas, include historical districts and mines such as Pataz–Parcoy, Ananea, Santo Domingo, Yani–Aucapata, Amayapampa, Sierra de la Rinconada and Sierras de Córdoba. On the basis of the available isotopic ages, two broad mineralization epochs have been identified, with Devonian ages in the Sierras Pampeanas Au belt (26° to 33°30′S), and Carboniferous ages for the Pataz–Marañón Valley Au-belt in northern Peru (6°50′ to 8°50′S). The absolute timing of the southeastern Peruvian, Bolivian and northwestern Argentinian turbidite-hosted lodes, which form the Au–Sb belt of the southern Eastern Andean Cordillera (12° to 26°S), is poorly constrained. Field relationships suggest overlap of gold veining with Carboniferous deformation events. The northernmost belt, which includes the Pataz province, is over 160-km-long and consists of sulfide-rich quartz veins hosted by brittle–ductile shear zones that have affected Carboniferous granitic intrusions. Gold mineralization, at least in the Pataz province, occurred a few million years after the emplacement of the 329 Ma host pluton and an episode of molassic basin formation, during a period of rapid uplift of the host units. The two southern belts are associated with syn- to post-collisional settings, resulting from the accretion of terranes on the proto-Andean margin of South America. The Au–Sb belt of the southern Eastern Andean Cordillera presumably formed in the final stages of the collision of the Arequipa–Antofalla terrane and the Sierras Pampeanas Au belt is considered concurrent with the late transpressional tectonics associated with the accretion of the Chilenia terrane.The three Devono–Carboniferous Andean belts are the South American segments of the trans-global orogenic gold provinces that were formed from Late Ordovician to Middle Permian in accretionary or collisional belts that circumscribed the Gondwana craton and the paleo-Tethys continental masses. A paleogeographic map of the Gondwana supercontinent in its Middle Cambrian configuration appears as a powerful tool for predicting the location of the majority of the Paleozoic orogenic gold provinces in the world, as they develop within mobile belts along its border. The three South American belts are sited in the metallogenic continuation of the Paleozoic terranes that host the giant eastern Australian goldfields, such as Bendigo–Ballarat and Charters Towers, with which they share many features. When compared to deposits in the French Massif Central, direct counterparts of the Andean deposits such as Pataz and Ananea–Yani are respectively the Saint Yrieix district and the Salsigne deposit. Considering the ubiquity of the Au (±Sb±W) vein-type deposits in the Eastern Cordillera and Sierras Pampeanas, and the relatively little attention devoted to them, the Devonian and Carboniferous orogenic gold deposits in the eastern section of the Central Andes constitute an attractive target for mineral exploration.  相似文献   

13.
The quartz veins and pegmatites of the Sierra de Comechingones (Sierras de Córdoba, NE Argentina) belong to the Comechingones Pegmatite field (CPF). For the quartz veins and the zoned pegmatites related parental granites are missing. The country rock of the quartz veins are mylonitic augengneisses in granulite to upper amphibolite facies. Field relations, microscopy, cathodoluminescence, radiometric age data, fluid inclusion, chemical and isotopic composition and literature define the quartz veins as synorogenic formed during the high-temperature phase of the Famatinian (480–460 Ma) event. During the Famatinian up to the Achalian (382–366 Ma) event the synorogenic quartz veins were subjected to high temperature ductile deformation documented by folding, boudinage and finally brittle shearing. K-Ar ages of illite from the shear zones of about 166 Ma document the final cooling of the Sierras Pampeanas below 100 °C. The long lasting thermal and deformational history of the study area is reflected by very different populations of fluid inclusions in vein quartz with remarkably high contents of thermogenic hydrocarbons in the early-formed fluid inclusions. LA–ICP–MS analysis reveals very low lattice-bound trace element contents, i.e. high purity quartz.  相似文献   

14.
A‐type orthogneisses of mid Neoproterozoic age (774 ± 6 Ma, U‐Pb SHRIMP zircon age), are reported for the first time from the Grenvillian basement of the Western Sierras Pampeanas in Argentina. These anorogenic meta‐igneous rocks represent the latest event of Rodinia break‐up so far recognized in Grenvillian basement exposures across Andean South America. Moreover, they compare well with A‐type granitoids and volcanic rocks along the Appalachian margin of Laurentia (Blue Ridge), thus adding to former evidence that the Western Sierras Pampeanas Grenvillian basement was left on the conjugate rifted margin of eastern Laurentia during Rodinia break‐up and the consequent opening of the Iapetus ocean.  相似文献   

15.
New U‐Pb and 40Ar/39Ar age data from deformed and undeformed granitoids of the North Patagonian Massif establish the presence of Early Cambrian and widespread Ordovician magmatism in northern Patagonia. These data suggest that the Pampean (Cambrian) and Famatinian (Ordovician) magmatic belts of the Sierras Pampeanas are continuous into Patagonia. SHRIMP U‐Pb age spectra from detrital zircons of Cambro‐Ordovician metasedimentary rocks show patterns very similar to those from equivalent units of the Pampia block, over 500 km farther north. These results suggest that the North Patagonian Massif was likely part of the South American margin of Gondwana in the early Palaeozoic and strongly argue in favour of an authochtonous or para‐autochthonous origin for this block.  相似文献   

16.
The Sierra de Pie de Palo located between 67°30′–68°30′ W and 31°00′–32°00′ S in the Argentine Western Sierras Pampeanas in Argentina is a distinct basement range, which lacks thermochronological data deciphering its exhumation and uplift history below 200 °C. Integrated cooling histories constrained by apatite fission-track data as well as (U–Th)/He measurements of zircon and apatite reveal that the structural evolution of this mountain range commenced during the Late Paleozoic and was mainly controlled by tectonically triggered erosion. Following further erosional controlled exhumation in a more or less extensional regime during the Mesozoic, the modern topography was generated by denudation in the Paleogene during the early stage of the Andean deformation, whereupon deformation propagated towards the west since the Late Mesozoic to Paleogene. This evolution is characterised by a total of 3.7–4.2 km vertical rock uplift and by 1.7–2.2 km exhumation with a rate of 0.03–0.04 mm/a within the Sierra de Pie de Palo since ca. 60 Ma. Onset of uplift of peak level is also referred to that time resulting in a less Pliocene amount of uplift than previously assumed.  相似文献   

17.
The intrusion of granitoids into the Eastern Sierras Pampeanas in the Early Carboniferous took place after a long period of mainly compressional deformation that included the Famatinian (Ordovician) and Achalian (Devonian) orogenies. These granitoids occur as small scattered plutons emplaced in a dominant extensional setting, within older metamorphic and igneous rocks, and many of them are arranged along a reactivated large shear zone. A set of 46 samples from different granitic rocks: Huaco granitic complex, San Blas pluton, and the La Chinchilla stock from the Sierra de Velasco, Zapata granitic complex from Sierra de Zapata, and the Los Árboles pluton from Sierra de Fiambalá, display high and restricted SiO2 contents between 69.2 and 76.4 wt.%. On both FeO/(FeO + MgO) vs. SiO2 and [(Na2O + K2O) ? CaO] vs. SiO2 plots the samples plot in the ferroan and alkaline-calcic to calco-alkaline fields (FeO/(FeO + MgO) = 0.88–1.0%;[(Na2O + K2O) ? CaO] = 6.3–8.3%), thus showing an A-type granitoid signature. The high concentrations for the High Field Strength Elements (HSFE), such as Y, Nb, Ga, Ta, U, Th, etc. and flat REE patterns showing significant negative Eu anomalies are also typical features of A-type granites. Our petrogenetic model supports progressive fractional crystallization with dominant fractionation of feldspar and a source mineral assemblage enriched in plagioclase. Biotites have distinctive compositions with high FeO/MgO ratios (7.8–61.5), F (360–5610 ppm), and Cl (120–1050 ppm). The FeO/MgO ratios together with the F and Cl content of igneous biotites seem to reflect the nature of their parental host magmas and may be useful in identifying A-type granitoids. The isotopic data (Rb–Sr and Sm–Nd) confirm that the A-type granites represent variable mixtures of asthenospheric mantle and continental crust and different mixtures lead to different subtypes of A-type granite (illustrating the lack of consensus about A-type magma origin). We conclude that prominent shear zones play an important role in providing suitable conduits for ascending asthenospheric material and heat influx in the crust, a hypothesis that is in accord with other recent work on A-type granites.  相似文献   

18.
The Sierra de San Luis constitutes the southernmost tip of the Eastern Sierras Pampeanas. Its Palaeozoic metamorphic basement units define a key location for the understanding of the accretional history along the proto-Andean margin of Gondwana. Although, it is largely accepted that the polyphase accretional history of the Sierras Pampeanas is preluded by the docking of the Pampean Terrane followed by the Famatinian Orogenic Cycle that involves subduction along the margin of Gondwana and the accretion of the Precordillera (Cuyania) Terrane and finally ceased with the collision of the Chilenia terrane, a vast amount of controversial information concerning the timing and mode of collisions as well as the origin of the different involved crustal fragments within the Eastern Sierras Pampeanas is published. In this paper, those different hypothesis are presented and evaluated under the light of new isotopic data of the Sierra de San Luis. Nd-systematics of the metasedimentary sequences of the Sierra de San Luis indicate that the studied sequences were developed on the Pampean Terrane. An Amazonian origin of the Pampean Terrane that was probably detached from the Arequipa Antofalla Craton is proposed. Furthermore, the correlation of two low-grade phyllitic belts (San Luis Formation) with the widespread Puncoviscana Formation is not supported by Sm-Nd data. It is suggested that the sedimentary precursors of the Pringles Metamorphic Complex and the topping phyllites were sourced on the Pampean Orogen and accommodated in a newly formed back arc basin during the early Famatinian.

The cooling history of the basement complex is recorded by an extensive amount of K-Ar muscovite and biotite ages. A high variability in muscovite ages is only partly related to different intrusion times of two pegmatoid generations. Post Famatinian to Achalian crustal scale mylonite formation (-359 Ma) and a rotational exhumation of the central basement unit are causal for the observed K-Ar muscovite age pattern in the range from 395 Ma to 447 Ma. Therefore, the decrease in metamorphic degree from west to east is the result of the erosion level of a crustal profile from the mid lower crust to the upper crust. An even higher variability in K-Ar biotite cooling ages covering the range from 315 Ma to 418 Ma is related to the slow cooling after the Famatinian Orogenic Cycle or reheating during the Achalian Orogenic Cycle and consequent variable reset of the isotopic system. However, ages recorded by biotite booklets substantiate the hypothesis of a differential exhumation of the basement of the Sierra de San Luis.  相似文献   


19.
In the northern extension of the Famatina and the southern Puna (NW Argentina) prominent rhyolitic volcanic rocks traditionally referred to as Ordovician are exposed, resting on metamorphic basement and covered by thick Late Paleozoic siliciclastic successions. We report new U–Pb SHRIMP ages from these rhyolites that show them to be of Mississippian (348–342 Ma) age, thus identifying a previously unknown volcanic event in this portion of western Gondwana. Whole-rock geochemistry and Sr–Nd isotopic analyses suggest a crustal source for these rocks but with a juvenile input (εNd(t) between ? 2.91 and ? 0.3, and TDM values between 1.09 and 1.1 Ga). This is different from the Early Paleozoic magmatism of western Argentina where crustal recycling took place without any involvement of mantle material. The Carboniferous magmatism is compatible with an extensional environment developed along the Terra Australis accretionary orogen as a result of tectonic switching processes. These rhyolites may be related to the coeval Mississippian A-type granites exposed to the east, in the Sierras Pampeanas, confirming the regional character of this magmatism.  相似文献   

20.
In France, the Devonian–Carboniferous Variscan orogeny developed at the expense of continental crust belonging to the northern margin of Gondwana. A Visean–Serpukhovian crustal melting has been recently documented in several massifs. However, in the Montagne Noire of the Variscan French Massif Central, which is the largest area involved in this partial melting episode, the age of migmatization was not clearly settled. Eleven U–Th–Pbtot. ages on monazite and three U–Pb ages on associated zircon are reported from migmatites (La Salvetat, Ourtigas), anatectic granitoids (Laouzas, Montalet) and post-migmatitic granites (Anglès, Vialais, Soulié) from the Montagne Noire Axial Zone are presented here for the first time. Migmatization and emplacement of anatectic granitoids took place around 333–326 Ma (Visean) and late granitoids emplaced around 325–318 Ma (Serpukhovian). Inherited zircons and monazite date the orthogneiss source rock of the Late Visean melts between 560 Ma and 480 Ma. In migmatites and anatectic granites, inherited crystals dominate the zircon populations. The migmatitization is the middle crust expression of a pervasive Visean crustal melting event also represented by the “Tufs anthracifères” volcanism in the northern Massif Central. This crustal melting is widespread in the French Variscan belt, though it is restricted to the upper plate of the collision belt. A mantle input appears as a likely mechanism to release the heat necessary to trigger the melting of the Variscan middle crust at a continental scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号