首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以青藏高原为研究对象,首先采用基于三次样条函数的去云算法对2001—2011年逐日MODIS积雪面积比例产品进行了去云处理,并对去云结果进行了精度验证。然后根据去云后的逐日无云MODIS积雪面积比例产品,提取了研究区近11年的积雪日数,并对积雪日数的时空分布特征进行了分析。结果表明:1.本文的去云算法能有效的获取云覆盖像元的积雪面积信息,总体平均绝对误差值为0.092。去云后MODIS积雪产品提取的积雪日数与地面观测值具有较高的一致性(87.03%),平均绝对误差3.8 d;2.青藏高原积雪日数的分布极不均匀,四周山区(特别是西部和南部山区)积雪分布广泛且积雪日数高,而高原腹地积雪日数低,年均稳定性积雪面积占27.24%;3.青藏高原积雪日数的年际波动较大,积雪日数在34.14%的地区呈减少的趋势,在24.75%的地区呈增加的趋势,其中显著减少和增加的地区分别为5.59%和3.9%。  相似文献   

2.
雪盖信息在生态研究、水资源评价管理以及灾害防治中有重要的作用,MODIS利用冰雪指数(NDSI)和阈值提供全球每日积雪产品,微波遥感传感器AMSR-E提供南北半球不受云影响的雪水当量数据。通过融合同一天不同时间过境的MODIS积雪产品MOD10A1和MYD10A1为MOYD,融合MOYD和AMSR-ESWE积雪当量产品产生MODAM,以祁连山区气象站观测雪深数据为"真值",检验了2010-2011年积雪季MODIS积雪产品和AMSR-E识别积雪的精度,结果表明:MOYD产品和MODAM使云量减少了15%和100%,积雪精度和总体精度分别达到了24%、59%和88%、80%,通过融合多时相和多传感器数据大大提高了积雪监测精度,此外对祁连山积雪时间分布和不确定进行了分析。  相似文献   

3.
基于多源数据的内蒙古中东部积雪厚度研究   总被引:1,自引:0,他引:1  
积雪作为气候系统中重要的环境影响因素受到了普遍的重视,特别是在高纬度、高海拔地区,积雪面积和积雪厚度是积雪研究的两个重要因子。利用2010年11月8日、14日和25日三天的MODIS L1B数据,根据在可见光波段,地表、云和雪在该波段的反射率都比较高的特点,计算得出的积雪覆盖面积空间分布图。积雪深度受降雪量、坡度、坡向等多因素的影响表现为不连续分布,单纯利用气象监测站点无法获得积雪厚度的空间连续分布,而遥感影像也受到局地特征的影响而精度不够。因此,首先基于经验公式,利用MODIS L1B数据计算了积雪覆盖面积,在此基础上,基于气象监测点的积雪深度数据和MODIS L1B波段的相关性,选择影像数据的最优通道,通过建立多波段的积雪深度回归模型,并且对积雪深度进行空间连续插值,通过将模拟的积雪深度与监测点插值结果进行对比,发现统计回归的方法有效的提高了积雪深度、覆盖度等雪情监测信息精度。  相似文献   

4.
青藏高原积雪不仅是气候变化的敏感指示器,而且对亚洲季风区乃至全球气候具有显著影响。利用2002-2014年MODIS积雪覆盖范围产品及ERA-Interim再分析资料,采用气候统计诊断方法探究了青藏高原冬季积雪的时空变化特征及其与北极涛动(AO)的关系,结果表明:(1)高原冬季积雪空间分布差异明显,高原西部和东南部多雪,中部和北部少雪,东部积雪年际变化大,西部多雪区积雪较为稳定。(2)高原冬季积雪EOF分解第一模态具有东—西反位相变化特征,当高原东部积雪偏多(少)时,西部积雪偏少(多)。(3)该模态与AO密切相关。AO正位相时,东亚大槽减弱,南支槽加深东移,西太平洋副高加强使得更多暖湿气流到达高原,有利于高原东部降雪,而高原西南侧阿拉伯海附近存在反气旋异常,使得阿拉伯海的水汽不易抬升进入高原西部,高原西部盛行干燥的下沉气流异常,造成少雪的环流背景,且地表温度偏高不利于积雪维持,从而导致高原西部积雪的减少;AO负位相时,东亚大槽增强使得冬季风加强,高原东部受来自西北的干冷气流控制,不利于降雪产生,高原西南侧出现气旋异常,促使来自阿拉伯海和孟加拉湾的暖湿气流输送至高原西部,与来自西伯利亚的冷空气相遇,营造多雪的环流背景。  相似文献   

5.
用EOS/MODIS资料反演积雪深度参量   总被引:4,自引:1,他引:4  
利用EOS/MODIS可见光、近红外及短红外多通道资料以及新疆地区积雪深度气象台站实测资料等,在考虑积雪性质包括积雪粒子相态、积雪年龄等的差异以及积雪区的下垫面条件包括地表粗糙度、土地覆盖类型等的不同的情况下进行积雪分类,在此基础上,建立EOS/MODIS积雪深度反演模型,实现深度在30 cm以内的积雪深度反演的主要原理、思路及方法,并对模型的反演结果进行了验证。结果表明,利用该模型对30 cm以内的积雪进行深度反演计算,其精度能达到80%以上。  相似文献   

6.
天山积雪初步研究   总被引:13,自引:3,他引:13  
本文依据气象、野外调查和部分文献资料写成,着重分析了天山最大积雪深度、积雪初、终期及其积雪期特征。研究表明,天山积雪存在明显地域差异:中天山和南天山南坡部分山区最大雪深超过100cm,甚至达到200或300cm,而东天山南坡盆地雪深仅15cm。中山带及其以下地区最大雪深出现在冬季始末,而高山带在暖季。林区雪深随海拔而增加,并在林线附近达到最大,然后急剧减小。天山中段北坡海拔440—3500m之间,每上升100m,积雪期延长80天;南坡小于此值。  相似文献   

7.
准噶尔盆地积雪储量的遥感反演及变化特征分析   总被引:2,自引:0,他引:2  
利用被动微波遥感SSM/I亮温数据反演的积雪深度,采用积雪密度经验算法,计算了准噶尔盆地1987-2008年逐日雪储量及其分布状况。结果表明:(1)准噶尔盆地年最大雪储量22 a平均为4.53×109m3,最大年份为1994/1995年冬季,雪储量达7.13×109m3,最小年份为1995/1996年冬季,雪储量为2.74×109m3。(2)准噶尔盆地冬季雪储量空间分布不均匀,雪储量较大的区域分布在阿尔泰山南麓和天山北麓,且由盆地边缘向中心逐渐减少,两个明显的低值区分别位于盆地西部克拉玛依地区附近和盆地东部北沙窝附近。(3)季节内变化特征表现为:11月上旬至2月中旬为雪储量缓慢累积的过程,3月上旬雪储量达到峰值,持续时间很短(约15 d),3月中旬至4月下旬雪储量迅速消退,季节内变化主要受降雪和气温年内分配的影响。(4)1987-2008年准噶尔盆地雪储量的年际变化较大,65%的区域呈现线性增加趋势,但不显著。(5)冬季降水量和气温是影响雪储量变化的主要因素,雪储量与冬季降水量呈显著正相关,与气温呈显著负相关关系。  相似文献   

8.
中国西部积雪变化特征   总被引:52,自引:3,他引:52  
李培基 《地理学报》1993,48(6):505-515
综合中国西部175个地面气象台站1957—1987年逐日积雪深度、密度和月积雪日数资料,1978年-1987年SMMR周积雪深度资料,1973—1987年NOAA周积雪面积资料,以及50余幅DMSP影像图,本文阐述中国西部积雪空间分布、季节变化及年际波动特征,并对中国西部积雪大尺度气候效应和青藏高原第四纪冰期问题作了初步讨论。  相似文献   

9.
积雪是影响气候变化的重要因子,准确、及时的获取积雪覆盖范围,进行动态变化监测意义重大。利用MODIS数据进行土库曼斯坦积雪监测,提取积雪信息的研究较少。利用MODIS L1B 500 m分辨率数据,通过几何校正、去云预处理,应用归一化差分积雪指数(NDSI)算法和综合阈值判别法,获取了土库曼斯坦2011年11月~2012年4月山区积雪覆盖范围和面积等数据信息,揭示了土库曼斯坦山区积雪发生的时空特征。土库曼斯坦南部的科佩特山区是该国降雪的核心地区,积雪面积均在1月达到最大值,随后积雪面积随温度的升高而减少。山区积雪面积、月均气温、月降雨量之间存在着显著的相关性,其相关系数分别为0.742 9和0.568 4。结果表明,在监测时段积雪面积随气温的降低、降雨量的减少而增加。  相似文献   

10.
着眼于我国草原防灾减灾以及国家开展重特大雪灾应急响应工作的极迫切现实需求,基于NASA MODIS数据,以天为监测(响应)时间单元,以旬为监测集成时段,对2008年春节大雪灾期间我国草原积雪状况实现了系统的遥感监测,获取了2007年10月至2008年3月期间中国北方9省区草原积雪发生范围及其面积等数据信息,揭示了监测期间我国草原积雪发生的时空特征。青藏高原与内蒙古为我国持续降雪的核心区域,其他地区降雪情况随时间出现一定的波动;除东北地区外,积雪面积均在1月下旬达到最大值;各省区草原积雪面积占草原总面积的比例随时间的变化总体持续增加。  相似文献   

11.
Because of similar reflective characteristics of snow and cloud, the weather status seriously affects snow monitoring using optical remote sensing data. Cloud amount analysis during 2010 to 2011 snow seasons shows that cloud cover is the major limitation for snow cover monitoring using MOD10A1 and MYD10A1. By use of MODIS daily snow cover products and AMSR-E snow water equivalent products (SWE), several cloud elimination methods were integrated to produce a new daily cloud free snow cover product, and information of snow depth from 85 climate stations in Tibetan Plateau area (TP) were used to validate the accuracy of the new composite snow cover product. The results indicate that snow classification accuracy of the new daily snow cover product reaches 91.7% when snow depth is over 3 cm. This suggests that the new daily snow cover mapping algorithm is suitable for monitoring snow cover dynamic changes in TP.  相似文献   

12.
In order to analyze the differences between the two snow cover data, the snow cover data of 884 meteorological stations in China from 1951 to 2005 are counted. The data include days of visual snow observation, snow depth, and snow cover durations, which vary according to different definitions of snow cover days. Two series of data, as defined by "snow depth" and by "weather observation," are investigated here. Our results show that there is no apparent difference between them in east China and the Xinjiang region, but in northeast China and the Tibetan Plateau the "weather observation" data vary by more than 10 days and the "snow depth" data vary by 0.4 cm. Especially in the Tibetan Plateau, there are at least 15 more days of "weather observation" snow in most areas (sometimes more than 30 days). There is an obvious difference in the snow cover data due to bimodal snowfall data in the Tibetan Plateau, which has peak snowfalls from September to October and from April to May. At those times the temperature is too high for snow cover formation and only a few days have trace snow cover. Also, the characteristics and changing trends of snow cover are analyzed here based on the snow cover data of nine weather stations in the northeast region of the Tibetan Plateau, by the Mann-Kendall test. The results show significantly fewer days of snow cover and shorter snow durations as defined by "snow depth" compared to that as defined by "weather observation." Mann-Kendall tests of both series of snow cover durations show an abrupt change in 1987.  相似文献   

13.
基于MODIS数据中国天山积雪面积时空变化特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
基于2011-2015年MOD10A2积雪产品和气象数据,通过几何校正、去云预处理,应用归一化差分积雪指数算法等获取中国境内天山山区积雪覆盖面积数据,分析了积雪面积的时空变化特征及与气温降水的关系。结果表明:(1)年内积雪面积呈单峰变化,9月开始积累,次年1月达峰值,3月气温回暖消融加速,至7月最小。春秋季波动较大但没有明显的增减趋势,夏季积雪面积最小,冬季最大且呈减小趋势。(2)2001-2015年积雪覆盖面积整体上呈减少趋势,积雪覆盖率最大值的波动比最小值的波动更加剧烈。(3)积雪覆盖率随着海拔升高而增大,海拔<1 500 m区域积雪覆盖率低于10%,海拔>4 500 m以上区域平均可达70%,为常年稳定积雪区。积雪覆盖率在西北坡最高,南坡最低。(4)年均气温升高是积雪覆盖面积减小的主因,年积雪覆盖面积变化与年降水量变化保持一致的下降趋势。  相似文献   

14.
利用Terra卫星和Aqua卫星提供的2002年9月1日~2017年5月31日每日积雪覆盖产品MOD10C1和MYD10C1,提取蒙古高原积雪日数、积雪面积、积雪初日及积雪终日信息,得到蒙古高原积雪特征分布和变化趋势,同时,结合蒙古高原108个地面气象观测站的气温资料,分析研究区积雪变化特征和气温的关系。结果表明:(1)蒙古高原平均积雪日数在60~90 d之间,积雪初日主要分布在315~335 d之间,积雪终日大多集中在31~61 d之间,蒙古高原东部地区积雪初日有明显的提前趋势,西南地区积雪终日有明显的提前趋势。(2)积雪面积在积雪季内呈 “单峰型”,1月份为积雪面积最大月,年均积雪面积呈微弱的下降趋势。(3)最大积雪覆盖面积与温度具有明显的相关性,稳定积雪覆盖区的临界温度大概介于-11~-8 ℃之间。(4)温度是影响积雪特征变化的重要因素。  相似文献   

15.
积雪是冰冻圈中较为活跃的因子,对气候环境变化敏感,其变化影响着全球气候和水文的变化。积雪覆盖日数(SCD)、降雪开始时间(SCOD)和融雪开始时间(SCMD)是影响地表物质和能量平衡的主要因素。使用MODIS无云积雪产品提取了叶尔羌河流域2002年7月-2018年6月逐日积雪覆盖率(SCP),基于像元计算了SCD、SCOD和SCMD,系统地分析了其空间分布与变化特征,并探讨了其变化的原因及积雪面积的异常变化与ENSO的联系。结果表明:(1)研究时段内,流域的积雪覆盖面积呈微弱减少趋势,与气温呈显著负相关,与降水呈显著正相关;2002-2018年,SCP随海拔的升高呈明显的线性增加趋势(R2=0.92、P<0.01));各海拔高度带最大SCP出现的月份大致随海拔的上升往后推迟,最小SCP出现月份无显著变化(集中在8月),海拔4000 m以下,春季的SCP小于冬季,海拔4000 m以上,春季的SCP大于冬季。(2)SCD、SCOD和SCMD有明显的海拔梯度,在流域内,从东北至西南,呈现出SCD增加,SCOD提前,SCMD推迟的特征;变化趋势上,流域91.9%的区域SCD表现为减少,65.6%的区域SCOD有往后推迟的趋势,77.4%的区域SCMD表现出提前的趋势。(3)2006、2008年和2017年积雪覆盖面积异常偏大,而在2010年则异常偏小,其原因可能是ENSO影响了积雪的变化。(4)以喀喇昆仑为主的高海拔地区,包括帕米尔高原东部的部分地区,其SCD、SCOD和SCMD分别表现出增加、提前和推迟的趋势,这种变化与其春秋温度的持续走低以及降水量的增加有关。  相似文献   

16.
利用1971-2015年锡林郭勒地区15个气象观测站近45 a的逐日积雪日数资料,采用滑动T检验、Mann-Kendall检验、小波分析和EOF方法对研究区的积雪日数时空变化特征进行分析。结果表明:研究期内积雪日数在1996年发生了一次由多到少的突变,且日数变化存在7 a的主周期和11 a、22 a的副周期。积雪月际变化呈单峰型的分布特征,多雪期主要集中在12~2月,少雪期分布在10月份和4月份;研究区空间分布差异性显著,总体呈东多西少、南多北少的分布格局,区内大部地区属于稳定积雪区。对积雪日数及其影响因子进行聚类分析,将研究区划分为4种类型,分别为降雪量偏少-积雪日数偏高区、降雪量-积雪日数一致偏高区、降雪量-积雪日数中值区、降雪量-积雪日数一致偏少区。该区有3种异常分布型:第一模态为全区一致偏多(少)型;第二模态为北多(少)南少(多)型;第三模态为中西部多(少),东南部少(多)型。  相似文献   

17.
Abstract

Snowfall in the Southern Appalachian Mountain region of the eastern US is characterized by much spatiotemporal variability. Annual snowfall totals vary by up to 75 cm, and variations in snowfall intensity can lead to large differences in the local snowfall distribution. Research has shown that the synoptic pattern associated with the snowfall strongly influences the regional-scale distribution of snow cover. However, topographic variability results in locally complex snow cover patterns that are not well understood or documented. In this study, we characterize the snow covered area (SCA) and fractional snow cover associated with different synoptic patterns in 14 individual sub-regions. We analyze 63 snow events using Moderate-resolution Imaging Spectroradiometer standard snow cover products to ascertain both qualitative and quantitative differences in snow cover across sub-regions. Among sub-regions, there is significant variation in the snow cover pattern from individual synoptic classes. Furthermore, the percent SCA follows the regional snowfall climatology, and sub-regions with the highest elevations and northerly latitudes exhibit the greatest variability. Results of the sub-regional analysis provide valuable guidance to forecasters by contributing a deeper understanding of local snow cover patterns and their relationship to synoptic-scale circulation features.  相似文献   

18.
The distribution of winter-spring snow cover over the Tibetan Plateau(TP) and its relationship with summer precipitation in the middle and lower reaches of Yangtze River Valley(MLYRV) during 2003–2013 have been investigated with the moderate-resolution imaging spectrometer(MODIS) Terra data(MOD10A2) and precipitation observations. Results show that snow cover percentage(SCP) remains approximately 20% in winter and spring then tails off to below 5% with warmer temperature and snow melt in summer. The lower and highest percentages present a declining tendency while the middle SCP exhibits an opposite variation. The maximum value appears from the middle of October to March and the minimum emerges from July to August. The annual and winter-spring SCPs present a decreasing tendency. Snow cover is mainly situated in the periphery of the plateau and mountainous regions, and less snow in the interior of the plateau, basin and valley areas in view of snow cover frequency(SCF) over the TP. Whatever annual or winter-spring snow cover, they all have remarkable declining tendency during 2003–2013, and annual snow cover presents a decreasing trend in the interior of the TP and increasing trend in the periphery of the TP. The multi-year averaged eight-day SCP is negatively related to mean precipitation in the MLYRV. Spring SCP is negatively related to summer precipitation while winter SCP is positively related to summer precipitation in most parts of the MLYRV. Hence, the influence of winter snow cover on precipitation is much more significant than that in spring on the basis of correlation analysis. The oscillation of SCF from southeast to northwest over the TP corresponds well to the beginning, development and cessation of the rain belt in eastern China.  相似文献   

19.
 HJ-1A、1B卫星具有较高的时间和空间分辨率,适合小流域尺度的积雪动态监测研究。本文基于HJ-1B数据,选取军塘湖流域,针对同时具有HJ-1B/CCD、IRS数据和只有HJ-1B/CCD数据两种情况展开雪盖提取方法研究。对于第一种情况,因研究区南端有大面积森林覆盖,会影响雪像元识别,选用[WTBX]NDSI[WTBZ]和[WTBX][STBX]S3[WTBZ][STBZ]两种雪盖指数,并利用[WTBX]NDVI[WTBZ]或TM影像反演的林区辅助判识积雪。结果表明:当有植被信息辅助分类时,两种雪盖指数均能较好提取出森林覆盖区的积雪,且提取结果基本一致,精度较高。对于第二种情况,因无法计算雪盖指数,采用光谱与纹理信息结合的SVM法提取雪盖,提取的面积和精度与上述方法相比略低,但很接近,说明在缺少[WTBX]IRS[WTBZ]数据的情况下,仅利用CCD仍可提取出较为准确的雪盖,满足实际应用需求。  相似文献   

20.
北半球积雪/海冰面积与温度相关性的差异分析   总被引:1,自引:1,他引:0  
任艳群  刘苏峡 《地理研究》2018,37(5):870-882
积雪和海冰的时空变化对区域以及全球的气候、水文具有重要影响。基于雪冰数据和NCEP再分析气温数据,利用MK检验、滞后分析等方法,分析了积雪、海冰的时空变化特征及其与温度的相关特征。结果表明:1979-2013年,北半球积雪区、北极圈的年均温度呈显著上升的趋势,而积雪面积和海冰面积呈显著下降的趋势。在大部分地区,积雪覆盖频率随着温度的上升呈显著减少的趋势,但在中国长江中下游、青藏高原等局部地区,积雪覆盖频率随着温度的上升呈显著增加趋势。在大部分的近陆地海域,海冰覆盖频率随着温度的上升呈显著下降趋势。超前时间1~2个月的温度与海冰面积的负相关性最高。超前1~4个月的温度与积雪面积的负相关性最高。温度对海冰的影响时间比对积雪的影响时间长1~2个月。温度变化对海冰和积雪的影响存在一致性,但积雪和海冰对温度的响应时间存在差异,具有空间变异性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号