首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Julius Feit 《Solar physics》1971,17(2):473-490
An analysis of solar flare data indicates that the graph of log(nt 3/(2–)) deviates late in the solar event from the straight line predicted for the infinite, unbounded interplanetary medium. It is shown by mathematical analysis, utilizing a model based on the radial diffusion coefficient D = Mr , with 1, that the deviation can be ascribed to the loss of flare particles through an external boundary at about 5–6 AU from the Sun. An inner region terminating at 5–6 AU, followed by an extensive region of increasingly less resistance to the diffusion of flare particles is also feasible and it is shown that measurements taken at the Earth cannot predict the extent of this outer region. The results are applicable to either the isotropic or highly anisotropic models. The constant diffusion model is shown to be inadequate since it requires a boundary 1.5 AU from the Sun. In view of the present and previous studies of solar flare data, it is asserted that the fundamental principle governing the diffusion of solar flare particles through interplanetary space is the radial diffusion coefficient mode of propagation.  相似文献   

2.
Thompson  William T.  Brekke  PÅl 《Solar physics》2000,195(1):45-74
The Coronal Diagnostic Spectrometer (CDS) aboard the Solar and Heliospheric Observatory (SOHO) carries out a regular program of measuring the full-disk irradiance using the Normal Incidence Spectrograph (NIS). The full-disk solar spectrum is returned in the wavelength bands 308–379 Å and 513–633 Å, with a spectral resolution between 0.3 and 0.6 Å. A recent modification to the CDS on-board software allows simultaneous moderate resolution monochromatic images to be made of the stronger lines in these wavelength ranges. We report on observations made 23 April 1998, 21 May 1998, and 22 June 1998. A total of 69 monochromatic full-Sun images are extracted from the spectral line data. For the first time, spectrally resolved images of the full Sun in Heii 303.8 Å and Sixi 303.3 Å are presented and compared. Velocity maps of the Sun in singly ionized helium are presented. Correlations of intensity to velocity over a wide range of transition region and coronal temperatures are shown. Lines from Hei to Fexiv show statistical red shifts of 1–7 km s–1 between active regions and quiet Sun areas. Velocity maps of Mgix andx are presented, showing strong upflow and downflow regions associated with active regions, but not correlated with the brightest emission. Changes in line width are also presented in Hei, with discussion of similar features in other lines of comparable temperature. Corrections which need to be applied to CDS/NIS data to extract meaningful velocities and line widths are presented and discussed. The identifications of the lines in the CDS spectrum are examined. The spatial and spectral variation of the background component of the CDS spectrum is examined.  相似文献   

3.
A two-stage model of the propagation of 1–50 MeV solar-flare cosmic rays is presented. The first stage consists of a thin spherical shell of radius r a near the Sun which feeds particles into interplanetary space (the second stage) where they propagate along the Archimedean mean interplanetary magnetic field under the influences of anisotropic diffusion, convection, and energy changes. To calculate the time dependence at a fixed point in space, account is taken of the corotation of flux tubes past the observer.It is shown that the well-known east-west effect of the time-to-maximum cannot be obtained if the injection from the first stage is impulsive and thus a time and longitude dependent release for the second stage is essential. This is achieved by treating the first stage as a thin, spherical, diffusing shell of radius r a with diffusion coefficient s, from which particles leak into interplanetary space at a rate determined by the leakage coefficient .With this model we are able to reproduce simultaneously four principal features of solar events observed at r = 1 AU: (i) the east-west effect, i.e. the time-to-maximum as a function of flare longitude; (ii) the three phases of the anisotropy vector variation; (iii) the time-to-convective-phase as a function of flare longitude; and (iv) the longitudinal distribution of the differential intensity. Our best estimates of the parameters of the near-Sun propagation are that 0.01 hr–1 s/r a 2 0.02 hr–1 and 1/15 hr–1 1/10 hr–1. For the interplanetary propagation we estimate /V - 1.2AU with , the effective cosmic-ray diffusion coefficient and V, the solar-wind speed.  相似文献   

4.
Characteristics of enhanced and low-amplitude cosmic-ray diurnal variation   总被引:1,自引:0,他引:1  
The occurrence of a large number of high- and low-amplitude cosmic-ray diurnal wave trains during the two solar cycles (20 and 21) over the years 1965–1990 has been examined as a function of solar activity. The high-amplitude days with the time of maximum in the 18:00 hr corotation direction do not indicate any significant correlation with solar activity. But, the low-amplitude days are inversely correlated with solar activity and the time of maximum shifts to earlier hours ( 15:00 hr direction). The slope of the power-specrum density roughly characterized by power spectral index n in the high-frequency range 3.5 x 10–5 Hz to 8.3 x 10–4 Hz (time scales of 20 min to 8 hr) is different for the two classes of events. A suggestion is made that the enhanced and low-amplitude cosmic-ray diurnal variations are produced by different types of interplanetary magnetic field distributions.  相似文献   

5.
A study is made of Lyman continuum observations of solar flares, using data obtained by the Harvard College Observatory EUV spectroheliometer on the Apollo Telescope Mount. We find that there are two main types of flare regions: an overall mean flare coincident with the H flare region, and transient Lyman continuum kernels which can be identified with the H and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet Sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density m 5/sx 10–6 g cm–2 in the quiet Sun to m 3/sx 10–4 g cm–2 in the mean flare, and to m 10–3g cm–2 in kernels. From these results we derive the amount of chromospheric material evaporated into the high temperature region, which is found to be - 1015g, in agreement with observations of X-ray emission measures. A comparison is made between kernel observations and the theoretical predictions made by model heating calculations, available in the literature; significant discrepancies are found between observation and current particle-heating models.  相似文献   

6.
A highly anisotropic packet of solar electron intensities was observed on 6 April 1971 with a sensitive electrostatic analyzer array on the Earth-orbiting satellite IMP-6. The anisotropies of intensities at electron energies of several keV were factors 10 favoring the expected direction of the interplanetary magnetic lines of force from the Sun. The directional, differential intensities of solar electrons were determined over the energy range 1–40 keV and peak intensities were 102 cm–2 s–1 sr–1 eV–1 at 2–6 keV. This anisotropic packet of solar electrons was detected at the sattelite for a period of 4200 s and was soon followed by isotropic intensities for a relatively prolonged period. This impulsive emission was associated with the onsets of an optical flare, soft X-ray emission and a radio noise storm at centimeter wavelengths on the western limb of the Sun. Simultaneous measurements of a type III radio noise burst at kilometric wavelengths with a plasma wave instrument on the same satellite showed that the onsets for detectable noise levels ranged from 500 s at 178 kHz to 2700 s at 31.1 kHz. The corresponding drift rate requires a speed of 0.15c for the exciting particles if the emission is at the electron plasma frequency. The corresponding electron energy of 6 keV is in excellent agreement with the above direct observations of the anisotropic electron packet. Further supporting evidence that several-keV solar electrons in the anisotropic packet are associated with the emission of type III radio noise beyond 50R is provided by their time-of-arrival at Earth and the relative durations of the radio noise and the solar electron packet. Electron intensities at E 45 keV and the isotropic intensities of lower-energy solar electrons are relatively uncorrelated with the measurements of type III radio noise at these low frequencies. The implications of these observations relative to those at higher frequencies, and heliocentric radial distances 50R , include apparent deceleration of the exciting electron beam with increasing heliocentric radial distance.Research supported in part by the National Aeronautics and Space Administration under contracts NAS5-11039 and NAS5-11074 and grant NGL16-001-002 and by the Office of Naval Research under contract N000-14-68-A-0196-0003.  相似文献   

7.
Egil Leer 《Solar physics》1974,35(2):467-480
A one-fluid model of the solar atmosphere is considered. The corona is heated by waves propagating out from the Sun, and profiles for temperature, flow speed and number density are obtained. For a relatively quiet Sun the inwards heat flux in the inner corona is constant in T 5–6 × 105 K and the temperature maximum is reached for r — R = 0.4 — 0.5 R where R is the solar radius. The number density in the inner corona decreases with an increasing particle flux.  相似文献   

8.
This paper presents an integrated analysis of GOES 6, 7 and neutron monitor observations of solar cosmic-ray event following the 1990 May 24 solar flare. We have used a model which includes particle injection at the Sun and at the interplanetary shock front and particle propagation through the interplanetary medium. The model does not attempt to simulate the physical processes of coronal transport and shock acceleration, therefore the injections at the Sun and at the shock are represented by source functions in the particle transport equation. By fitting anisotropy and angle-average intensity profiles of high-energy (>30 MeV) protons as derived from the model to the ones observed by neutron monitors and at GOES 6 and 7, we have determined the parameters of particle transport, the injection rate and spectrum at the source. We have made a direct fit of uncorrected GOES data with both primary and secondary proton channels taken into account.The 1990 May 24–26 energetic proton event had a double-peaked temporal structure at energies 100 MeV. The Moreton (shock) wave nearby the flare core was seen clearly before the first injection of accelerated particles into the interplanetary medium. Some (correlated with this shock) acceleration mechanism which operates in the solar corona at a height up to one solar radius is regarded as a source of the first (prompt) increase in GOES and neutron monitor counting rates. The proton injection spectrum during this increase is found to be hard (spectral index 1.6) at lower energies ( 30 MeV) with a rapid steepening above 300 MeV. Large values of the mean free path ( 1.8 AU for 1 GV protons in the vicinity of the Earth) led to a high anisotropy of arriving protons. The second (delayed) proton increase was presumably produced by acceleration/injection of particles by an interplanetary shock wave at height of 10 solar radii. Our analysis of the 1990 May 24–26 event is in favour of the general idea that a number of components of energetic particles may be produced while the flare process develops towards larger spatial/temporal scales.Visiting Associate from St. Petersburg State Technical University, St. Petersburg 195251, Russia.  相似文献   

9.
Eselevich  V.G.  Eselevich  M.V. 《Solar physics》2000,195(2):319-332
It is shown on the basis of analyzing the LASCO/SOHO data that the main quasi-stationary solar wind (SW), with a typical lifetime of up to 10 days, flows in the rays of the streamer belt. Depending on R, its velocity increases gradually from V3 km s–1 at R1.3 R to V170 km s–1 at R15 R . We have detected and investigated the movement of the leading edge of the main solar wind at the stage when it occupied the ray, i.e., at the formative stage of a quasi-stationary plasma flow in the ray. It is shown that the width of the leading edge of the main SW increases almost linearly with its distance from the Sun. It is further shown that the initial velocity of the inhomogeneities (`blobs') that travel in the streamer belt rays increases with the distance from the Sun at which they originate, and is approximately equal to the velocity of the main solar wind which carries them away. The characteristic width of the leading edge of the `blob' R , and remains almost unchanging as it moves away from the Sun. Estimates indicate that the main SW in the brightest rays of the streamer belt to within distances at least of order R3 R represents a flow of collisional magnetized plasma along a radial magnetic field.  相似文献   

10.
Type III radio bursts observed at kilometric wavelengths ( 0.35 MHz) by the OGO-5 spacecraft are compared with > 45 keV solar electron events observed near 1 AU by the IMP-5 and Explorer 35 spacecraft for the period March 1968–November 1969.Fifty-six distinct type III bursts extending to 0.35 MHz ( 50 R equivalent height above the photosphere) were observed above the threshold of the OGO-5 detector; all but two were associated with solar flares. Twenty-six of the bursts were followed 40 min later by > 45 keV solar electron events observed at 1 AU. All of these 26 bursts were identified with flares located west of W 09 solar longitude. Of the bursts not associated with electron events only three were identified with flares west of W 09, 18 were located east of W 09 and 7 occurred during times when electron events would be obscured by high background particle fluxes.Thus almost all type III bursts from the western half of the solar disk observed by OGO-5 above a detection flux density threshold of the order of 10–13 Wm–2 Hz–1 at 0.35 MHz are followed by > 45 keV electrons at 1 AU with a maximum flux of 10 cm–2 s–1 ster–1. If particle propagation effects are taken into account it is possible to account for lack of electron events with the type III bursts from flares east of the central meridian. We conclude that streams of 10–100 keV electrons are the exciting agent for type III bursts and that these same electrons escape into the interplanetary medium where they are observed at 1 AU. The total number of > 45 keV electrons emitted in association with a strong kilometer wavelength type III burst is estimated to be 5 × 1032.  相似文献   

11.
Hourly interplanetary plasma data measured by Helios-1 satellite over the period 10 December 1974–31 December 1977 are analysed. This analysis showed that the slow solar wind first increases its speed with heliocentric distance and then becomes more or less constant; the mean speed in the range 0.3 to 1.0 AU is 350 km s–1 for the slow solar plasma, while for the fast the mean value is between 650 and 700 km s–1.It seems, particularly in the neighbourhood of the earth, that except for the two dominated types of solar wind (fast and slow) an additional (intermediate) appears at 450 km s–1.During the phase of enhanced solar activity (11-yr solar cycle) the slow solar wind only is present, while at solar minimum all three types of the solar wind are equally represented.The dependence of the proton temperature on the solar wind speed, in the general solar wind, is the same irrespectively of the phase of solar activity. But, the same dependence is stronger during the compression at the leading edge than during the expansion at the trailing edge of a solar wind stream.  相似文献   

12.
The 1968–2000 data on the mean magnetic field (MMF, longitudinal component) of the Sun are analysed to study long-time trends of the Sun's magnetic field and to check MMF calibration. It is found that, within the error limits, the mean intensity of photospheric magnetic field (the MMF strength, |H|), did not change over the last 33 years. It clearly shows, however, the presence of an 11-year periodicity caused by the solar activity cycle. Time variations of |H| correlate well with those of the radial component, |B r|, of the interplanetary magnetic field (IMF). This correlation (r=0.69) appears to be significantly higher than that between |B r| and the results of a potential source-surface extrapolation, to the Earth's orbit, of synoptic magnetic charts of the photosphere (using the so-called `saturation' factor –1 for magnetograph measurements performed in the line Fei 525.0 nm; Wang and Sheeley, 1995). It seems therefore that the true source surface of IMF is the `quiet' photosphere – background fields and coronal holes, like those for MMF. The average `effective' magnetic strength of the photospheric field is determined to be about 1.9 G. It is also shown that there is an approximate linear relation between |B r| and MMF intensity |H| (in gauss)|B r|(H 0)min×(1+C|H|)where =1.5×10–5 normalizes the photospheric field strength to 1 AU distance from the Sun, (H 0)min=1.2 G is some minimal `effective' intensity of photospheric background fields and C=1.3 G–1 an empirical constant. It is noted that good correlation between time variations of |H| and |B r| makes suspicious a correction of the photospheric magnetic fields with the use of saturation factor –1.  相似文献   

13.
The nature and evolution of north-south asymmetry in the heliospheric current sheet (HCS) has been investigated using solar and interplanetary magnetic field (IMF) observations for the past few solar cycles. The mean heliographic latitude of the HCS (averaged over the solar longitude) a 0 is found to be non-zero during many solar rotations indicating that the large-scale solar magnetic field is more ordered in a system where the origin is shifted away from the centre of the Sun. We have shown that the asymmetry in HCS manifests in different forms depending on the transition heliographic latitude of the reversal of dominant polarity of the IMF ( T) and the difference in the maximum latitudinal extension of the HCS in the two solar hemispheres (). The classification of the observed asymmetry during 1971–1985 and its effect on IMF observations near Earth has been studied. We have also inferred the sign of T during 1947–1971 using inferred IMF polarity data. The observed sign reversals of T suggest the importance of periodicities less than the solar cycle period to be associated with the evolution of asymmetry in HCS. Asymmetry in sunspot activity about the solar equator does not seem to relate consistently well with the asymmetry in HCS about the heliographic equator.  相似文献   

14.
A numerical simulation of energetic particle motion in the interplanetary medium is carried out using HEOS-2 magnetometer data in order to computeD(), the pitch angle diffusion coefficient, where is cosine of pitch angle defined with respect to the local field. WhileD() exceeds that given by quasi-linear theory near 90° pitch angle, it is significantly less at higher values of , leading to a parallel transport coefficient in good accord with that given by experimental studies of solar proton propagation. In particular, =0.031 AU at a particle magnetic rigidity of 455 MV, while experimental results range from 0.05 to 0.07 AU (+100%, –50%) in this rigidity region. Furthermore, observed approximately -dependent solar proton pitch angle distributions are consistent with the computed findingD()/(1 – 2)2 ~ constant.The validity of various analytical corrections to quasi-linear theory as 0 are also investigated numerically.  相似文献   

15.
Bewsher  D.  Parnell  C.E.  Pike  C.D.  Harrison  R.A. 《Solar physics》2003,215(2):217-237
The relative Doppler and non-thermal velocities of quiet-Sun and active-region blinkers identified in Ov with CDS are calculated. Relative velocities for the corresponding chromospheric plasma below are also determined using the Hei line. Ov blinkers and the chromosphere directly below, have a preference to be more red-shifted than the normal transition region and chromospheric plasma. The ranges of these enhanced velocities, however, are no larger than the typical spread of Doppler velocities in these regions. The anticipated ranges of Doppler velocities of blinkers are 10–15 km s–1 in the quiet Sun (10–20 km s–1 in active regions) for Hei and 25–30 km s–1 in the quiet Sun (20–40 km s–1 in active regions) for Ov. Blinkers and the chromosphere below also have preferentially larger non-thermal velocities than the typical background chromosphere and transition region. Again the increase in magnitude of these non-thermal velocities is no greater than the typical ranges of non-thermal velocities. The ranges of non-thermal velocities of blinkers in both the quiet Sun and active regions are estimated to be 15–25 km s–1 in Hei and 30–45 km s–1 in Ov. There are more blinkers with larger Doppler and non-thermal velocities than would be expected in the whole of the chromosphere and transition region. The recently suggested mechanisms for blinkers are revisited and discussed further in light of the new results.  相似文献   

16.
Low-frequency gravitational radiation, with wavelengths reaching or exceeding interplanetary distances, and with a mean energy density of the order of the critical cosmological density c , generates a frequency-shift of order/10–15 h 0(1/108km)(/ c )1/2 in electromagnetic signals transponded by interplanetary spacecraft at a distancel from the Earth.  相似文献   

17.
On the basis of empirical (D)-dependency at the frequency of 5 GHz constructed using 15 planetary nebulae with the independently measured distances (10–171×10–20 W m–2 Hz–1 ster–1), we evaluated distances of 335 objects. Independent evidence of the correctness of the accepted scale are given. Then(D)-dependency is constructed and it is shown that atD<0.08 pc the mean electron density is higher than the one determined by the Seaton method. We showed that the filling factor diminishes with the increase of the PN diameter (1 atD0.08 pc and 0.2 atD0.4 pc). the ionized mass of 33 PNs is determined. With the diameter increase the ionized mass grows and atD0.4 pc reaches the valueM0.07M . We used the new distance scale when investigating the space distribution of PNs. The mean scale height =130±15 pc and the mean gradient of the change of surface densitym=0.37, which allowed us to estimate the total number of nebulae in the GalaxyN4×104. We divided the PNs according to their velocities (withV LSR>35 km s–1 andV LSR<35 km s–1) and permitted us to confirm that the PN belong to different sub-systems of the Galaxy. The estimated local formation rate of PNs [=(4.6±2.2)×10–12 pc–3 yr–1] is a little higher than the one of the white dwarfs. That can be explained by a large number of PNs having binary cores, which used in our sample. The statistical estimation of PN expansion velocity showed thatV ex increases from 5–7 km s–1 (atD0.03 pc) to 40–50 km s–1 (atD0.8 pc).  相似文献   

18.
The Auguste experiment onboard the Phobos spacecraft was devoted to solar occultation spectroscopy of the Martian atmosphere in the ultraviolet through infrared wavelength region. Despite the short duration of the space mission and problems associated largely with a fault in the solar pointing system, data have been obtained on the chemical composition and aerosol content in the atmosphere of Mars at sunset early in the summer at equatorial latitudes (in the northern hemisphere). This paper presents a somewhat detailed review of the experiment performed, the data obtained, and their interpretation, and compares these data with new results. Ozone traces were detected at altitudes of 40–60 km, and, in one case, an ozone profile was obtained. Nine profiles of water vapor content at altitudes between 12 and 50 km were obtained from absorption data in the 1.87-m band. At altitudes of 23–25 km, the mean H2O concentration profile falls steeply to the value of 3 ppm, but at lower altitudes the relative H2O content is approximately constant (130 ppm). The overall content of water vapor is estimated as 8.3+2.5 -1.5 m of settled water. The temperature profile for the saturated atmosphere yields a cooling rate of 2 ± 1 K/km at altitudes from 25 to 35 km. The atmospheric extinction profiles were measured at altitudes from 10 to 50 km at the wavelengths 1.9 and 3.7 m. The atmosphere is transparent up to 25–33 km; below this level radiation is attenuated by dust; it is also possible that a layer of water ice clouds is present at altitudes of 20–25 km. High-altitude transparent ( 0.03) clouds consisting supposedly of water ice were observed in 5 of 38 cases at altitudes z 50 km. The optical depth 0 of the atmosphere was estimated to be 0.2 ± 0.1, and constraints on the form of the size distribution of dust particles were established. Spectral features in the 3.7 m range have been previously attributed to formaldehyde; its content is substantially higher than the limits deduced from new ground-based observations. The spectrum in the 3.7 m range is discussed and other unsettled problems are pointed out.  相似文献   

19.
A. Sauval 《Solar physics》1968,3(1):89-105
In order to obtain a better agreement between observed and computed values of the solar intensity, an improved temperature distribution is deduced for the range 0.02<0< 10. The intensity observations here considered refer to the wavelength region between 1980 and 129 500, and the center-limb variations generally go down to cos = 0.1. The improved model, given in Figure 4 and Table II, differs rather little from the Utrecht 1964 model, used here as a reference.It appears necessary to introduce an empirical correction function to be applied to the continuous absorption coefficient. This function was derived for the spectral region between 2000 and 130000 Å; it is shown in Figure 5.Furthermore, an extension of the model (1.10–7<0< 2.10–2) is deduced (see Table III and Figure 8), which reasonably well represents the observations of the ultraviolet solar flux ( 900–1700 Å).  相似文献   

20.
This paper deals with the observed data on the solar S-component sources at millimetre wavelengths. The observations were made in 1968 and 1969 using the 22-m radio telescope of the Crimean Astrophysical Observatory at six wavelengths: 2, 4, 6, 8, 13 and 17 mm. The enhanced intensity of the solar active region in comparison with the quiet Sun level varies proportionally to –2 if the wavelength is within the range of 2 ÷ 6 mm. In the wavelength band of 6 ÷ 17 mm almost flat spectra of the solar S-component sources is observed. Assuming the bremsstrahlung mechanism of the radio emission for the quiet Sun and the solar active regions an attempt has been made to treat the above presented data. It appears that the most probable explanation of the 2 ÷ 6 mm spectrum is that the S-component sources are opaque. In the 6 ÷ 17 mm wavelength band there are two possibilities: the active region may be either transparent or opaque. But in the last case the source brightness temperature must be proportional to 2. Some differences in the spectra of the sources, identified with flocculi and with bipolar sunspot groups, were mentioned. The cold regions (as compared with the quiet Sun) were observed up to = 2 mm and identified with the filaments. However, its visibility falls when the wavelength decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号