首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Summary During the Hartheim Experiment (HartX) 1992 conducted in the upper Rhine Valley, Germany, three different methods were used to measure sap flow in Scots pine trees via heating of water transported in the xylem: (1) constant heating applied radially in the sapwood (Granier-system-G), (2) constant heating of a stem segment (ermák-system-C), and (3) regulated variable heating of a stem segment that locally maintains a constant temperature gradient in the trunk (ermák/Schulze-system-CS). While the constant heating methods utilize changes in the induced temperature gradient to quantify sap flux, the CS-system estimates water flow from the variable power requirement to maintain a 2 or 3 degree Kelvin temperature gradient over a short distance between inserted electrodes and reference point. The C- and CS-systems assume that all transported water is encompassed and equally heated by the electrodes. In this case, flux rate is determined from temperature difference or energy input and the heat capacity of water. Active sapwood area need not be determined exactly. In contrast, the G-system requires an empirical calibration of the sensors that allows conversion of temperature difference into sap flow density. Estimates of sapwood area are used to calculate the total flux. All three methods assume that the natural fluctuation in temperature of the trunk near the point of insertion of heating and sensing elements is the same as that where reference thermocouples are inserted.Using all three systems, 24 trees were simultaneously monitored during the HartX campaign. Tree size within the stand ranged between 18 and 61 cm circumference at breast height, while sample trees ranged between 24 and 55 cm circumference. The smallest trees could only be measured by utilizing the G-system. Sap flow rates of individual trees measured at breast height increased rapidly in the morning along with increases in irradiance and vapor pressure deficit (D), decreased slowly during the course of the afternoon with continued increase inD, and decreased more slowly during the night.Ignoring potential effects introduced by the different methods, maximum flow rates of individual trees ranged between 0.5 and 2.5 kg H2O h–1 tree–1 or 0.3 and 0.6 mm h–1 related to projected crown area of trees and daily sums of sap flow for individual trees varied between 4.4 and 24 kg H2O tree–1 d–1 or 1.1 and 6.0 mm d–1. Maximum sap flow rates per sapwood area of trees varied least for the G-system (11–17 g cm–2 h–1) and was of similar magnitude as the C- (8–21 g cm–2 h–1) and CS-system (4–14 g cm–2 h–1).Regressions of total tree conductance (g t ) derived from sap flow estimates demonstrated the same linear increase of conductance with increasing irradiance, however decrease of conductance with increasingD under non-limiting light conditions was different for the three systems with strongest reduction ofg t measured with the CS-system followed by the C- and G-system. This led to different estimates of daily sap flow rates especially during the second part of the measurement period.Variation in sap flow rates is explained on the basis of variation in leaf area index of individual trees, heterogeneity in soil conditions, and methodological differences in sap flow measurements. Despite the highly uniform plantation forest at the scale of hectares, the heterogeneity in tree size and soil depth at the scale of square meters still make it difficult to appropriately and efficiently select sample trees and to scale-up water flux from individual trees to the stand level.With 5 Figures  相似文献   

2.
Summary In May 1992 during the interdisciplinary measurement campaign HartX (Hartheim eXperiment), several independent estimates of stand water vapor flux were compared at a 12-m high Scots pine (Pinus silvestris) plantation on a flat fluvial terrace of the Rhine close to Freiburg, Germany. Weather during the HartX period was characterized by ten consecutive clear days with exceptionally high input of available energy for this time of year and with a slowly shifting diurnal pattern in atmospheric variables like vapor pressure deficit. Methods utilized to quantify components of stand water flux included porometry measurements on understory graminoid leaves and on pine needles and three different techniques for determining individual tree xylem sap flow. Micrometeorological methods included eddy covariance and eddy covariance energy balance techniques with six independent systems on two towers separated by 40 m. Additionally, Bowen ratio energy balance estimates of water flux were conducted and measurements of the gradients in water vapor, CO2, and trace gases within and above the stand were carried out with an additional, portable 30 m high telescoping mast.Biologically-based estimates of overstory transpiration were obtained by up-scaling tree sap flow rates to stand level via cumulative sapwood area. Tree transpiration contributed between 2.2 and 2.6 mm/day to ET for a tree leaf area index (LAI) of 2.8. The pine stand had an understory dominated by sedge and grass species with overall average LAI of 1.5. Mechanistic canopy gas exchange models that quantify both water vapor and CO2 exchange were applied to both understory and tree needle ecosystem compartments. Thus, the transpiration by graminoid species was estimated at approximately 20% of total stand ET. The modelled estimates for understory contribution to stand water flux compared well with micrometeorologically-based determinations. Maximum carbon gain was estimated from the canopy models at approximately 425 mmol/(m2day) for the tree needles and at 100 mmol/(m2day) for the understory. Carbon gain was suggested by the modelling analysis to remain relatively constant during the HartX period, while water use efficiency in carbon fixation increased with decreasing vapor pressure deficit. Biologically- and micrometeorologically-based estimates of stand water flux showed good general agreement with variation of up to 20% that reflects both errors due to the inherent assumptions associated with different methods as well as natural spatial variability in fluxes. The various methods support a reliable estimate of average ET from this homogeneous canopy during HartX of about 2.6 mm/day (a maximum of about 3.1 mm/day) with an insignificant decreasing trend in correlation with decreasing vapor pressure deficit and possibly soil moisture.Findings during HartX were embedded in local scale heterogeneity with greater roughness over the forest and much higher ET over the surrounding agricultural fields which results in weak but clearly existant circulation patterns. A variety of measurements were continued after the HartX campaign. They allow us to extend our findings for six months with changing environmental conditions, including shortage of soil moisture. Hydrological estimates of soil water extractions and micrometeorological estimates of ET by the one-propeller eddy covariance (OPEC) system were in very good agreement, supporting the use of this robust eddy covariance energy balance technique for long-term monitoring.With 5 Figures  相似文献   

3.
Summary During the Hartheim experiment (HartX) 1992, conducted in the Upper Rhine Valley, Germany, we estimated water vapor flux from the understory by several methods as reported in Wedler et al. (this issue). We also examined the photosynthetic gas exchange of the dominant understory speciesBrachypodium pinnatum, Carex alba, andCarex flacca at the leaf level with an CO2/H2O porometer. A mechanisticallybased leaf gas exchange model was parameterized for these understory species and validated via the measured diurnal courses of carbon dioxide exchange. Leaf CO2 gas exchange was scaled-up to patch- and then to stand-level utilizing the leaf gas exchange model as a component of the canopy light interception/energy balance model GAS-FLUX, and by further considering variation in vegetation patch-type distribution, patch-specific spatial structure, patch-type leaf area index, and microclimate beneath the tree canopy.At patch-level,C. alba exhibited the lowest net CO2 uptake of ca. 75 mmol m–2 d–1 due to a low leaf-level photosynthetic capacity, whereas net CO2 fixation ofB. pinnatum- andC. flacca-patches was approx. 178 and 184 mmol m–2 d–1, respectively. Highest CO2 uptake was estimated for mixed patches whereB. pinnatum grew together with the sedge speciesC. alba orC. flacca. Scaling-up of leaf gas exchange to stand level resulted in an estimated average rate of total CO2 fixation by the graminoid understory patches of approximately 93 mmol m–2 d–1 during the HartX period. The conservative gas exchange behavior ofC. alba at Hartheim and its apparent success in space capture seems to affect overall functioning of this pine forest ecosystem by limiting understory CO2 uptake. The CO2 uptake by the understory is approximately 20% of stand total CO2 uptake. CO2 uptake fluxes mirror the relative differences in water loss from the understory and crown layer during the HartX period. Comparative measurements indicate that understory vegetation in spruce and pine forests is not greatly different from that of other low-statured natural ecosystems such as tundra or marshes under high light conditions, although CO2 capture by the understory at Hartheim is at the low extreme of the estimates, apparently due to the success ofC. alba. With 6 Figures  相似文献   

4.
Summary  Tree canopy water use and foliage net CO2 uptake (NPP) were simulated for a 31-year-old Pinus sylvestris (Scots pine) plantation near Hartheim, in the Upper Rhine Valley, Germany with a mechanistically-based, three-dimensional stand gas-exchange model (STANDFLUX) for a ten-day period during spring 1992. STANDFLUX was formulated to include the effects of penumbra caused by the fine structure of the needles on light distribution within crowns. Good correspondence was found between simulated rates of tree canopy water use when including penumbral effects and eddy-covariance ET and sap flow transpiration measurements. Water use was 8–13% lower and NPP was 10–17% lower in simulations for the ten-day period when penumbral effects were not included. Simulated water use and CO2 uptake were compared with similar outputs from a simplified layer canopy model (including or not including penumbra) which assumed horizontal homogeneity in canopy structure (GAS FLUX). Our results for the Pinus sylvestris stand indicate that penumbral effects were more important than the degree of model simplification with respect to foliage distribution (three-dimensional vs. layered structure) for estimating stand-level fluxes for these pines. Simulated maximum hourly NPP was similar to rates measured for other Pinus sylvestris stands using other methods. Predicted decreases in tree transpiration due to the modelled response of needle gas exchange to increasing vapour-pressure deficit agreed with measured changes in transpiration, and suggested that stomatal response may have been more important than decreasing soil water availability in controlling water flux to the atmosphere during this period. The overall results of the study demonstrate that current approaches in canopy modelling that separate light into sun versus shade intensities can be effective, but must be applied with caution when attempting to predict long-term water and carbon balances of forests. Received May 1, 1999 Revised November 9, 2000  相似文献   

5.
Water loss by evapotranspiration (ET) is a principal component of the hydrologic cycle in wetlands. Using micrometeorological techniques, we measured ET from a Sphagnum-dominated open fen in northcentral Minnesota (U.S.A.) from May to October in 1991 and 1992. The daily ET rate ranged from 0.2–4.8 mm d-1 with a growing season average of 3.0 mm d-1. The evapotranspiration rate of the fen was near the potential rate of open water evaporation when the vascular plants were actively growing and the water table level was within or above the rooting zone. Using a dual-source modification of the Penman-Monteith equation (Massman, 1992), we partitioned the measured ET into evaporation from the non-vascular Sphagnum surfaces and transpiration from vascular plants. The analysis indicated that about two thirds of the water vapour flux to the atmosphere was from evaporation when the Sphagnum surface was wet. Such an evaporative flux was expected because of vertical distribution of vascular plant leaves which had a small leaf area index (0.4–0.7) and intercepted only about 30% of net radiation (R n ) during the day. The remainder of R n was thus available for evaporation from Sphagnum. Evaporation significantly decreased as the Sphagnum surface dried out. When the water table was within the rooting zone (0–0.4 m), the vascular plants absorbed Sphagnum-generated sensible heat, which amounted up to one third of their transpiration energy flux. Under these conditions, the total water vapour flux remained near its potential rate owing to the enhanced transpiration from vascular plants. A drop in water table of 0.15–0.2 m below the hollow bottom during vascular plant senescence resulted in ET rates lower than the potential rates by 5–65%.  相似文献   

6.
Summary During the Hartheim Experiment (HartX) 1992 conducted in the Upper Rhine Valley, Germany, we estimated water vapor flux from the understory and the forest floor by several methods. At the vegetation patch level, direct estimates were made with small weighing lysimeters, and water loss was scaled-up to the stand level based on vegetation patchtype distribution. At the leaf level, transpiration flux was determined with a CO2/H2O porometer for the dominant understory plant species,Brachypodium pinnatum, Carex alba, andCarex flacca. Measured leaf transpiration was scaled-up to patch level with a canopy light interception and leaf gas exchange model, and then to stand level as in the case of lysimeter data, but with further consideration of patchtype leaf area index (LAI). On two days, total understory latent heat flux was estimated by eddy correlation methods below the tree canopy.The understory vegetation was subdivided into five major patch-types which covered 62% of the ground area and resulted in a cumulative LAI of approx. 1.54 when averaged over total stand ground area and compared to the average tree canopy LAI of 2.8. The remaining 38% of ground area was unvegetated bare soil and/or covered by moss (mainly byScleropodium purum) or litter. The evapotranspiration from the understory and unvegetated areas equaled approx. 20% of total forest stand transpiration during the HartX period. The understory vegetation transpired about 0.4 mm d–1 (13%) estimated over the period of May 13 to 21, whereas evaporation from moss and soil patches amounted 0.23 mm d–1 (7.0%). On dry, sunny days, total water vapor flux below the tree canopy exceeded 0.66 mm d–1. Using the transpiration rates derived from the GAS-FLUX model together with estimates of evaporation from moss and soil areas and a modified application of the Penman-Monteith equation, the average daily maximum conductance of the understory and the forest floor was 1.7 mm s–1 as compared to 5.5 mm s–1 for the tree canopy.With 6 Figures  相似文献   

7.
A model is developed to simulate the potential temperature and the height of the mixed layer under advection conditions. It includes analytic expressions for the effects of mixed-layer conditions upwind of the interface between two different surfaces on the development of the mixed layer downwind from the interface. Model performance is evaluated against tethersonde data obtained on two summer days during sea breeze flow in Vancouver, Canada. It is found that the mixed-layer height and temperature over the ocean has a small but noticeable effect on the development of the mixed layer observed 10 km inland from the coast. For these two clear days, the subsidence velocity at the inversion base capping the mixed layer is estimated to be about 30 mm s–1 from late morning to late afternoon. When the effects of subsidence are included in the model, the mixed-layer height is considerably underpredicted, while the prediction for the mean potential temperature in the mixed layer is considerably improved. Good predictions for both height and temperature can be obtained when values for the heat entrainment ratio,c, 0.44 and 0.68 for these two days respectively for the period from 1000 to 1300 LAT, were used. These values are estimated using an equation including the additional effects on heat entrainment due to the mechanical mixing caused by wind shear at the top of the mixed layer and surface friction. The contribution of wind shear to entrainment was equal to, or greater than, that from buoyant convection resulting from the surface heat flux. Strong wind shear occurred near the top of the mixed layer between the lower level inland flow and the return flow aloft in the sea breeze circulation.Symbols c entrainment parameter for sensible heat - c p specific heat of air at constant pressure, 1010 J kg–1 K–1 - d 1 the thickness of velocity shear at the mixed-layer top, m - Q H surface sensible heat flux, W m–2 - u m mean mixed-layer wind speed, m s–1 - u * friction velocity at the surface, m s–1 - w subsidence velocity, m s–1 - W subsidence warming,oC s–1 - w e entrainment velocity, m s–1 - w * convection velocity in the mixed layer, m s–1 - x downwind horizontal distance from the water-land interface, m - y dummy variable forx, m - Z height above the surface, m - Z i height of capping inversion, m - Z m mixed-layer depth, i.e.,Z i–Zs, m - Z s height of the surface layer, m - lapse rate of potential temperature aboveZ i, K m–1 - potential temperature step atZ i, K - u h velocity step change at the mixed-layer top - m mean mixed-layer potential temperature, K  相似文献   

8.
A laboratory study of scalar diffusion in the convective boundary layer has found results that are consistent with a 1999 large-eddy simulation (LES) study by Jonker, Duynkerke and Cuijpers. For bottom-up and top-down scalars (introduced as ‘infinite’ area sources of passive tracer at the surface and inversion, respectively) the dominant length scale was found to be much larger than the length scale for density fluctuations, the latter being equal to the boundary-layer depth h. The variance of the normalized passive scalar grew continuously with time and its magnitude was about 3–5 times larger for the top-down case than for the bottom-up case. The vertical profiles of the normalized passive scalar variance were found to be approximately constant through the convective boundary layer (CBL) with a value of about 3–8c*2 for bottom-up and 10–50c*2 for top-down diffusion. Finally, there was some evidence of a minimum in the variance and dominant length scale for scalar flux ratios (top-down to bottom-up flux) close to −0.5. All these convection tank results confirm the LES results and support the hypothesis that there is a distinct difference in behaviour between the dynamic and passive variables in the CBL.  相似文献   

9.
We present turbulence spectra and cospectra derived from long-term eddy-covariancemeasurements (nearly 40,000 hourly data over three to four years) and the transferfunctions of closed-path infrared gas analyzers over two mixed hardwood forests inthe mid-western U.S.A. The measurement heights ranged from 1.3 to 2.1 times themean tree height, and peak vegetation area index (VAI) was 3.5 to 4.7; the topographyat both sites deviates from ideal flat terrain. The analysis follows the approach ofKaimal et al. (Quart. J. Roy. Meteorol. Soc. 98, 563–589, 1972) whose results were based upon 15 hours of measurements atthree heights in the Kansas experiment over flatter and smoother terrain. Both thespectral and cospectral constants and stability functions for normalizing and collapsingspectra and cospectra in the inertial subrange were found to be different from those ofKaimal et al. In unstable conditions, we found that an appropriate stabilityfunction for the non-dimensional dissipation of turbulent kinetic energy is of the form () = (1 - b-)-1/4 - c-, where representsthe non-dimensional stability parameter. In stable conditions, a non-linear functionGxy() = 1 + bxyc xy (cxy < 1) was found to benecessary to collapse cospectra in the inertial subrange. The empirical cospectralmodels of Kaimal et al. were modified to fit the somewhat more (neutraland unstable) or less (stable) sharply peaked scalar cospectra observed over forestsusing the appropriate cospectral constants and non-linear stability functions. Theempirical coefficients in the stability functions and in the cospectral models varywith measurement height and seasonal changes in VAI. The seasonal differencesare generally larger at the Morgan Monroe State Forest site (greater peak VAI) andcloser to the canopy.The characteristics of transfer functions of the closed-path infrared gas analysersthrough long-tubes for CO2 and water vapour fluxes were studied empirically. This was done by fitting the ratio between normalized cospectra of CO2 or watervapour fluxes and those of sensible heat to the transfer function of a first-order sensor.The characteristic time constant for CO2 is much smaller than that for water vapour. The time constant for water vapour increases greatly with aging tubes. Three methods were used to estimate the flux attenuations and corrections; from June through August, the attenuations of CO2 fluxes are about 3–4% during the daytime and 6–10% at night on average. For the daytime latent heat flux (QE), the attenuations are foundto vary from less than 10% for newer tubes to over 20% for aged tubes. Correctionsto QE led to increases in the ratio (QH + QE)/(Q* - QG) by about 0.05 to0.19 (QH is sensible heat flux, Q* is net radiation and QG is soil heat flux),and thus are expected to have an important impact on the assessment of energy balanceclosure.  相似文献   

10.
Summary Vertical profiles of H2O, CO2, O3, NO and NO2 were measured during the Hartheim Experiment (HartX) to develop and calibrate a multi-layer resistance model to estimate deposition and emission of the cited gaseous species. The meteorological and gas concentration data were obtained with a 30 m high telescopic mast with 7 gas inlets located at 5 m intervals and meteorological sensors at 5, 15 and 30 m above ground; a complete gas profile was obtained every 9 min 20 s. Measured profiles were influenced by several exchange processes, namely evapotranspiration, dewfall, assimilation of CO2 in the tree crowns, soil respiration, deposition of NO2 and O3 to the soil and advection of NOx from the nearby highway. Surprisingly, no decrease in O3 concentration was observed in the crown layer during daytime, probably due to the relatively low density of foliage elements and strong turbulent mixing.The advantage of measuring in-canopy profiles is that turbulent exchange coefficients need not be estimated as a prerequisite to obtaining vertical flux estimates. In recent years, flux-gradient relationships in canopies have been subject to many criticisms. If fluxes are calculated at several heights considering only the transfers between the turbulent air and the interacting surfaces at a certain height, and those fluxes are then integrated vertically in a subsequent step, then exchange estimates (deposition or emission) can be obtained independent of turbulent exchange conditions.Typical estimated deposition velocities calculated for a 3-day period are between 4 and 10 mm/s for NO2 and about 4–9 mm/s for O3 (day and night values respectively). This leads to deposition rates of about 20–40 ng N/m2s for NO2 and about 30–40 mg O3/m2 deposited daily under the conditions encountered during HartX. Sensitivity tests done with the best available and most realistic values for model parametrization have shown that sensitivity is large with respect to the soil and cuticula resistances as well as for gas-phase ozone destruction and that more research is required to describe the effectiveness of cuticula and soil in modifying sink characteristics for NO2 and O3.With 12 Figures  相似文献   

11.
The vertical turbulent fluxes have been determined during the Atlantic Trade Wind Experiment (ATEX) both by direct and profile methods. The drag coefficient obtained from direct measurements was c D = 1.39 × 10–3. A distortion of the wind profile due to wave action could be demonstrated, this produced an increased drag coefficient estimated by the profile method. The dissipation technique using the downwind spectrum gave a lower drag coefficient of 1.26 × 10–3, probably due to non-isotropic conditions (the ratio of vertical to downwind spectrum at high frequencies scattered considerably with an average of 1 instead of 4/3).From direct measurements, the sensible heat flux showed a poor correlation with the bulk parameter product U, contrary to the heat flux obtained from profiles. It is shown that this is due to the higher frequency part of the cospectrum, say above 0.25 Hz, which contributes more than 50 % of the total flux. Determination of the heat flux from temperature fluctuations by the dissipation method would be in agreement with the direct determination only if the corresponding Kolmogoroff constant were 2.1 instead of 0.8.For the vertical flux of water vapor obtained from profiles, the bulk transfer coefficient was 1.28 × 10–3.This work was supported by the Deutsche Forschungsgemeinschaft, Schwerpunktprogramm Meeresforschung and later the Sonderforschungsbereich Meeresforschung Hamburg.  相似文献   

12.
Summary This paper describes measurements of the Hartheim forest energy budget for the 157-day period of May 11 – Oct. 14, 1992. Data were collected as 30-min means. Energy available to the forest was measured with net radiometers and soil heat flux discs; sensible heat exchange between the canopy and atmosphere was measured with two One-Propeller Eddy Correlation (OPEC) systems, and latent energy (evapotranspiration orET) was determined as a residual in the surface energy balance equation. Net rediation, change in thermal storage, and sensible heat flux were verified by independent measurements during the Hartheim Experiment (HartX, May 11–12), and again during the HartX2 experiment over 20 days late in the summer (Sep. 10–29). Specifically, sensible heat estimates from the two adjacent OPEC sensor sets were in close agreement throughout the summer, and in excellent agreement with measurements of sonic eddy correlation systems in May and September. The eddy correlation/energy balance technique was observed to overestimate occurrence of dew, leading to an underestimate of dailyET of about 5%. After taking dew into account, estimates of OPECET totaled 358 mm over the 5.1-month period, which is in quite good agreement with an ET estimate of 328 mm from a hydrologic water balance. An observed decrease in forestET in July and August was clearly associated with low rainfall and increased soil water deficit. The OPEC system required only modest technical supervision, and generated a data yield of 99.5% over the period DOY 144–288. The documented verification and precision of this energy budget appears to be unmatched by any other long-term forest study reported to date.With 9 Figures  相似文献   

13.
We describe a fast response methane sensor based on the absorption of radiation generated with a near-infrared InGaAsP diode laser. The sensor uses an open path absorption region 0.5 m long; multiple pass optics provide an optical path of 50 m. High frequency wavelength modulation methods give stable signals with detection sensitivity (S/N=1, 1 Hz bandwidth) for methane of 65 ppb at atmospheric pressure and room temperature. Improvements in the optical stability are expected to lower the current detection limit. We used the new sensor to measure, by eddy correlation, the CH4 flux from a clay-capped sanitary landfill. Simultaneously we measured the flux of CO2 and H2O. From seven half-hourly periods of data collected after a rainstorm on November 23, 1991, the average flux of CH4 was 17 mmol m–2 hr–1 (6400 mg CH4 m–2 d–1) with a coefficient of variation of 25%. This measurement may underrepresent the flux by 15% due to roll-off of the sensor response at high frequency. The landfill was also a source of CO2 with an average flux of 8.1 mmol m–2 hr–1 (8550 mg CO2 m–2 d–1) and a coefficient of variation of 26%. A spectral analysis of the data collected from the CH4, CO2, and H2O sensors showed a strong similarity in the turbulent transfer mechanisms.  相似文献   

14.
Estimates of the Chemical Budget for Ozone at Waliguan Observatory   总被引:6,自引:0,他引:6  
Waliguan Observatory (WO) is an in-land Global Atmosphere Watch (GAW) baseline station on the Tibetan plateau. In addition to the routine GAW measurement program at WO, measurements of trace gases, especially ozone precursors, were made for some periods from 1994 to 1996. The ozone chemical budget at WO was estimated using a box model constrained by these measured trace gas concentrations and meteorological variables. Air masses at WO are usually affected by the boundary layer (BL) in the daytime associated with an upslope flow, while it is affected by the free troposphere (FT) at night associated with a downslope flow. An anti-relationship between ozone and water vapor concentrations at WO is found by investigating the average diurnal cycle pattern of ozone and water vapor under clear sky conditions. This relationship implies that air masses at WO have both the FT and BL characteristics. Model simulations were carried out for clear sky conditions in January and July of 1996, respectively. The chemical characteristics of mixed air masses (MC) and of free tropospheric air masses (FT) at WO were investigated. The effects of the variation in NOx and water vapor concentrations on the chemical budget of ozone at WO were evaluated for the considered periods of time. It was shown that ozone was net produced in January and net destroyed in July for both FT and MC conditions at WO. The estimated net ozone production rate at WO was –0.1 to 0.4 ppbv day–1 in FT air of January, 0.0 to 1.0 ppbv day–1 in MC air of January, –4.9 to –0.2 ppbv day–1 in FT air of July, and –5.1 to 2.1 ppbv day–1 in MC air of July.  相似文献   

15.
Experimental data from two field experiments on ground based clouds were used to study the distribution of formic acid, acetic acid, ammonia and S(IV) species between liquid and gas phase. The ratio of the concentrations of these compounds between the phases during concurrent measurements was compared to ratios expected according to Henry's law (considering the pH influence). Large discrepancies of several orders of magnitude were seen. Three hypotheses have been investigated to explain the observed discrepancies: The existence of a microscale equilibrium which does not persist in a bulk sample, a thermodynamic shift of the equilibrium due to competing reactions, and nonequilibrium conditions due to mass transfer limitations. Approximate quantitative calculations show that none of these hypotheses is sufficient to explain all of the discrepancies, so a combination of different effects seems to be responsible for this observation. The same theoretical considerations also suggest that mass transfer limitation may be an important factor for highly soluble compounds. The data presented here indicates that it is not possible to simply extrapolate interstitial gas phase composition from measured bulk liquid phase concentrations of a fog or cloud.Notation [r max] liquid phase molar uptake rate (mol l–1 s–1) - [A g ] concentration ofA in gas phase (atm) - [A l ] concentration ofA in liquid phase (mol l–1) - [A g , 0] concentration ofA in gas phase (atm) at time 0 - LWC liquid water content (g m–3) - R universal gas constant (0.082 l atm mol–1 K–1 - D g diffusivity (for all gases 0.1 cm2 s–1 was used) - K H * effective Henry's law coefficient (mol l–1 atm–1) - t f lifetime of fog droplet (s) - a droplet radius (cm) - accommodation coefficient - R factor of discrepancy - T temperature (K) - v mean molecular speed (cm s–1) formic acid: 35 000 acetic acid: 31 000 ammonia: 58 000  相似文献   

16.
Influence of drizzle on ZM relationships in warm clouds   总被引:1,自引:0,他引:1  
This paper addresses the sensitivity of the relationships between radar reflectivity (Z) and liquid water content (M) for liquid water clouds to microphysical drizzle parameters by means of simulated radar observation at a frequency of 3 GHz of modeled cumulus clouds. A power law relationship for non drizzling clouds with water content as high as 3 gm− 3: Zc = 0.026 Mc1.61 is numerically derived and agreed with previous empirical relationships relative to cumulus and stratocumulus. This relationship is then used to explore the influence of drizzle on the correlation between radar reflectively and water content. Due to their large diameters with respect to cloud droplets, drizzle sized drops dominate radar reflectivity but do not carry the cloud water content so that reflectivity and liquid water content are expected to be not correlated in clouds containing drizzle. It is shown that for congestus or extreme congestus cumuli, microphysical conditions for which the ZcMc relationship can be used with a tolerance of 5 and 10% are provided whereas for humilis or mediocris cumuli, the presence of drizzle breaks down the ZcMc relationship whatever the situations.  相似文献   

17.
Summary Remote sensing and ground measurements were used to evaluate the homogeneity of the Scots pine plantation of Hartheim and the interactions between the forest and its surroundings during HartX.Remote sensing data contribute to characterization of the Scots pine plantation of Hartheim in terms of surface properties and thermal and biological characteristics of the forest. The surroundings of the main experiment site in the forest has homogenous normalized difference vegetation index, microwave specle and brightness temperatures to all directions for at least 500 m. Local sensible heat flux estimates using satellite measured brightness temperatures andin situ measured wind and air temperatures showed good agreement.On some days during HartX the test area was influenced by advection of dry air from the northern Upper Rhine Valley. Agricultural surroundings close to the forest are influenced by breezes flowing out of the forest during radiative nights with weak large-scale motion.With 7 Figures  相似文献   

18.
A two-dimensional mesoscale model has been developed to simulate the air flow over the Gulf Stream area where typically large gradients in surface temperature exist in the winter. Numerical simulations show that the magnitude and the maximum height of the mesoscale circulation that develops downwind of the Gulf Stream depends on both the initial geostrophic wind and the large-scale moisture. As expected, a highly convective Planetary Boundary Layer (PBL) develops over this area and it was found that the Gulf Stream plays an important role in generating the strong upward heat fluxes causing a farther seaward penetration as cold air advection takes place. Numerical results agree well with the observed surface fluxes of momentum and heat and the mesoscale variation of vertical velocities obtained using Doppler Radars for a typical cold air outbreak. Precipitation pattern predicted by the numerical model is also in agreement with the observations during the Genesis of Atlantic Lows Experiment (GALE).List of Symbols u east-west velocity [m s–1] - v north-south velocity [m s–1] - vertical velocity in coordinate [m s–1] - w vertical velocity inz coordinate [m s–1] - gq potential temperature [K] - q moisture [kg kg–1] - scaled pressure [J kg–1 K–1] - U g the east-south component of geostrophic wind [m s–1] - V g the north-south component of geostrophic wind [m s–1] - vertical coordinate following terrain - x east-west spatial coordinate [m] - y north-south spatial coordinate [m] - z vertical spatial coordinate [m] - t time coordinate [s] - g gravity [m2 s–1] - E terrain height [m] - H total height considered in the model [m] - q s saturated moisture [kg kg–1] - p pressure [mb] - p 00 reference pressure [mb] - P precipitation [kg m–2] - vertical lapse rate for potential temperature [K km–1] - L latent heat of condensation [J kg–1] - C p specific heat at constant pressure [J kg–1 K–1] - R gas constant for dry air [J kg–1 K–1] - R v gas constant for water vapor [J kg–1 K–1] - f Coriolis parameter (2 sin ) [s–1] - angular velocity of the earth [s–1] - latitude [o] - K H horizontal eddy exchange coefficient [m2 s–1] - t integration time interval [s] - x grid interval distance inx coordinate [m] - y grid interval distance iny coordinate [m] - adjustable coefficient inK H - subgrid momentum flux [m2 s–2] - subgrid potential temperature flux [m K s–1] - subgrid moisture flux [m kg kg–1 s–1] - u * friction velocity [m s–1] - * subgrid flux temperature [K] - q * subgrid flux moisture [kg kg–1] - w * subgrid convective velocity [m s–1] - z 0 surface roughness [m] - L Monin stability length [m] - s surface potential temperature [K] - k von Karman's constant (0.4) - v air kinematic viscosity coefficient [m2 s–1] - K M subgrid vertical eddy exchange coefficient for momentum [m2 s–1] - K subgrid vertical eddy exchange coefficient for heat [m2 s–1] - K q subgrid vertical eddy exchange coefficient for moisture [m2 s–1] - z i the height of PBL [m] - h s the height of surface layer [m]  相似文献   

19.
Summary A numerical model was used to study the behaviour of prototype cold fronts as they approach the Alps. Two fronts with different orientations relative to the Alpine range have been considered. One front approaches from west, a second one from northwest. The first front is connected with southwesterly large-scale air-flow producing pre-frontal foehn, whereas the second front is associated with westerly largescale flow leading to weak blocking north of the Alps.Model simulations with fully represented orography and parameterized water phase conversions have been compared with control runs where either the orography was cut off or the phase conversions were omitted. The results show a strong orographic influence in case of pre-frontal foehn which warms the pre-frontal air and increases the cross-frontal temperature contrast leading to an acceleration of the front along the northern Alpine rim. The latent heat effect was found to depend much on the position of precipitation relative to the surface front line. In case of pre-frontal foehn precipitation only falls behind the surface front line into the intruding cold air where it partly evaporates. In contrary, precipitation already appears ahead of the front in the case of blocking. Thus, the cooling effect of evaporating rain increases the cross-frontal temperature difference only in the first case causing an additional acceleration of the front.List of symbols C pd specific heat capacity of dry air at constant pressure (C pd =1004.71 J kg–1 K–1) - C pv specific heat capacity of water vapour at constant pressure (C pv =1845.96 J kg–1 K–1) - C f propagation speed of a front - x, y horizontal grid spacing (cartesian system) - , horizontal grid spacing (geographic system) - t time step - E turbulent kinetic energy - f Coriolis parameter - g gravity acceleration (g=9.81 ms–1) - h terrain elevation - H height of model lid (H=9000 m) - k Karman constant (k=0.4) - K Mh horizontal exchange coefficient of momentum - K Hh horizontal exchange coefficient of heat and moisture - K Mz vertical exchange coefficient of momentum - K Hz vertical exchange coefficient of heat and moisture - l mixing length - l c specific condensation heat (l c =2500.61 kJ kg–1) - l f specific freezing heat (l f =333.56 kJ kg–1) - l s specific sublimation heat (l s =2834.17 kJ kg–1) - longitude - m 1,m 2,m 3 metric coefficients - p pressure - Exner function - Pr Prandtl number - latitude - M profile function - q v specific humidity - q c specific content of cloud droplets - q i specific content of cloud ice particles - q R specific content of rain drops - q S specific content of snow - R d gas constant of dry air (R d =287.06 J kg–1 K–1) - R v gas constant of water vapour (R v =461.51 J kg–1 K–1) - r E radius of earth (r E =6371 km) - Ri F flux Richardson number - density of dry air - t time - T temperature - dia period of diastrophy - potential temperature - v virtual potential temperature - e equivalent potential temperature - U relative humidity - u, v, w cartesian wind components - u F ,v F front-normal and front-parallel wind components - x, y, z cartesian coordinates - w * transformed vertical wind component - W R speed of falling rain - W S speed of falling snow - z * transformed vertical coordinate Abbreviations GND (above) ground level - MSL (above) mean sea level With 12 Figures  相似文献   

20.
We have devised a partial differential equation for the prediction of dust concentration in a thin layer near the ground. In this equation, erosion (detachment), transport, deposition and source are parameterised in terms of known quantities. The interaction between a wind prediction model in the boundary layer and this equation affects the evolution of the dust concentration at the top of the surface layer. Numerical integrations are carried out for various values of source strength, ambient wind and particle size. Comparison with available data shows that the results appear very reasonable and that the model should be subjected to further development and testing.Notation (x, y, z, t) space co-ordinates and time (cm,t) - u, v components of horizontal wind speed (cm s–1) - u g, vg components of the geostrophic wind (cm s–1) - V=(u2+v2)1/2 (cm s–1) - (û v)= 1/(h – k) k h(u, v)dz(cm s–1) - V * friction velocity (cm s–1) - z 0 roughness length (cm) - k 1 von Karman constant =0.4 - V d deposition velocity (cm s–1) - V g gravitational settling velocity (cm s–1) - h height of inversion (cm) - k height of surface layer (cm) - potential temperature (°K) - gr potential temperature at ground (°K) - K potential temperature at top of surface layer (°K) - P pressure (mb) - P 0 sfc pressure (mb) - C p/Cv - (t)= /z lapse rate of potential temperature (°K cm–1) - A(z) variation of wind with height in transition layer - B(z) variation of wind with height in transition layer - Cd drag coefficient - C HO transfer coefficient for sensible heat - C dust concentration (g m–3) - C K dust concentration at top of surface layer (g m–3) - D(z) variation with height of dust concentration - u, v, w turbulent fluctuations of the three velocity components (cm s–1) - A 1 constant coefficient of proportionality for heat flux =0.2 - Ri Richardson number - g gravitational acceleration =980 cm s–2 - Re Reynolds number = - D s thickness of laminar sub-layer (cm) - v molecular kinematic viscosity of air - coefficient of proportionality in source term - dummy variable - t time step (sec) - n time index in numerical equations On sabbatical leave at University of Aberdeen, Department of Engineering, September 1989–February 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号