首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Abstract

Our intent is to provide a simple and quantitative understanding of the variability of the axial dipole component of the geomagnetic field on both short and long time scales. To this end we study the statistical properties of a prototype nonlinear mean field model. An azimuthal average is employed, so that (1) we address only the axisymmetric component of the field, and (2) the dynamo parameters have a random component that fluctuates on the (fast) eddy turnover time scale. Numerical solutions with a rapidly fluctuating α reproduce several features of the geomagnetic field: (1) a variable, dominantly dipolar field with additional fine structure due to excited overtones, and sudden reversals during which the field becomes almost quadrupolar, (2) aborted reversals and excursions, (3) intervals between reversals having a Poisson distribution. These properties are robust, and appear regardless of the type of nonlinearity and the model parameters. A technique is presented for analysing the statistical properties of dynamo models of this type. The Fokker-Planck equation for the amplitude a of the fundamental dipole mode shows that a behaves as the position of a heavily damped particle in a bistable potential ∝(1 ? a 2)2, subject to random forcing. The dipole amplitude oscillates near the bottom of one well and makes occasional jumps to the other. These reversals are induced solely by the overtones. Theoretical expressions are derived for the statistical distribution of the dipole amplitude, the variance of the dipole amplitude between reversals, and the mean reversal rate. The model explains why the reversal rate increases with increasing secular variation, as observed. Moreover, the present reversal rate of the geodynamo, once per (2?3) × 105 year, is shown to imply a secular variation of the axial dipole moment of ~ 15% (about the current value). The theoretical dipole amplitude distribution agrees well with the Sint-800 data.  相似文献   

2.
The results of numerical modeling of the geomagnetic secular variation by the method of the Giant Gaussian Process (GGP) are presented and compared with the information derived from the presentday databases for paleointensity. The variances of the positions of the virtual geomagnetic pole (VGP) calculated from the synthetic and experimental data (Brunhes epoch, effusive rocks) are nearly similar, which supports the validity of the theoretical model. The average value of the virtual axial geomagnetic dipole (VADM) calculated from the PINT world database on paleointensity and the Sint-2000 model is lower than VADM calculated by the GGP model; at the same time, the estimates based on the archaeomagnetic data give the VADM value slightly above the model prediction. The largest difference is observed in the variances of VADM, which is for all the three databases noticeably higher than the value calculated from the GGP model. Most probably, this is due to the contribution of the neglected measurement errors of VADM.  相似文献   

3.
Ten absolute paleointensity determinations within the Brunhes chron have been obtained on andesitic lava flows from La Guadeloupe Island, French West Indies (F.W.I.). The Thellier and Thellier method performed on 124 specimens under either ambient or argon atmosphere allows reliable determinations from high temperature steps. A satisfactory within flow reproducibility has been observed and at least two samples for each flow have been used for calculation of the weighted-mean paleointensity. The average virtual axial dipole moment (VADM=7.1±1.8×1022 A m2) for normal polarity flows from the Brunhes chron recorded at La Guadeloupe is compatible with the historical field. The 10 VADM values obtained show a relatively good agreement with the deep-sea composite record (SINT800) of relative paleointensity. Focusing on the 100–75 ka interval, a 20-ka oscillation observed from a compilation of available volcanic data and present in high-resolution sedimentary records has been tentatively related to the axial dipole moment variations. Finally, a paleointensity decrease of a factor of 10 is observed for flows emitted during the Matuyama–Brunhes (M–B) transition, as already observed in other records of this reversal. Because a large area of the Globe around the Caribbean Islands was previously devoid of data, the present dataset fills a gap towards construction of a global paleointensity database for the Brunhes chron.  相似文献   

4.
A simple finite-dimensional geodynamo model, obtained from the equations of the mean field electrodynamics and reproducing the phenomenon of geomagnetic reversals, is proposed. It has been indicated that the reversal scale obtained in the scope of this model is rather close to the observed scale in its properties. The reversal mechanism is related to the α-effect fluctuations. It is not necessary to substantially change the hydrodynamic parameters of the problem so that a reversal originates in the scope of such a model, but it is only sufficient to take the α-effect fluctuations into account. If the rms deviation of fluctuations accounts for 10% of the average α value, a fluctuation of two-three standard deviations is sufficient for the origination of a reversal, which quite agrees with the concept that reversals are rather rare phenomena. Another factor resulting in the regime with reversals is that the model can generate magnetic fields with different behaviors in different regions of the parametric space in linear mode: monotonically increasing fields and fields increasing with oscillations.  相似文献   

5.
Speculation about its possible super-rotation has drawn the attention of many geophysical researchers to the Earth’s inner core. An issue of special interest for geodynamo modelling is the influence of the inner-core conductivity. It has been suggested that the finite magnetic diffusivity of the inner core prevents more frequent reversals of the Earth’s magnetic field. We explore the possible influence of the inner-core conductivity by comparing convection-driven 3D dynamo simulations with insulating or conducting inner cores (CIC) at various parameters. The influence on the field structure in the outer core is only marginal. The time behaviour of dipole-dominated non-reversing dynamos is also little affected. Concerning reversing dynamos, the inner-core conductivity reduces the number of short dipole-polarity intervals with a typical length of a few thousand years. Reversals are always correlated with low dipole strength and these short intervals are found in periods where the dipole moment stays low. Polarity intervals longer than about 10,000 years, where the dipole moment has time recover in strength, are equally likely in insulating and CIC models. Since these latter intervals are of more geophysical relevance, we conclude that the influence of the inner-core conductivity on Earth-like reversal sequences is insignificant for the dynamo model employed here.  相似文献   

6.
Scaling laws are derived for the time-average magnetic dipole moment in rotating convection-driven numerical dynamo models. Results from 145 dynamo models with a variety of boundary conditions and heating modes, covering a wide section of parameter space, show that the time-average dipole moment depends on the convective buoyancy flux F. Two distinct regimes are found above the critical magnetic Reynolds number for onset of dynamo action. In the first regime the external magnetic field is dipole-dominant, whereas for larger buoyancy flux or slower rotation the external field is dominated by higher multipoles and the dipole moment is reduced by a factor of 10 or more relative to the dipolar regime. For dynamos driven by basal heating, the dipole moment M increases like M  F1/3 in the dipolar regime. Reversing dipolar dynamos tend to cluster near the multipolar transition, which is shown to depend on a local Rossby number parameter. The geodynamo lies close to this transition, suggesting an explanation for polarity reversals and the possibility of a weaker dipole earlier in Earth history. Internally heated dynamos generate smaller dipole moments overall and show a gradual transition from dipolar to multipolar states. Our scaling yields order of magnitude agreement with the dipole moments of Earth, Jupiter, Saturn, Uranus, Neptune, and Ganymede, and predicts a multipolar-type dynamo for Mercury.  相似文献   

7.
A model of the reversing geodynamo based on the assumptions (1) that reversals start in a localized region of the core and (2) that upon its onset this reversed region extends, or “floods”, both north-south and east-west until the entire core is affected, has recently been shown to provide a generally successful simulation of existing paleomagnetic records of the Matuyama-Brunhes transition (Hoffman, 1979). In this paper the modelled solution is analyzed so as to reveal the behavior of the dominant Gauss coefficients during the transition. At the time of total axial dipole decay the controlling components are found to be a zonal octupole (g30) and a non-axisymmetric quadrupole (g21, h21). Given the distribution of sites corresponding to the available records of the Matuyama-Brunhes, the existence of a significant zonal quadrupole field component cannot be ruled out; however, the role of any equatorial dipole component can be neglected.Due to the presence of a significant low-order non-axisymmetric term in the analyzed transition field, the predicted minimum intensity experienced during the Matuyama-Brunhes is found to be dependent on both site latitude and longitude. In particular, over a mid-northern circle of latitude, the predicted minimum intensity is found to vary by more than a factor of three, averaging about 10% of the full polarity field strength.Although not a unique solution, the applicability of the findings from this analysis is not tied to the phenomenological model from which they were derived. More specifically, whether the above two-component non-dipole transitional field arises from assumed configurational changes of the reversing geodynamo (as is the case for the flooding model) or, alternatively, is considered to be a stationary (non-reversing) portion of the field during axial dipole decay and regeneration, has little effect on either the calculated path locality of the virtual geomagnetic pole or the minimum intensity experienced at a given site. These two possible situations, in principle, should be distinguishable given the future attainment of detailed paleomagnetic data corresponding to back-to-back (R → N and N → R) polarity transitions.  相似文献   

8.
The Earth's magnetic field changed its polarity from the last reversed into today's normal state approximately 780 000 years ago. While before and after this so called Matuyama/Brunhes reversal, the Earth magnetic field was essentially an axial dipole, the details of its transitional structure are still largely unknown. Here, a Bayesian inversion method is developed to reconstruct the spherical harmonic expansion of this transitional field from paleomagnetic data. This is achieved by minimizing the total variational power at the core–mantle boundary during the transition under paleomagnetic constraints. The validity of the inversion technique is proved in two ways. First by inverting synthetic data sets from a modeled reversal. Here it is possible to reliably reconstruct the Gauss coefficients even from noisy records. Second by iteratively combining four geographically distributed high quality paleomagnetic records of the Matuyama/Brunhes reversal into a single geometric reversal scenario without assuming an a priori common age model. The obtained spatio-temporal reversal scenario successfully predicts most independent Matuyama/Brunhes transitional records. Therefore, the obtained global reconstruction based on paleomagnetic data invites to compare the inferred transitional field structure with results from numerical geodynamo models regarding the morphology of the transitional field. It is found that radial magnetic flux patches form at the equator and move polewards during the transition. Our model indicates an increase of non-dipolar energy prior to the last reversal and a non-dipolar dominance during the transition. Thus, the character and information of surface geomagnetic field records is strongly site dependent. The reconstruction also offers new answers to the question of existence of preferred longitudinal bands during the transition and to the problem of reversal duration. Different types of directional variations of the surface geomagnetic field, continuous or abrupt, are found during the transition. Two preferred longitudinal bands along the Americas and East Asia are not predicted for uniformly distributed sampling locations on the globe. Similar to geodynamo models with CMB heatflux derived from present day lower mantle heterogeneities, a preference of transitional VGPs for the Pacific hemisphere is found. The paleomagnetic duration of reversals shows not only a latitudinal, but also a longitudinal variation. Even the paleomagnetically determined age of the reversal varies significantly between different sites on the globe. The described Bayesian inversion technique can easily be applied to other high quality full vector reversal records. Also its extension to inversion of secular variation and excursion data is straightforward.  相似文献   

9.
Geomagnetism and Aeronomy - Modern geodynamo models allow the generation of a magnetic field without reversals and with frequent reversals. The transition from one regime to another is associated...  相似文献   

10.
We are using a three-dimensional convection-driven numerical dynamo model without hyperdiffusivity to study the characteristic structure and time variability of the magnetic field in dependence of the Rayleigh number (Ra) for values up to 40 times supercritical. We also compare a variety of ways to drive the convection and basically find two dynamo regimes. At low Ra, the magnetic field at the surface of the model is dominated by the non-reversing axial dipole component. At high Ra, the dipole part becomes small in comparison to higher multipole components. At transitional values of Ra, the dynamo vacillates between the dipole-dominated and the multipolar regime, which includes excursions and reversals of the dipole axis. We discuss, in particular, one model of chemically driven convection, where for a suitable value of Ra, the mean dipole moment and the temporal evolution of the magnetic field resemble the known properties of the Earth’s field from paleomagnetic data.  相似文献   

11.
A detailed analysis of the data on the intensity of the geomagnetic dipole and frequency of its reversals presented in the world’s paleointensity databases provided the arguments in favor of the hypothesis of the negative correlation between the average virtual dipole moment (VDM) and the frequency of the reversals on the interval from 5 Ma to 100 Ma ago. However, the statistical confidence level of this hypothesis is only 60–70%, which is far below 95%, the standard required confidence level of a hypothesis to be considered statistically reliable. At a high level of confidence (above 99%), the presence of a positive correlation between the mean value and variance of VDM for a number of intervals of stable polarity in the Cenozoic and Mesozoic is confirmed. This finding means that the distribution of VDM on these time intervals is certainly non-Gaussian and is rather described by the gamma- or lognormal law. At the same time, in contrast to the earlier intervals, the histogram of VDM for the Brunhes epoch is closer to the normal distribution. Compared our conclusions with the published results on the numerical modeling of the geodynamo, we found that they are consistent in terms of a probable negative correlation between the average VDM and reversal frequency, as well as the lack of correlation between the average VDM and the length of the interval of stable polarity.  相似文献   

12.
The data that describe the long-term reversing behavior of the geodynamo show strong and sudden changes in magnetic reversal frequency. This concerns both the onset and the end of superchrons and most probably the occurrence of episodes characterized by extreme geomagnetic reversal frequency (>10–15 rev./Myr). To account for the complexity observed in geomagnetic reversal frequency evolution, we propose a simple scenario in which the geodynamo operates in three distinct reversing modes: i—a “normal” reversing mode generating geomagnetic polarity reversals according to a stationary random process, with on average a reversal rate of ~3 rev./Myr; ii—a non-reversing “superchron” mode characterizing long time intervals without reversal; iii—a hyper-active reversing mode characterized by an extreme geomagnetic reversal frequency. The transitions between the different reversing modes would be sudden, i.e., on the Myr time scale. Following previous studies, we suggest that in the past, the occurrence of these transitions has been modulated by thermal conditions at the core-mantle boundary governed by mantle dynamics. It might also be possible that they were more frequent during the Precambrian, before the nucleation of the inner core, because of a stronger influence on geodynamo activity of the thermal conditions at the core-mantle boundary.  相似文献   

13.
A 3D kinematic geodynamo model in a sphere with the conductive solid inner core is considered. The 3D magnetic field and velocity field are resolved in the physical space for r- and -coordinates, whereas the sin- and cos-decomposition is applied to the -coordinate. The additional boundary conditions for the case of non-zero velocity field on the boundaries of the liquid spherical shell and for different magnetic diffusivities of the inner and outer core are applied. The computer code was tested by free decay mode solutions and comparisons were made also with results reported by other authors. This work is a part of a project to study 3D inviscid geodynamo models.  相似文献   

14.
We carried out an integrated paleomagnetic, rock-magnetic and paleointensity study of Miocene volcanic succession from the trans-Mexican volcanic belt (TMVB) north of Guadalajara. A total of 37 consecutive basaltic lava flows (326 oriented standard paleomagnetic cores) were collected at Lazo locality. Continuous susceptibility measurements with temperature and hysteresis experiments yield in most cases reasonably reversible curves with Curie points close to that of pseudo-single-domain magnetite. Two geomagnetic reversals were observed in the 300 m thick composite section. Paleosecular variation was lower than the one observed in general during Miocene. It appears that the volcanic units have been emplaced during a relatively short time span of about 1 Ma. The mean paleomagnetic directions obtained from this study do not differ significantly from that expected for the middle Miocene. The mean paleomagnetic direction calculated from all data is I=31.1°, D=354.6°, k=124 and 95=2.1°, N=37. Seventy-two samples with apparently preserved primary magnetic mineralogy and without secondary magnetization, mostly belonging to reverse polarity chron were pre-selected for Thellier paleointensity determination. The flow-mean paleointensity values are ranging from 22.4±3.4 to 53.8±6.0 μT and the corresponding virtual dipole moments (VDMs) are ranging from (5.4±0.8) to (12.0±1.4)×1022 A m2. This corresponds to mean value of (7.7±2.2)×1022 A m2, which is close to present day geomagnetic field strength. Altogether, our data suggest the existence of relatively high geomagnetic field strength undergoing low fluctuations.  相似文献   

15.
The behavior of the main magnetic field components during a polarity transition is investigated using the α2-dynamo model for magnetic field generation in a turbulent core. It is shown that rapid reversals of the dipole field occur when the helicity, a measure of correlation between turbulent velocity and vorticity, changes sign. Two classes of polarity transitions are possible. Within the first class, termed component reversals, the dipole field reverses but the toroidal field does not. Within the second class, termed full reversals, both dipole and toroidal fields reverse. Component reversals result from long term fluctuations in core helicity; full reversals result from short term fluctuations. A set of time-evolution equations are derived which govern the dipole field behavior during an idealized transition. Solutions to these equations exhibit transitions in which the dipole remains axial while its intensity decays rapidly toward zero, and is regenerated with reversed polarity. Assuming an electrical conductivity of 3 × 105 mho m?1 for the fluid core, the time interval required to complete the reversal process can be as short as 7500 years. This time scale is consistent with paleomagnetic observations of the duration of reversals. A possible explanation of the cause of reversals is proposed, in which the core's net helicity fluctuates in response to fluctuations in the level of turbulence produced by two competing energy sources—thermal convection and segregation of the inner core. Symmetry considerations indicate that, in each hemisphere, helicity generated by heat loss at the core-mantle boundary may have the opposite sign of helicity generated by energy release at the inner core boundary. Random variations in rates of energy release can cause the net helicity and the α-effect to change sign occasionally, provoking a field reversal. In this model, energy release by inner core formation tends to destabilize stationary dynamo action, causing polarity reversals.  相似文献   

16.
Marine magnetic anomalies 33 and 34, corresponding to the first two reversals following the long normal polarity interval in the Cretaceous, are anomalously skewed by 30° to 40° throughout the North and South Atlantic. This phenomenon is most likely related to some aspect of the dipole paleomagnetic field. Specifically the magnetic field at the time of anomalies 33 and 34 appears to be characterized by the following: the dipole field gradually decreases in average intensity between reversals and/or there is an increase in the frequency or duration of undetected short polarity events toward the end of long periods (>106 years) of predominantly one polarity. Such long-period trends in the field are in conflict with the popular model for the generation of the earth's magnetic field that treats reversals as a Poisson process and assumes that the core has no memory greater than about 104 years.  相似文献   

17.
Representative paleomagnetic collections of Lower Cambrian rocks from the northern and eastern regions of the Siberian platform are studied. New evidence demonstrating the anomalous character of the paleomagnetic record in these rocks is obtained. These data confidently support the hypothesis (Pavlov et al., 2004) that in the substantial part of the Lower Cambrian section of the Siberian platform there are two stable high-temperature magnetization components having significantly different directions, each of which is eligible for being a primary component that was formed, at the latest, in the Early Cambrian. The analysis of the world’s paleomagnetic data for this interval of the geological history shows that the peculiarities observed in Siberia in the paleomagnetic record for the Precambrian–Phanerozoic boundary are global, inconsistent with the traditional notion of a paleomagnetic record as reflecting the predominant axial dipole component of the geomagnetic field, and necessitates the assumption that the geomagnetic field at the Proterozoic–Phanerozoic boundary (Ediacaran–Lower Cambrian) substantially differed from the field of most of the other geological epochs. In order to explain the observed paleomagnetic record, we propose a hypothesis suggesting that the geomagnetic field at the Precambrian–Cambrian boundary had an anomalous character. This field was characterized by the presence of two alternating quasi-stable generation regimes. According to our hypothesis, the magnetic field at the Precambrian–Cambrian boundary can be described by the alternation of long periods dominated by an axial, mainly monopolar dipole field and relatively short epochs, lasting a few hundred kA, with the prevalence of the near-equatorial or midlatitude dipole. The proposed hypothesis agrees with the data obtained from studies of the transitional fields of Paleozoic reversals (Khramov and Iosifidi, 2012) and with the results of geodynamo numerical simulations (Aubert and Wicht, 2004; Glatzmayer and Olson, 2005; Gissinger et al., 2012).  相似文献   

18.
The behavior of the dipole magnetic moment of the geomagnetic field during the reversals is considered. By analogy with the reversals of the magnetic field of the Sun, the scenario is suggested in which during the reversal the mean dipole moment becomes zero, whereas the instantaneous value of the dipole magnetic moment remains nonzero and the corresponding vector rotates from the vicinity of one geographical pole to the other. A thorough discussion concerning the definition of the mean magnetic moment, which is used in this concept, is presented. Since the behavior of the geomagnetic field during the reversal is far from stationary, the ensemble average instead of the time average has to be considered.  相似文献   

19.
Despite of the impressive cultural heritage and abundant archaeological sites, absolute geomagnetic intensity data from Mesoamerica are still sparse. Archeointensity determinations using the Coe variant of the Thellier and Thellier method have been carried out on some selected pottery fragments from the El Opeño archeological site which has the earliest funeral architecture known in western Mesoamerica. The El Opeño chronology is supported by six C14 datings performed on carbon-bearing materials. Detailed rock magnetic experiments including susceptibility vs. temperature curves, hysteresis cycles and thermal demagnetization procedures were carried out in order to estimate the magnetic carriers and their stability. Cooling rate and anisotropy remanence corrected intensity values range from 25.0 ± 2.3 to 40.2 ± 3.0 μT and corresponding virtual axial dipole moments (VADM) range from 5.6 ± 0.5 to 8.9 ± 0.7 × 1022 Am2. In addition, we present here a new compilation and analysis of existing absolute intensity data in order to try to estimate the variation of the Earth’s magnetic field over the past three millennia. The mean archeointensity obtained in the present study agrees reasonably well with the predicted absolute intensities retrieved from the CALS7K main field model. Other available Mesoamerican data, however, differ from this model. Most of available archeointensity data from Mesoamerica agree reasonably well with the ARCH3K main field model prediction. The broad peak defined at about 50 A.D. by our data is also predicted by the CALS3k.3 main field model but slightly displaced to the right while two smaller peaks are observed on the ARCH3K curve for the same time interval. The intensity value obtained at about 200 B.C. is a clear outlier and thus its geomagnetic significance should be confirmed by further investigations.  相似文献   

20.
The question of what exactly happens with the geodynamo process during the reversal of a geomagnetic field is studied in a simple geodynamo model. The geodynamo action is described by the so called dynamo number characterizing the joint action of the main drivers of the geomagnetic field, i.e., the differential rotation and mirror–asymmetric convection. In mirror-asymmetric convection, for instance, in the northern hemisphere, there are more right vortices than left vortices, whereas in the southern hemisphere, there are more left vortices than right vortices. The effect of the magnetic field on the flow is described by the suppression of the mirror asymmetry: due to this suppression, e.g., in the northern hemisphere, the excess of right vortices over left vortices decreases. It is also assumed that due to this suppression, the mirror asymmetry can change its sign; i.e., the number of left vortices in the northern hemisphere can become larger than the number of right vortices. Correspondingly, the dynamo number can also change its sign. It is shown that the short-term changes of the sign of the dynamo number are responsible for the very short time span accommodating the reversal, when compared to the interval between the reversals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号