首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several radio galaxies are known that show radio morphological signatures that are best interpreted as restarting of nuclear activity after a period of quiescence. The conditions surrounding the phenomenon of nuclear recurrence are not understood. In this paper we have attempted to address this question by examining the nuclear fuelling characteristics in a sample of restarting radio galaxies. We have examined the detection rate for molecular gas in a representative sample of nine restarting radio galaxies, for seven of which we present new upper limits to the molecular gas mass derived from CO line observations we made with the IRAM 30-m telescope. We derive a low CO detection rate for the relatively young restarted radio galaxies suggesting that the cessation of the nuclear activity and its subsequent restarting may be a result of instabilities in the fuelling process rather than a case of depletion of fuel followed by a recent fuel acquisition. It appears that abundant molecular gas content at the level of few  108–109 M  does not necessarily accompany the nuclear restarting phenomenon. For comparison we also discuss the molecular gas properties of five normal giant radio galaxies, three of which we observed using Swedish-ESO Millimetre Telescope (SEST). Despite obvious signs of interactions and nuclear dust discs none of them has been found to host significant quantities of molecular gas.  相似文献   

2.
We present new interferometric observations of the molecular gas distribution and kinematics in the nuclei of different active galaxies at high angular resolution and high sensitivity carried out with the IRAM Plateau de Bure interferometer (PdBI). The observations cover galaxies in a redshift range of 0.03–1.4. We have so far observed five different active galaxies: NGC3718, NGC1068, HE1029–1831, 3C48 and Q0957+561. The first two objects belong to the NUGA (NUclei of GAlaxies) project – an international collaboration mainly between Spain, France and Germany – containing about 30 Seyfert and LINER galaxies. Both are at the same distance of 14Mpc and show a warped gas and dust disk. The new mosaic map of NGC3718 corrected for short-spacing effects with IRAM 30 m observations well demonstrates the existence of the warped gas disk with several secondary maxima in the projected gas distribution caused by orbit crowding effects. Based on these new data we have improved recent simulations of the warped disk in NGC3718. HE1029–1831 and 3C48 are nearby QSOs. HE1029–1831 is taken out of the Cologne nearby QSO sample. The maps of the integrated CO(1–0) and CO(2–1) emission clearly show that the molecular gas is mostly related to the central bulge with a non-negligible fraction distributed along the bar known from optical observations. Our new CO data of 3C48 unveil new information about the kinematics of its molecular gas complementing and improving further studies based on previous infrared observations and detailed multi-particle simulations. Finally, new measurements of the CO(1–0) line in Q0957+561 – a highly-red-shifted, gravitationally lensed quasar – will be presented as a link to earlier evolutionary stages of active galaxies and their hosts.  相似文献   

3.
星暴和活动星系核之间的联系是活动星系研究领域最重要、最活跃的研究课题之一。Seyfert星系由于距离较近、数目较多和相对低的核活动,已成为研究星暴和活动星系核之间联系的理想天体。综述了活动星系核中存在星暴的观测证据和Seyflert2型星系核区星暴活动的最新研究结果,着重讨论了存在两类Seyflert2型星系(一类是被遮挡的Seyfert1型星系,另一类是“真正”的Seyfert2型星系即不存在宽线区的Seyfert2型星系)的可能性.通过比较具有和不具有偏振宽线的Seyflert2型星系在红外、射电、光学和X射线光谱性质的差别,发现具有偏振宽线的Seyfert2型星系在本质上和Seyflert1型星系是同一类天体,差别只在于观测者视线方向的不同;而不具有偏振宽线的Seyfert2型星系是一些星系核活动较弱而星暴活动占主导的天体,这些星系从射电、红外、光学到硬X射线,都具有和星暴星系相似的性质。由于这些星系中核的吸积率将比Seyflert1型星系低近两个量级,因而它们很有可能是一些没有宽发射线区的Seyfert2型星系,即所谓的“真正”Seyflert2型星系。  相似文献   

4.
Summary Bipolar molecular outflows are a ubiquitous phenomenon in the process of star formation. We review the main observational properties of the outflows around young stellar objects, highlighting the recent wealth of information provided by the new generation of large radiotelescopes operating at millimeter wavelengths (in particular the IRAM 30-m, the NRO 45-m, and the JCMT 15-m dishes). The observations of outflows containing molecular, jet-like flows and bullets are discussed in detail, as they provide key information for understanding origin and evolution of the outflows. We also discuss a number of closely related issues: the evidence for dense shocked gas associated with the flows, the interaction of the outflows with the ambient dense cores, the evolutionary status of the sources driving the outflows, the properties of circumstellar disks, and theoretical models of the origin of the neutral winds. All these areas are important for developing a plausible scenario for the formation and evolution of the bipolar molecular outflows.This article was processed by the author using the Springer-Verlag TEX AAR macro package 1991.  相似文献   

5.
The distribution of hydrogen gas, atomic plus molecular, in the discs of spiral galaxies, takes two characteristic extreme alternative forms. In one, the density peaks at the nucleus, and falls radially monotonically and roughly exponentially with radius. In the other there is a hole in the gas distribution in the circumnuclear region. In this paper we examine the distributions of gas, and the kinematics in the central zones of a number of spirals which have been observed both spectroscopically and with photometric mapping. We find in addition to a ring structure in the gas, there is often measurable expansion with higher radial velocities occurring near the nucleus. Associated with the more expanded of these ring structures there appear annuli of younger stars with enhanced metallicities; and inside the gaseous ring older, less metallic populations. A strong correlation exists between the absence of central gas and the size of the nuclear bulge of a galaxy: Sa's and Sb's have lower ratios of gas to stars than Sc's and Sd's. We show that radially progressive bursts of star formation can account for a wide range of these observed phenomena and could be related to the presence ofliners in the interstellar medium close to the nucleus. The energetics and dynamical balance within the burst are considered in terms of three sources of outflow: supernovae, stellar winds, and radiation from massive stars, with the probability that all these mechanisms contribute to the collective phenomenon.  相似文献   

6.
This article forms a part of a wider study of the nuclear and circum-nuclear zones of moderately active galaxies. The use of long-slit spectroscopy at high spectral and spatial resolution has enabled us to measure gradients of gaseous excitation and also velocity fields in a sample of four bright nuclear starburst galaxies selected from the sample of Balzano (1983). We find variations not only in the intensity but also in the quality of the emission spectra (line ratios and line widths) of the interstellar gas between regions separated by relatively short distances. We stress the need for studies with at least the present degree of angular and spectral resolution if physical sense is to be made of the interstellar excitation regimes in external galaxies, as well as to investigate a possible evolutionary link between nuclei of intermediate activity.  相似文献   

7.
The sample of nearby LIRGs and ULIRGs for which dense molecular gas tracers have been measured is building up, allowing for the study of the physical and chemical properties of the gas in the variety of objects in which the most intense star formation and/or AGN activity in the local universe is taking place. This characterisation is essential to understand the processes involved, discard others and help to interpret the powerful starbursts and AGNs at high redshift that are currently being discovered and that will routinely be mapped by ALMA. We have studied the properties of the dense molecular gas in a sample of 17 nearby LIRGs and ULIRGs through millimeter observations of several molecules (HCO+, HCN, CN, HNC and CS) that trace different physical and chemical conditions of the dense gas in these extreme objects. In this paper we present the results of our HCO+ and HCN observations. We conclude that the very large range of measured line luminosity ratios for these two molecules severely questions the use of a unique molecular tracer to derive the dense gas mass in these galaxies.  相似文献   

8.
Highly ionized gas has been detected at large distances from the nucleus in several classes of active galaxies. There is evidence that photoionization by the active nucleus may be the most relevant mechanism for the observed ionization. The spatial distribution of such gas has a conical shape, whose vertex points towards the nucleus and the axis is closely oriented with the radio structure. This scenario suggests collimation or anisotropy of the ionizing continuum.A geometrically thick accretion disk may produce such ionizing spectrum. We use a simple model for a thick accretion disk around a supermassive black hole and a photoionization code to make theoretical predictions. Results are compared with the observational data (for radio and Seyfert galaxies).Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

9.
We present the results of an analysis of a well-selected sample of galaxies with active and inactive galactic nuclei from the Sloan Digital Sky Survey, in the range  0.01 < z < 0.16  . The SDSS galaxy catalogue was split into two classes of active galaxies, Type 2 active galactic nuclei (AGN) and composites, and one set of inactive, star-forming/passive galaxies. For each active galaxy, two inactive control galaxies were selected by matching redshift, absolute magnitude, inclination, and radius. The sample of inactive galaxies naturally divides into a red and a blue sequence, while the vast majority of AGN hosts occur along the red sequence. In terms of Hα equivalent width (EW), the population of composite galaxies peaks in the valley between the two modes, suggesting a transition population. However, this effect is not observed in other properties such as the colour–magnitude space or colour–concentration plane. Active galaxies are seen to be generally bulge-dominated systems, but with enhanced Hα emission compared to inactive red-sequence galaxies. AGN and composites also occur in less dense environments than inactive red-sequence galaxies, implying that the fuelling of AGN is more restricted in high-density environments. These results are therefore inconsistent with theories in which AGN host galaxies are a 'transition' population. We also introduce a systematic 3D spectroscopic imaging survey, to quantify and compare the gaseous and stellar kinematics of a well-selected, distance-limited sample of up to 20 nearby Seyfert galaxies, and 20 inactive control galaxies with well-matched optical properties. The survey aims to search for dynamical triggers of nuclear activity and address outstanding controversies in optical/infrared imaging surveys.  相似文献   

10.
There is considerable evidence that the circumnuclear regions of galaxies are intimately related to their host galaxies, most directly through their bars. There is also convincing evidence for relations between the properties of supermassive black holes in the nuclei of galaxies and those of their host galaxies. It is much less clear, however, how stellar (starburst) and non-stellar (AGN) activity in the nuclear regions can be initiated and fuelled. Here, we review the evidence for gas transport from the disk to the nuclear and circumnuclear regions of galaxies, as well as the statistical relationships between the occurrence of nuclear activity and mechanisms which can cause central gas concentration. In particular, I explore the roles played by bars and interactions, and conclude that in specific, mostly extreme, cases bars and interactions are indeed observed to be connected to nuclear activity. The overall lack of observational evidence for direct causal relationships between the presence of bars and interactions on the one hand, and starburst or Seyfert activity on the other could, however, easily be due to the possibility that we are not yet considering the correct spatial- or time-scales.  相似文献   

11.
The molecular phase of the ISM constitutes the main source of fuel for the activity in starburst and AGNs. The physical conditions and chemical constitution of the molecular gas will change with, and respond to, the evolution of the activity. This paper includes a short discussion of the 12CO/13CO 1–0 line intensity ratio as a diagnostic tool of the molecular gas properties of luminous galaxies – paired with examples of high-resolution studies of how the line ratio varies within galaxies. A possible connection between the OH megamasers and galaxies with unusually high 12CO/13CO 1–0 line intensity ratios are also briefly discussed.The relative intensities of the dense gas tracers HNC, HCN, HCO+ and CN are a result of both chemistry and starburst evolution. The discussion on the interpretation of HNC 1–0 emission includes the importance of ion-neutral chemistry in a luminous starburst region. Finally, simple cartoon ISM models and how they can be applied to LIRGs and ULIRGs, are presented.  相似文献   

12.
We present results of our ongoing study of the morphology and kinematics of the ionised gas in 48 representative nearby elliptical and lenticular galaxies using the SAURON integral-field spectrograph on the 4.2m William Herschel Telescope. Making use of a recently developed technique, emission is detected in 75% of the galaxies. The ionised-gas distributions display varied morphologies, ranging from regular gas disks to filamentary structures. Additionally, the emission-line kinematic maps show, in general, regular motions with smooth variations in kinematic position angle. In most of the galaxies, the ionised-gas kinematics is decoupled from the stellar counterpart, but only some of them present signatures of recent accretion of gaseous material. The presence of dust is very common in our sample and is usually accompanied by gas emission. Our analysis of the [Oiii]/Hβ emission-line ratios, both across the whole sample as well as within the individual galaxies, suggests that there is no unique mechanism triggering the ionisation of the gas.  相似文献   

13.
Using the recent observational data on atomic and molecular hydrogen in the Galaxy, we analyse the dynamics of the interstellar gas in a spiral density wave. Within the framework of Marochniket al.'s (1972) model of the galactic spiral structure, the gas flow is obtained, with self-gravitation and thermal processes taken into account.It is shown that: (1) the self-gravitation of gas does not practically affect the galactic shock if the dominant contribution into the gas density comes from atomic hydrogen; (2) the effects of self-gravitation could be essential for both the gas flow and the stellar spiral wave only if the density contribution of H2 exceeded several times that ofHi, with molecular hydrogen as a continuous medium having the isothermal equation of state; (3) however, regardless of the estimates of H2 abundance in the Galaxy, its reaction to the density wave is weak, since it forms a collisionless system not dragged by the intercloud gas.It has been found that, if we allow for thermal processes in the interstellar medium, new types of gas flow can develop alongside with a previously-known continuous flow and galactic shock. They are: (1) galactic shock with the phase transition leading to the formation of dense cold clouds; (2) a three-phase flow where hot cavities and dense cold clouds coexist with an initial, moderately dense and cold phase; (3) an accretion wave which is a specific type of nonlinear wave with an amplitude of 11/2 orders of magnitude larger than that of the isothermal galactic shock appearing under the same conditions, but without heating and cooling.  相似文献   

14.
Luminous and Ultraluminous infrared galaxies (ULIRGs) contain the most intense regions of star formation in the local universe. Because molecular gas is the fuel for current and future star formation, the physical properties and distribution of the warm, dense molecular gas are key components for understanding the processes and timescales controlling star formation in these merger and merger remnant galaxies. We present new results from a legacy project on the Submillimeter Array which is producing high resolution images of a representative sample of galaxies with log L FIR >11.4 and D<200 Mpc.  相似文献   

15.
Summary X-ray images and spectra of clusters of galaxies show strong evidence for cooling flows. In many clusters, the hot gas in the core is cooling at rates of 100Myr–1 and greater. Few traces of the cooled gas have been observed, but it probably forms into low-mass stars (perhaps brown dwarf or even Jupiter-mass objects). X-ray surface-brightness profiles show that the cooling gas is highly inhomogeneous. Overdense gas cools rapidly to form cooled clumps distributed throughout the flow, with little of the gas ever reaching the cluster centre. Cooled and cooling clumps are disrupted because of their motion relative to the remainder of the gas, tending to produce small cooled fragments and, ultimately, low-mass stars. Large molecular clouds, which are the sites of massive star formation in our galaxy, do not occur in the outer parts of cooling flows. There is evidence of larger gas clumps and the formation of more massive stars in the central few kpc of some cooling flows. It is argued that cooling flows efficiently form dark matter. This has wider implications for the formation of dark matter in massive galaxies.  相似文献   

16.
The rotation velocity of a simulated plasma galaxy is compared to the rotation curves of Sc type spiral galaxies. Both show flat rotation curves with velocities of the order of several hundred kilometers per second, modified by E × B instabilities. Maps of the strength and distribution of galactic magnetic fields and neutral hydrogen regions, as-well-as as predictions by particle-in-cell simulations run in the late 1970s, are compared to Effelsberg observations.Agreement between simulation and observation is best when the simulation galaxy masses are identical to the observational masses of spiral galaxies. No dark matter is needed.  相似文献   

17.
Observed supernovae rates in Sb and Sc galaxies, and a recent re-examination of the mean gas density in these galactic types, implies that if the clumpiness of gas in the disks of Sb and Sc galaxies is similar, the gas density isnot the primary factor in determining the overall present stellar birthrate.  相似文献   

18.
Summary Over the last decade sensitive observations of radio recombination line emission using high angular resolution synthesis telescopes have become available. As a result it has now become possible to image the physical parameters deduced from radio recombination lines across individual sources. In the case of HII regions this work has resulted in detailed images of radial velocities, electron temperatures and the abundance of singly ionized helium (Y+). Direct observational evidence has been found for pressure broadening and non-LTE effects. Dramatic variations have been found in the ratio of He+ to H+, from as low as a few percent (the galactic centre) to as high 34% in one region of W3. Detailed images have been obtained of the partially ionized medium (CII and H regions) close to HII regions. Observations of recombination lines at very low frequencies have revealed the existence of very low density ionized gas in all directions in our galaxy. Higher resolution observations have led to a partial understanding of this medium. The first complete velocity field of the ionized gas in the centre of our galaxy has been obtained. Very recently the first images were made of extragalactic radio recombination lines, offering the possibility to study the kinematics of the ionized gas in the central few hundred parsecs of external galaxies.  相似文献   

19.
There are a number of theoretical and observational hints that large numbers of low-mass galaxies composed entirely of dark matter exist in the field. The theoretical considerations follow from the prediction of cold dark matter theory that there exist many low-mass galaxies for every massive one. The observational considerations follow from the observed paucity of these low-mass galaxies in the field but not in dense clusters of galaxies; this suggests that the lack of small galaxies in the field is due to the inhibition of star formation in the galaxies as opposed to the fact that their small dark matter haloes do not exist. In this work we outline the likely properties of low-mass dark galaxies, and describe observational strategies for finding them, and where in the sky to search. The results are presented as a function of the global properties of dark matter, in particular the presence or absence of a substantial baryonic dark matter component. If the dark matter is purely cold and has a Navarro, Frenk & White density profile, directly detecting dark galaxies will only be feasible with present technology if the galaxy has a maximum velocity dispersion in excess of 70 km s−1, in which case the dark galaxies could strongly lens background objects. This is much higher than the maximum velocity dispersions in most dwarf galaxies. If the dark matter in galaxy haloes has a baryonic component close to the cosmic ratio, the possibility of directly detecting dark galaxies is much more realistic; the optimal method of detection will depend on the nature of the dark matter. A number of more indirect methods are also discussed.  相似文献   

20.
A catalogue of ionized gas velocity fields for a sample of 30 spiral and irregular galaxies of the Virgo cluster has been obtained by using 3D optical data. The aim of this survey is to study the influence of high-density environments on the gaseous kinematics of local cluster galaxies. Observations of the Hα line by means of Fabry–Perot interferometry have been performed at the Canada–France–Hawaii Telescope, European Southern Observatory 3.6-m telescope, Observatoire de Haute-Provence 1.93-m telescope and Observatoire du mont Mégantic telescope at angular and spectral samplings from 0.4 to 1.6 arcsec and 7 to 16 km s−1. A recently developed, automatic and adaptive spatial binning technique is used to reach a nearly constant signal-to-noise ratio (S/N) over the whole field of view, allowing us to keep a high spatial resolution in high-S/N regions and extend the detection of signal in low-S/N regions. This paper is part of a series and presents the integrated emission-line and velocity maps of the galaxies. Both Hα morphologies and kinematics exhibit signs of perturbations in the form of, for example, external filaments, inner and nuclear spiral- and ring-like structures, inner kinematical twists, kinematical decoupling of a nuclear spiral, streaming motions along spiral arms and misalignment between kinematical and photometric orientation axes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号