首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We document compositions of minerals and melts from 3 GPa partialmelting experiments on two carbonate-bearing natural lherzolitebulk compositions (PERC: MixKLB-1 + 2·5 wt% CO2; PERC3:MixKLB-1 + 1 wt% CO2) and discuss the compositions of partialmelts in relation to the genesis of alkalic to highly alkalicocean island basalts (OIB). Near-solidus (PERC: 1075–1105°C;PERC3: 1050°C) carbonatitic partial melts with <10 wt%SiO2 and 40 wt% CO2 evolve continuously to carbonated silicatemelts with >25 wt% SiO2 and <25 wt% CO2 between 1325 and1350°C in the presence of residual olivine, orthopyroxene,clinopyroxene, and garnet. The first appearance of CO2-bearingsilicate melt at 3 GPa is 150°C cooler than the solidusof CO2-free peridotite. The compositions of carbonated silicatepartial melts between 1350 and 1600°C vary in the rangeof 28–46 wt% SiO2, 1·6–0·5 wt% TiO2,12–10 wt% FeO*, and 19–29 wt% MgO for PERC, and42–48 wt% SiO2, 1·9–0·5 wt% TiO2,10·5–8·4 wt% FeO*, and 15–26 wt% MgOfor PERC3. The CaO/Al2O3 weight ratio of silicate melts rangesfrom 2·7 to 1·1 for PERC and from 1·7 to1·0 for PERC3. The SiO2 contents of carbonated silicatemelts in equilibrium with residual peridotite diminish significantlywith increasing dissolved CO2 in the melt, whereas the CaO contentsincrease markedly. Equilibrium constants for Fe*–Mg exchangebetween carbonated silicate liquid and olivine span a rangesimilar to those for CO2-free liquids at 3 GPa, but diminishslightly with increasing dissolved CO2 in the melt. The carbonatedsilicate partial melts of PERC3 at <20% melting and partialmelts of PERC at 15–33% melting have SiO2 and Al2O3 contents,and CaO/Al2O3 values, similar to those of melilititic to basaniticalkali OIB, but compared with the natural lavas they are moreenriched in CaO and they lack the strong enrichments in TiO2characteristic of highly alkalic OIB. If a primitive mantlesource is assumed, the TiO2 contents of alkalic OIB, combinedwith bulk peridotite/melt partition coefficients of TiO2 determinedin this study and in volatile-free studies of peridotite partialmelting, can be used to estimate that melilitites, nephelinites,and basanites from oceanic islands are produced from 0–6%partial melting. The SiO2 and CaO contents of such small-degreepartial melts of peridotite with small amounts of total CO2can be estimated from the SiO2–CO2 and CaO–CO2 correlationsobserved in our higher-degree partial melting experiments. Thesesuggest that many compositional features of highly alkalic OIBmay be produced by 1–5% partial melting of a fertile peridotitesource with 0·1–0·25 wt% CO2. Owing to verydeep solidi of carbonated mantle lithologies, generation ofcarbonated silicate melts in OIB source regions probably happensby reaction between peridotite and/or eclogite and migratingcarbonatitic melts produced at greater depths. KEY WORDS: alkali basalts; carbonated peridotite; experimental petrology; ocean island basalts; partial melting  相似文献   

2.
We explore the partial melting behavior of a carbonated silica-deficienteclogite (SLEC1; 5 wt % CO2) from experiments at 3 GPa and comparethe compositions of partial melts with those of alkalic andhighly alkalic oceanic island basalts (OIBs). The solidus islocated at 1050–1075 °C and the liquidus at 1415 °C.The sub-solidus assemblage consists of clinopyroxene, garnet,ilmenite, and calcio-dolomitic solid solution and the near solidusmelt is carbonatitic (<2 wt % SiO2, <1 wt % Al2O3, and<0·1 wt % TiO2). Beginning at 1225 °C, a stronglysilica-undersaturated silicate melt (34–43 wt % SiO2)with high TiO2 (up to 19 wt %) coexists with carbonate-richmelt (<5 wt % SiO2). The first appearance of carbonated silicatemelt is 100 °C cooler than the expected solidus of CO2-freeeclogite. In contrast to the continuous transition from carbonateto silicate melts observed experimentally in peridotite + CO2systems, carbonate and silicate melt coexist over a wide temperatureinterval for partial melting of SLEC1 carbonated eclogite at3 GPa. Silicate melts generated from SLEC1, especially at highmelt fraction (>20 wt %), may be plausible sources or contributingcomponents to melilitites and melilititic nephelinites fromoceanic provinces, as they have strong compositional similaritiesincluding their SiO2, FeO*, MgO, CaO, TiO2 and Na2O contents,and CaO/Al2O3 ratios. Carbonated silicate partial melts fromeclogite may also contribute to less extreme alkalic OIB, asthese lavas have a number of compositional attributes, suchas high TiO2 and FeO* and low Al2O3, that have not been observedfrom partial melting of peridotite ± CO2. In upwellingmantle, formation of carbonatite and silicate melts from eclogiteand peridotite source lithologies occurs over a wide range ofdepths, producing significant opportunities for metasomatictransfer and implantation of melts. KEY WORDS: carbonated eclogite; experimental phase equilibria; partial melting; liquid immiscibility; ocean island basalts  相似文献   

3.
Experiments with peridotite minerals in simple (MgO–Al2O3–SiO2,CaO–MgO–SiO2 and CaO–MgO–Al2O3–SiO2)and natural systems were conducted at 1300–1500°Cand 6–10 GPa using a multi-anvil apparatus. The experimentsin simple systems demonstrated consistency with previous lowerpressure experiments in belt and piston–cylinder set-ups.The analysis of spatial variations in pyroxene compositionswithin experimental samples was used to demonstrate that pressureand temperature variations within the samples were less than0·4 GPa and 50°C. Olivine capsules were used in natural-systemexperiments with two mineral mixtures: SC1 (olivine + high-Alorthopyroxene + high-Al clinopyroxene + spinel) and J4 (olivine+ low-Al orthopyroxene + low-Al clinopyroxene + garnet). Theexperiments produced olivine + orthopyroxene + garnet ±clinopyroxene assemblages, occasionally with magnesite and carbonate-richmelt. Equilibrium compositions were derived by the analysisof grain rims and evaluation of mineral zoning. They were comparedwith our previous experiments with the same starting mixturesat 2·8–6·0 GPa and the results from simplesystems. The compositions of minerals from experiments withnatural mixtures show smooth pressure and temperature dependencesup to a pressure of 8 GPa. The experiments at 9 and 10 GPa producedandradite-rich garnets and pyroxene compositions deviating fromthe trends defined by the lower pressure experiments (e.g. higherAl in orthopyroxene and Ca in clinopyroxene). This discrepancyis attributed to a higher degree of oxidation in the high-pressureexperiments and an orthopyroxene–high-P clinopyroxenephase transition at 9 GPa. Based on new and previous resultsin simple and natural systems, a new version of the Al-in-orthopyroxenebarometer is presented. The new barometer adequately reproducesexperimental pressures up to 8 GPa. KEY WORDS: garnet; mineral equilibrium; multi-anvil apparatus; orthopyroxene; geobarometry  相似文献   

4.
Distribution of Ferric Iron in some Upper-Mantle Assemblages   总被引:16,自引:5,他引:11  
The distribution of ferric iron among the phases of upper-mantlerocks, as a function of pressure (P), temperature (T) and bulkcomposition, has been studied using 57Fe Mssbauer spectroscopyto determine the Fe3+/Fe ratios of mineral separates from 35peridotite and pyroxenite samples. The whole-rock Fe3+ complementof a peridotite is typically shared approximately evenly amongthe major anhydrous phases (spinel and/or garnet, orthopyroxeneand clinopyroxene), with the important exception of olivine,which contains negligible Fe3+. Whole-rock Fe3+ contents areindependent of the T and P of equilibration of the rock, butshow a well-defined simple inverse correlation with the degreeof depletion in a basaltic component. Fe3+ in spinel and inboth pyroxenes from the spinel Iherzolite facies shows a positivecorrelation with temperature, presumably owing to the decreasein the modal abundance of spinel. In garnet peridotites, theFe3+ in garnet increases markedly with increasing T and P, whereasthat in clinopyroxene remains approximately constant. The complexnature of the partitioning of Fe3+ between mantle phases resultsin complicated patterns of the activities of the Fe3+ -bearingcomponents, and thus in calculated equilibrium fO2, which showlittle correlation with whole-rock Fe3+ or degree of depletion.Whether Fe3+ is taken into account or ignored in calculatingmineral formulae for geothermobarometry can have major effectson the resulting calculated T and P. For Fe-Mg exchange geothermometers,large errors must occur when applied to samples more oxidizedor reduced than the experimental calibrations, whose fO2 conditionsare largely unknown. Two-pyroxene thermometry is more immuneto this problem, and probably provides the most reliable P—Testimates. Accordingly, the convergence of P—T valuesderived for a given garnet peridotite assemblage may not necessarilybe indicative of mineral equilibrium. The prospects for thecalculation of accurate Fe3+ contents from electron microprobeanalyses by assuming stoichiometry are good for spinel, uncertainfor garnet, and distinctly poor for pyroxenes. KEY WORDS: mantle; oxidation; partitioning; peridotite; thermobarometry *Corresponding author. Present address: School of Earth and Ocean Sciences, University of Victoria, P.O. Box 1700, Victoria, B.C., V8W 2Y2, Canada  相似文献   

5.
BECKER  HARRY 《Journal of Petrology》1996,37(4):785-810
Gamet-bearing high-temperature peridotite massifs in lower Austriawere exhumed during Carboniferous plate convergence in the Bohemianmassif. The peridotite massifs contain garnet pyroxenite layers,most of which are high-pressure cumulates that crystallizedin the deep lithosphere during ascent and cooling of hot asthenosphericmelts. Many of the pyroxenites have negative Eu anomalies andhigh LREE abundances in pyroxenes and bulk rocks, 87Sr/86Sr(335 Ma) as high as 0.7089, and Nd (335 Ma) as low as –4.8(leached clinopyroxenes and garnets). These pyroxenites alsoshow strong depletions in Rb, K, Ta, P and Ti compared withthe REE Equilibrium melt compositions calculated from the cumulatecompositions have very high LREE abundances (Lan = 300–600)and show strong LREEfractionation [(La/Sm)n = 7–47)].Trace element abundances, the Ca–Al-rich composition ofthe cumulates and possible Ti saturation in the melts suggestthat these melts were of primitive carbonatitic–meliliticor lamprophyrt-like composition. Other garnet pyroxenites suchas Al-rich garnet-kyanite clinopyroxemtes with positive Eu anomaliesprobably represent metamorphosed crustal rocks which were subductedand accreted to the lithospheric mantle. The high 87Sr/86Sr,low Nd (335 Ma) and negative Eu anomalies of the high-pressurecumulates can be explained if their equilibrium melts containeda component derived from subducted upper-crustal rocks. Thehigh equilibration pressures of the host peridotites (3–3.5GPa) and the high equilibration temperatures of the pyroxenites(1100–1400C) indicate that these melts are likely tobe derived from the sub-lithospheric mantle. There, meltingmay have been triggered by small amounts of melt or fluids derivedfrom a subducting slab at greater depth. KEY WORDS: garnet pyroxenites; geochemistry; lower Austria; ultramafic massifs; subduction  相似文献   

6.
The origin, evolution and primary melt compositions of lateCretaceous high-K ultramafic volcanics and associated basaltsof Eastern Kamchatka are discussed on the basis of a study ofthe mineralogy and geochemistry of the rocks and magmatic inclusionsin phenocrysts. The exceptionally primitive composition of thephenocryst assemblage [olivine—Fo;88–95, Cr-spinel—Cr/(Cr + Al) up to 85] provides direct evidence of the mantleorigin of primary melts, which were highly magnesian compositions(MgO 19–24 wt%). The rocks and meltsare characterizedby strong high field strength element (HFSE) depletion in comparisonwith rare earth elements, and high and variable levels of enrichmentin large ion lithophile elements (LILE), P, K and H2O (0.6–12wt % in picritic to basaltic melts). Nd values lie in a narrowrange (+107 to +91), typical of N-MORB (mid-ocean ridge basalt),but 87Sr/86Sr (0.70316–0.70358) is slightly displacedfrom the mantle array. High-K ultramafic melts from Kamchatkaare considered as a new magma type within the island-arc magmaticspectrum; basaltic members of the suite resemble arc shoshonites.The primary melts were produced under high-pressure (30–50kbar) and high-temperature(1500–1700C) conditions bypartial melting of a refractory peridotitic mantle. KEY WORDS: Kamchatka; Late Cretaceous magmatism; ultramafic volcanics; shoshonites *Corresponding author. Present address: Department of Geology, University of Tasmania, GPO Box 252C, Hobart, Tas., Australia  相似文献   

7.
To investigate eclogite melting under mantle conditions, wehave performed a series of piston-cylinder experiments usinga homogeneous synthetic starting material (GA2) that is representativeof altered mid-ocean ridge basalt. Experiments were conductedat pressures of 3·0, 4·0 and 5·0 GPa andover a temperature range of 1200–1600°C. The subsolidusmineralogy of GA2 consists of garnet and clinopyroxene withminor quartz–coesite, rutile and feldspar. Solidus temperaturesare located at 1230°C at 3·0 GPa and 1300°C at5·0 GPa, giving a steep solidus slope of 30–40°C/GPa.Melting intervals are in excess of 200°C and increase withpressure up to 5·0 GPa. At 3·0 GPa feldspar, rutileand quartz are residual phases up to 40°C above the solidus,whereas at higher pressures feldspar and rutile are rapidlymelted out above the solidus. Garnet and clinopyroxene are theonly residual phases once melt fractions exceed 20% and garnetis the sole liquidus phase over the investigated pressure range.With increasing melt fraction garnet and clinopyroxene becomeprogressively more Mg-rich, whereas coexisting melts vary fromK-rich dacites at low degrees of melting to basaltic andesitesat high melt fractions. Increasing pressure tends to increasethe jadeite and Ca-eskolaite components in clinopyroxene andenhance the modal proportion of garnet at low melt fractions,which effects a marked reduction in the Al2O3 and Na2O contentof the melt with pressure. In contrast, the TiO2 and K2O contentsof the low-degree melts increase with increasing pressure; thusNa2O and K2O behave in a contrasted manner as a function ofpressure. Altered oceanic basalt is an important component ofcrust returned to the mantle via plate subduction, so GA2 maybe representative of one of many different mafic lithologiespresent in the upper mantle. During upwelling of heterogeneousmantle domains, these mafic rock-types may undergo extensivemelting at great depths, because of their low solidus temperaturescompared with mantle peridotite. Melt batches may be highlyvariable in composition depending on the composition and degreeof melting of the source, the depth of melting, and the degreeof magma mixing. Some of the eclogite-derived melts may alsoreact with and refertilize surrounding peridotite, which itselfmay partially melt with further upwelling. Such complex magma-genesisconditions may partly explain the wide spectrum of primitivemagma compositions found within oceanic basalt suites. KEY WORDS: eclogite; experimental petrology; mafic magmatism; mantle melting; oceanic basalts  相似文献   

8.
Selective enrichment or depletion in either Zr and Hf (HFSE4+)or Nb and Ta (HFSE5+) is a feature commonly observed in manymantle-derived melts and amphiboles occurring as either disseminatedminerals in mantle xenoliths and peridotite massifs or in veinassemblages cutting these rocks. The fractionation of Nb fromZr seen in natural mantle amphiboles suggests that their incorporationis governed by different crystal-chemical mechanisms. An extensiveset of new partitioning experiments between pargasite–kaersutiteand melt under upper-mantle conditions shows that HFSE incorporationand fractionation depends on amphibole major-element compositionand the presence or absence of dehydrogenation. Multiple regressionanalysis shows that Amph/LDNb/Zr is strongly dependent on themg-number of the amphibole as a result of a combination of amphiboleand melt structure effects, so that the following generalizationsapply: (1) high-mg-number amphiboles crystallized from unmodifiedmantle melts more easily incorporate Zr relative to Nb leadingto an increase of the Nb/Zr ratio in the residual melt; (2)low-mg-number amphiboles, such as those found in veins cuttingperidotites, may strongly deplete the residual melt in Nb andcause very low Nb/Zr in residual melts. Implications and applicationsto mantle environments are discussed. KEY WORDS: trace elements; high field strength elements; partition coefficients; amphibole; upper mantle  相似文献   

9.
Major- and trace-element data on the constituent minerals ofgarnet peridotite xenoliths hosted in early Paleozoic (457–500Ma) kimberlites and Neogene (16–18 Ma) volcanic rockswithin the North China Craton are compared with those from thepre-pilot hole of the Chinese Continental Scientific DrillingProject (CCSD-PP1) in the tectonically exhumed Triassic (220Ma) Sulu ultrahigh-pressure (UHP) terrane along its southernmargin. P–T estimates for the Paleozoic and Neogene peridotitexenoliths reflect different model geotherms corresponding tosurface heat flows of 40 mW/m2 (Paleozoic) and 80 mW/m2 (Neogene).Garnet peridotite xenoliths or xenocrysts from the Paleozoickimberlites are strongly depleted, similar to peridotites fromother areas of cratonic mantle, with magnesium olivine (meanFo92.7), Cr-rich garnet and clinopyroxene with high La/Yb. Garnet(and spinel) peridotite xenoliths hosted in Neogene basaltsare derived from fertile mantle; they have high Al2O3 and TiO2contents, low-Mg-number olivine (mean Fo89.5), low-Cr garnetand diopside with flat rare earth element (REE) patterns. Thedifferences between the Paleozoic and Neogene xenoliths suggestthat a buoyant refractory lithospheric keel present beneaththe eastern North China Craton in Paleozoic times was at leastpartly replaced by younger, hotter and more fertile lithosphericmantle during Mesozoic–Cenozoic times. Garnet peridotitesfrom the Sulu UHP terrane have less magnesian olivine (Fo91.5),and lower-Cr garnet than the Paleozoic xenoliths. The diopsideshave low heavy REE (HREE) contents and sinusoidal to light REE(LREE)-enriched REE patterns. These features, and their highMg/Si and low CaO and Al2O3 contents, indicate that the CCSD-PP1peridotites represent a moderately refractory mantle protolith.Details of mineral chemistry indicate that this protolith experiencedcomplex metasomatism by asthenosphere-derived melts or fluidsin Mesoproterozoic, and subsolidus re-equilibration involvingfluids/melts derived from the subducted Yangtze continentalcrust during UHP metamorphism in the early Mesozoic. Tectonicextension of the subcontinental lithospheric mantle of the NorthChina Craton and exhumation of the Sulu UHP rocks in the earlyMesozoic induced upwelling of the asthenosphere. Peridotitessampled by the Neogene basalts represent newly formed lithospherederived by cooling of the upwelling asthenospheric mantle inJurassic–Cretaceous and Paleogene time. KEY WORDS: garnet peridotite xenoliths; North China Craton; lithospheric thinning; Sulu UHP terrane; UHP lithosphere evolution; mantle replacement  相似文献   

10.
Multianvil melting experiments in the system CaO–MgO–Al2O3–SiO2–CO2(CMAS–CO2) at 3–8 GPa, 1340–1800°C, involvingthe garnet lherzolite phase assemblage in equilibrium with CO2-bearingmelts, yield continuous gradations in melt composition betweencarbonatite, kimberlite, melilitite, komatiite, picrite, andbasalt melts. The phase relations encompass a divariant surfacein PT space. Comparison of the carbonatitic melts producedat the low-temperature side of this surface with naturally occurringcarbonatites indicates that natural magnesiocarbonatites couldbe generated over a wide range of pressures >2·5 GPa.Melts analogous to kimberlites form at higher temperatures alongthe divariant surface, which suggests that kimberlite genesisrequires more elevated geotherms. However, the amount of waterfound in some kimberlites has the potential to lower temperaturesfor the generation of kimberlitic melts by up to 150°C,provided no hydrous phases are present. Compositions resemblinggroup IB and IA kimberlites are produced at pressures around5–6 GPa and 10 GPa, respectively, whereas the compositionsof some other kimberlites suggest generation at higher pressuresstill. At pressures <4 GPa, an elevated geotherm producesmelilitite-like melt in the CMAS–CO2 system rather thankimberlite. Even when a relatively CO2-rich mantle compositioncontaining 0·15 wt % CO2 is assumed, kimberlites andmelilitites are produced by <1% melting and carbonatitesare generated by even smaller degrees of melting of <0·5%. KEY WORDS: carbonatite; CO2; kimberlite; melilitite; melt generation  相似文献   

11.
Neogene basanite lavas of Kozákov volcano, located alongthe Lusatian fault in the northeastern Czech Republic, containabundant anhydrous spinel lherzolite xenoliths that providean exceptionally continuous sampling of the upper two-thirdsof central European lithospheric mantle. The xenoliths yielda range of two-pyroxene equilibration temperatures from 680°Cto 1070°C, and are estimated to originate from depths of32–70 km, based on a tectonothermal model for basalticunderplating associated with Neogene rifting. The sub-Kozákovmantle is layered, consisting of an equigranular upper layer(32–43 km), a protogranular intermediate layer that containsspinel–pyroxene symplectites after garnet (43–67km), and an equigranular lower layer (67–70 km). Negativecorrelations of wt % TiO2, Al2O3, and CaO with MgO and clinopyroxenemode with Cr-number in the lherzolites record the effects ofpartial fusion and melt extraction; Y and Yb contents of clinopyroxeneand the Cr-number in spinel indicate 5 to 15% partial melting.Subsequent metasomatism of a depleted lherzolite protolith,probably by a silicate melt, produced enrichments in the largeion lithophile elements, light rare earth elements and highfield strength elements, and positive anomalies in primitivemantle normalized trace element patterns for P, Zr, and Hf.Although there are slight geochemical discontinuities at theboundaries between the three textural layers of mantle, theretends to be an overall decrease in the degree of depletion withdepth, accompanied by a decrease in the magnitude of metasomatism.Clinopyroxene separates from the intermediate protogranularlayer and the lower equigranular layer yield 143Nd/144Nd valuesof 0·51287–0·51307 (Nd = +4·6 to+8·4) and 87Sr/86Sr values of 0·70328–0·70339.Such values are intermediate with respect to the Nd–Srisotopic array defined by anhydrous spinel peridotite xenolithsfrom central Europe and are similar to those associated withthe present-day low-velocity anomaly in the upper mantle beneathEurope. The geochemical characteristics of the central Europeanlithospheric mantle reflect a complex evolution related to Devonianto Early Carboniferous plate convergence, accretion, and crustalthickening, Late Carboniferous to Permian extension and gravitationalcollapse, and Neogene rifting, lithospheric thinning, and magmatism. KEY WORDS: xenoliths; lithospheric mantle; REE–LILE–HFSE; Sr–Nd isotopes; Bohemian Massif  相似文献   

12.
Melt inclusion and host glass compositions from the easternend of the Southwest Indian Ridge show a progressive depletionin light rare earth elements (LREE), Na8 and (La/Sm)n, but anincrease in Fe8, from the NE (64°E) towards the SW (49°E).These changes indicate an increase in the degree of mantle meltingtowards the SW and correlate with a shallowing of the ridgeaxial depth and increase in crustal thickness. In addition,LREE enrichment in both melt inclusions and host glasses fromthe NE end of the ridge are compatible with re-fertilizationof a depleted mantle source. The large compositional variations(e.g. P2O5 and K2O) of the melt inclusions from the NE end ofthe ridge (64°E), coupled with low Fe8 values, suggest thatmelts from the NE correspond to a variety of different batchesof melts generated at shallow levels in the mantle melting column.In contrast, the progressively more depleted compositions andhigher Fe8 values of the olivine- and plagioclase-hosted meltinclusions at the SW end of the studied region (49°E), suggestthat these melt inclusions represent batches of melt generatedby higher degrees of melting at greater mean depths in the mantlemelting column. Systematic differences in Fe8 values betweenthe plagioclase- and the olivine-hosted melt inclusions in theSW end (49°E) of the studied ridge area, suggest that theplagioclase-hosted melt inclusions represent final batches ofmelt generated at the top of the mantle melting column, whereasthe olivine-hosted melt inclusions correspond to melts generatedfrom less depleted, more fertile mantle at greater depths. KEY WORDS: basalt; melt inclusions; olivine; plagioclase; Southwest Indian Ridge  相似文献   

13.
KUBO  K. 《Journal of Petrology》2002,43(3):423-448
Dunite formation processes in highly depleted peridotites arediscussed based upon a detailed study of the Iwanaidake peridotite,Hokkaido, Japan, which consists mainly of harzburgite with asmall amount of dunite. In the harzburgites, the Mg# [= 100x Mg/(Mg + Fe2+)] of olivine ranges from 91·5 to 92·5,and the Cr# [= 100 x Cr/(Cr + Al)] of spinel from 30 to 70;in the dunites, the Mg# of olivine ranges from 92·5 to94 and the Cr# of spinel from 60 to 85, respectively. The NiOwt % of olivine in harzburgites ranges from 0·38 to 0·44,and in dunites from 0·35 to 0·37. The Mg# andCr# are higher and NiO wt % is lower in the dunites than inthe harzburgites surrounding the dunites. The Mg# and Cr# exhibitnormal depletion trends expected from simple partial melting,whereas the NiO wt % shows an abnormal trend. On the basis ofmass balance calculations, dunites are considered to be derivedfrom the harzburgites by a process involving incongruent meltingof orthopyroxene (orthopyroxene olivine + Si-rich melt). Hydrousconditions were necessary to lower the solidus, and thus meltingof harzburgite was probably triggered by the introduction ofhydrous silicate melt. The dunite in this massif may have formedin the mantle wedge above a subduction zone. KEY WORDS: depleted peridotite; hydrous melt; incongruent melting; residual dunite; Iwanaidake peridotite  相似文献   

14.
In Central Dronning Maud Land, East Antarctica, rare metre-sizedlenses of spinel peridotite are enclosed in high-grade metamorphicrocks. The rocks experienced a medium-P granulite-facies metamorphismat 575 Ma and a low-P amphibolite-facies overprint at 530 Ma.The latter is probably related to extensive granitoid magmatismbetween 530 and 500 Ma, which produced large volumes (abouthalf of the outcrops today) of granitic to syenitic rocks aswell as abundant K-feldspar–quartz pegmatites. One ofthe spinel peridotite lenses in the Schirmacher Oasis of CentralDronning Maud Land is crosscut by several small (up to 10 cmwide) veins with a characteristic zoned sequence of mineralassemblages, which was formed by reaction of a hydrous, SiO2-saturatedfluid or pegmatitic melt with the peridotite. The zoned sequenceconsists of the following mineral assemblages (from the centreof the vein towards the outer margin): zone 0, plagioclase +quartz; zone 1, green biotite intergrown with zircon + clinoamphibole;zone 2, cummingtonite + dark brown biotite intergrown with rutile+ clinoamphibole; zone 3, cummingtonite + light brown biotite+ spinel; zone 4, olivine + orthopyroxene + spinel ±clinopyroxene (unaltered peridotite). This sequence was investigatedwith respect to its conditions of formation, modal mineralogy,mineral chemistry, fluid inclusions, and oxygen and hydrogenisotope compositions of selected minerals. Based on the stabilityof cummingtonite and on equilibrium calculations in the MgO–SiO2–H2Osystem and on quartz–biotite oxygen isotope thermometry,the reaction vein formed at 650°C, which is in accord withtypical pegmatite crystallization temperatures. The pegmatiteof zone 0 is interpreted to have formed in an open fissure whereas,on textural grounds, zone 3 replaces former peridotite. On thebasis of mass balance constraints, the boundary between zones1 and 2 is interpreted to approximately represent the formerboundary between peridotite and the open fissure before reaction.Oxygen isotope systematics show that the infiltrating fluidhad an isotopic composition of 9–10 SMOW. All mineralsof the reaction vein with the exception of the inherited spineland olivine in the adjacent peridotite are in equilibrium withsuch a fluid. Spinel in the peridotite is depleted in 18O comparedwith coexisting olivine, which suggests isotopic disequilibrium.Spinel in zone 3 has a distinctly different isotopic compositioncompared with that in the peridotite, apparently approachingbut not reaching equilibrium. The combination of mineral chemistryand mass balance constraints of the modal mineralogy constrainsthe volume change during metasomatism and the direction of elementaldiffusion. It is indicated that Mg, Cr and Ni always diffusedtowards the vein, whereas Si, Al, K, Na, H2O and possibly Fediffused into the peridotite. KEY WORDS: peridotite; metasomatism; pegmatite; diffusion; reaction  相似文献   

15.
16.
A geochemical and petrological study of Miocene to recent alkalibasalts, basanites, hawaiites, mugearites, trachytes, and phonoliteserupted within the Harrat Ash Shamah volcanic field was performedto reconstruct the magmatic evolution of southern Syria. Themajor element composition of the investigated lavas is mainlycontrolled by fractional crystallization of olivine, clinopyroxene,± Fe–Ti oxides and ± apatite; feldspar fractionationis restricted to the most evolved lavas. Na2O and SiO2 variationswithin uncontaminated, primitive lavas as well as variably fractionatedheavy rare earth element ratios suggest a formation by variabledegrees of partial melting of different garnet peridotite sourcestriggered, probably, by changes in mantle temperature. The isotopicrange as well as the variable trace element enrichment observedin the lavas imply derivation from both a volatile- and incompatibleelement-enriched asthenosphere and from a plume component. Inaddition, some lavas have been affected by crustal contamination.This effect is most prominent in evolved lavas older than 3·5Ma, which assimilated 30–40% of crustal material. In general,the periodicity of volcanism in conjunction with temporal changesin lava composition and melting regime suggest that the Syrianvolcanism was triggered by a pulsing mantle plume located underneathnorthwestern Arabia. KEY WORDS: 40Ar/39Ar ages; intraplate volcanism; mantle plume; partial melting; Syria  相似文献   

17.
Experimental Constraints on the Origin of the 1991 Pinatubo Dacite   总被引:12,自引:2,他引:12  
Crystallization (dacite) and interaction (dacite–peridotite)experiments have been performed on the 1991 Pinatubo dacite(Luzon Island, Philippines) to constrain its petrogenesis. Inthe dacite–H2O system at 960 MPa, magnetite and eitherclinopyroxene (low H2O) or amphibole (high H2O) are the liquidusphases. No garnet is observed at this pressure. Dacite–peridotite interaction at 920 MPa produces massive orthopyroxenecrystallization, in addition to amphibole ± phlogopite.Amphibole crystallizing in dacite at 960 MPa has the same compositionas the aluminium-rich hornblende preserved in the cores of amphibolephenocrysts in the 1991 dacite, suggesting a high-pressure stageof dacite crystallization with high melt H2O contents (>10wt %) at relatively low temperature (<950°C). The compositionsof plagioclase, amphibole and melt inclusion suggest that thePinatubo dacite was water-rich, oxidized and not much hotterthan 900°C, when emplaced into the shallow magma reservoirin which most phenocrysts precipitated before the onset of the1991 eruption. The LREE-enriched REE pattern of the whole-rockdacite demands garnet somewhere during its petrogenesis, whichin turn suggests high-pressure derivation. Partial melting ofsubducted oceanic crust yields melts unlike the Pinatubo dacite.Interaction of these slab melts with sub-arc peridotite is unableto produce a Pinatubo type of dacite, nor is a direct mantleorigin conceivable on the basis of our peridotite–daciteinteraction experimental results. Dehydration melting of underplatedbasalts requires unrealistically high temperatures and doesnot yield dacite with the low FeO/MgO, and high H2O, Ni andCr contents typical of the Pinatubo dacite. The most plausibleorigin of the Pinatubo dacite is via high-pressure fractionationof a hydrous, oxidized, primitive basalt that crystallized amphiboleand garnet upon cooling. Dacite melts produced in this way weredirectly expelled from the uppermost mantle or lower crust toshallow-level reservoirs from which they erupted occasionally.Magmas such as the Pinatubo dacite may provide evidence forthe existence of particularly H2O-rich conditions in the sub-arcmantle wedge rather than the melting of the young, hot subductingoceanic plate. KEY WORDS: Pinatubo dacite; slab melt; experimental petrology; arc magmas  相似文献   

18.
Peridotites associated with pyroxenites (with rare olivine andspinel) are exposed on the islands of San Jorge and Santa Isabelin the Solomon Islands. Orthopyroxenite occurs in large outcrops(100 m2) whereas websterite and clinopyroxenite occur as layersand veins/dykes in peridotites. The bulk compositions of thepyroxenites are characterized by high Mg2+/(Mg2+ + Fe2+) (0·78–0·91)and low Al2O3 (<2·7 wt %). Low rare earth elementabundances are coupled with large ion lithophile element enrichmentsand positive Sr and Pb anomalies (primitive mantle-normalized)relative to adjacent rare earths. Temperatures of equilibrationfor the pyroxenites are between 950 and 1050°C. These relativelylow temperatures, combined with the occurrence of primary fluidinclusions, suggest that the pyroxenites formed by interactionof peridotite protoliths with an aqueous fluid. Bulk-rock andmineral compositions of the orthopyroxenites are similar tothose of mantle-derived pyroxenites, whereas the websteriteshave closer chemical affinity with crustal arc cumulates. Nevertheless,field relationships plus petrological, textural and geochemicalevidence are consistent with formation of all pyroxenite typesin supra-subduction zone mantle, resulting from metasomatismof peridotite by subducted Pacific Plate-derived fluid. Sucha setting for pyroxenite has not previously been reported indetail. We propose that these processes produce mantle pyroxenitewith compositions similar to crustal pyroxenite. KEY WORDS: mantle metasomatism; pyroxenite; supra-subduction zone  相似文献   

19.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2 = 43.7–45.7 wt.per cent, A12O3 = 1.6O–8.21 wt. per cent, CaO = 0.70–8.12wt. per cent, alk = 0.10–0.90 wt. per cent and Mg/(Mg+Fe2+)= 0.94–0.85) have been investigated in the hypersolidusregion from 800? to 1250?C with variable activities of H2O,CO2, and H2. The vapor-saturated peridotite solidi are 50–200?Cbelow those previously published. The temperature of the beginningof melting of peridotite decreases markedly with decreasingMg/(Mg+SFe) of the starting material at constant CaO/Al2O3.Conversely, lowering CaO/Al2O3 reduces the temperature at constantMg/(Mg+Fe) of the starting material. Temperature differencesbetween the solidi up to 200?C are observed. All solidi displaya temperature minimum reflecting the appearance of garnet. Thisminimum shifts to lower pressure with decreasing Mg/(Mg + Fe)of the starting material. The temperature of the beginning ofmelting decreases isobarically as approximately a linear functionof the mol fraction of H2O in the vapor (XH2Ov). The data alsoshow that some CO2 may dissolve in silicate melts formed bypartial melting of peridotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or co-exist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aHjo conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. Itis suggested that komatiite in Precambrian terrane could formby direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of XH2Ov = 0.5–0.25 (XCO2v= 0.5–0.75). Such activities of H2O result in meltingat depths ranging between 125 and 175 km in the mantle. Thisrange is within the minimum depth generally accepted for theformation of kimberlite.  相似文献   

20.
Widespread bodies of garnet–spinel metaperidotites withpyroxenitic layers occur in the ultrahigh-pressure metamorphicKimi Complex. In this study we address the origin of such peridotite–pyroxeniteassociations in the context of polybaric melting regimes. Weconduct a detailed geochemical investigation of major and traceelement relations and compare them with a range of major elementmodelling scenarios. With increasing bulk-rock MgO content,the garnet–spinel metaperidotites exhibit decreasing CaO,Al2O3, TiO2, and Na2O along with increasing Ni and a graduallyincreasing Zr/Zr* anomaly, consistent with an origin as residuesafter variable degrees of melt extraction. The major elementmodelling further suggests a polybaric adiabatic decompressionmelting regime beginning at high to ultrahigh pressure, withan intermediate character between pure batch and fractionalmelting and a mean extent of melting of 9–11%. The pyroxenitesexhibit major element compositions that cannot be reproducedby experimental or calculated melts of peridotite. Moreover,the Kimi pyroxenites have highly variable Ni and Sc contentsand a wide range of Mg-number (0· 76–0·89), inconsistent with an origin as frozen melts or the productsof melt–peridotite interaction. However, both the majorelement systematics and the observed rare earth element patterns,with both convex and concave shapes, can be explained by anorigin as clinopyroxene-rich, high-pressure cumulates involvinggarnet and/or Cr-spinel. KEY WORDS: peridotite; pyroxenite; partial melting; UHP metamorphism; cumulate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号