首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formed during an early compressional period in the opening of North Atlantic Ocean, a Tertiary fold-thrust belt extends along the mid-to- southern part of the western coast of Spitsbergen. Complex thrust structures involve the basement (Caledonian and older) and many shallow dipping thrust faults dissect the overlying cover rocks (Devonian and younger) in Oscar II Land in the northern part of the belt. Some of these faults occur within the basement rocks with slivers or fault blocks of the cover rocks from south-western Brøggerhalvøya to innermost St. Jonsfjorden in north-eastern Oscar II Land. Six of the slivers contain Carboniferous rocks and one is a fault-bounded block with Devonian rocks. These steeply west-dipping faults form a complex fault system- EOFC (Engelskbukta-Osbornbreen Fault Complex) - within the basement area. The lithological units of the basement are separated by faults within the EOFC, which is structurally continuous with the Brøggerhalvøya fold-thrust zone to the north and is thought to continue to the fold-thrust zone on the south-eastern coast of St. Jonsfjorden. Some previous authors considered that the two lithologically contrasting Vendian diamictites and intervening Moefjellet Formation are stratigraphically continuous and defined two separate tilloid successions in the present area. This interpretation has been extended over the whole of western Spitsbergen. However, the present study indicates that these two tilloid formations and the Moefjellet Formation are separated by the faults, probably thrusts, within the EOFC and are not in a continuous stratigraphic relation. Therefore, the two-stage history of Vendian glaciation seems questionable.  相似文献   

2.
Air photo interpretation along with limited field work is the basis of a compilation map of Tertiary structures in the Upper Paleozoic through Mesozoic platform cover strata of Nordenskiold Land. Permian Kapp Starostin Formation strata form a continuous marker horizon delineating both a large NE-verging fold complex, which involves the basement (Hecla Hoek sequence) through basal Tertiary strata, and somewhat smaller scale folds, some of which may have formed in association with detachments and thrusts within the platform cover sequence. The map pattern is both a function of local structural plunge and changes in fold geometry along strike. Regional considerations suggest that subsurface basement-involved thrusts exist. In S Nordenskiold Land, to the E of folded Kapp Starostin Formation strata, a 3.5 km wide zone of folding and thrusting in Triassic and Jurassic strata above a subhorizontal decollement is inferred to occur. Further E is the W limb of the central Tertiary basin syncline.  相似文献   

3.
The Yanshan fold‐thrust belt is an exposed portion of a major Mesozoic orogenic system that lies north of Beijing in northeast China. Structures and strata within the Yanshan record a complex history of thrust faulting characterized by multiple deformational events. Initially, Triassic thrusting led to the erosion of a thick sequence of Proterozoic and Palaeozoic sedimentary strata from northern reaches of the thrust belt; Triassic–Lower Jurassic strata that record this episode are deposited in a thin belt south of this zone of erosion. This was followed by postulated Late Jurassic emplacement of a major allochthon (the Chengde thrust plate), which is thought to have overridden structures and strata associated with the Triassic event and is cut by two younger thrusts (the Gubeikou and Chengde County thrusts). The Chengde allochthon is now expressed as a major east–west trending, thrust‐bounded synform (the Chengde synform), which has been interpreted as a folded klippe 20 km wide underlain by a single, north‐vergent thrust fault. Two sedimentary basins, defined on the basis of provenance, geochronology and palaeodispersal trends, developed within the Yanshan belt during Late Jurassic–Early Cretaceous time and are closely associated with the Chengde thrust and allied structures. Shouwangfen basin developed in the footwall of the Gubeikou thrust and records syntectonic unroofing of the hanging wall of that fault. Chengde basin developed in part atop Proterozoic strata interpreted as the upper plate of the Chengde allochthon and records unroofing of the adjacent Chengde County thrust. Both the Chengde County thrust and the Gubeikou thrust are younger than emplacement of the postulated Chengde allochthon, and structurally underlie it, yet neither Shouwangfen basin nor Chengde basin contain a detrital record of the erosion of this overlying structure. In addition, facies, palaeodispersal patterns and geochronology of Upper Jurassic strata that are cut by the Chengde thrust suggest only limited (ca. 5 km) displacement along this fault. We suggest that the units forming the Chengde synform are autochthonous, and that the synform is bounded by two limited‐displacement faults of opposing north and south vergence, rather than a single large north‐directed thrust. This conclusion implies that the Yanshan belt experienced far less Late Jurassic shortening than was previously thought, and has major implications for the Mesozoic evolution of the region. Specifically, we argue that the bulk of shortening and uplift in the Yanshan belt was accomplished during Triassic–Early Jurassic time, and that Late Jurassic structures modified and locally ponded sediments from a well‐developed southward drainage system developed atop this older orogen. Although Upper Jurassic strata are widespread throughout the Yanshan belt, it is clear that these strata developed within several discrete intermontane basins that are not correlable across the belt as a single entity. Thus, the Yanshan has no obvious associated foreland basin, and determining where the Mesozoic erosional products of this orogen ultimately lie is one of the more intriguing unresolved questions surrounding the palaeogeography of North China.  相似文献   

4.
A structural map of Oscar II Land compiled using black and white, stereo-pair air photos and other available information sources suggests the existence of three structural zones within the deformed platform cover strata. The western zone consists of basement involved overthrusts of complex geometry in the north large-scale folds of platform cover strata with a stepped, down to the east profile in the south. The central zone consists primarily of folds within Kapp Starostin Fm. and overlying Triassic strata that likely formed above a subhorizontal décollement within Gipshuken Fm. strata. Farther to the east thrusts emplace Permian Kapp Starostin Fm. strata over Triassic strata. This zone probably represents stratigraphic climb of the basal decollement. Conservative estimates of shortening for the central and eastern zones are in the 15-25% range. The contribution of the western zone structures to overall Tertiary shortening depends on the geometry of faults underlying the stepped folds and is uncertain at present.
Changes along strike are in part due to differential levels of erosion and changes in transport direction, but also probably important was variable thickness of the platform cover strata involved (less to the north) and the availability of incompetent horizons along which thrust-fiats could form. Two areas with anomalous structural trends may represent oblique ramps.  相似文献   

5.
The landscape of the Canadian Rockies in southern Alberta is not a direct result of constructional processes; that is, the ridges and peaks have not been pushed into the positions in which we see them today. Tectonic activity provided original elevation but not mountains: at the end of Laramide time, what are now the front ranges and foothills of the Rockies comprised a high-elevation upland of relatively low relief. The present mountain physiography is the result of 55–60 million years of post-orogenic differential erosion, in which more resistant rocks have been left at higher elevations than less-resistant rocks.The Canadian Rockies and the foothills are developed in a thin-skinned, thrust-and-fold belt created during the Laramide Orogeny; the adjacent Interior Plains cut across foreland basin sediments derived from the mountains. The mountains currently consist of large parts of ridges of well-indurated Paleozoic and, locally, Proterozoic rock alternating with valleys developed in soft Mesozoic clastic rock. In the foothills, where the soft Mesozoic rock is at the surface, relief is subdued, but ridges of more-resistant sandstone rise above shaley lowlands. The plains are relatively flat but also contain erosional outliers of higher paleo-plains-surfaces.Numerous lines of evidence suggest that the mountains and foothills have lost several kilometers of overburden since the end of the Laramide Orogeny, while the western plains have lost at least 2 km, requiring that the local relief of the mountains and foothills that we see is erosional in origin. Local physiography is adjusted to lithology: the mountains have high relief because the exposed sub-Mesozoic rocks can hold up high, steep slopes, whereas the foothills have low relief because the underlying Cretaceous rocks cannot hold up high, steep slopes. The east-facing escarpment at the mountain front is a fault-line scarp along a low-angle thrust.Mesozoic rocks involved in the deformation originally extended all the way across the thrust and fold belt, and physiography of the belt at the end of Laramide time (60–55 Ma) depended mainly on whether Mesozoic or Paleozoic/Proterozoic rocks were exposed at the surface at that time. A reconstruction using critical-taper theory generally agrees with reconstructions from earlier stratigraphic and paleothermometry studies: what are now the front ranges at the eastern edge of the Rocky Mountains were mostly or perhaps entirely covered with Mesozoic rocks and despite that high elevation had a hilly, not mountainous, character. The main ranges, in the central Rocky Mountains, were in part stripped of Mesozoic cover by then and more mountainous. Treeline was higher then, and the thrust belt may have been largely or entirely vegetated. Generation of modern relief in the front ranges, including the escarpment at the mountain front, had to await stripping of Mesozoic rocks and incision of rivers into harder substrates in post-Laramide time.The Interior Plains are an erosional surface that was cut 1 to 3 km below the aggradational top of the foreland basin sediments. Although some of the present low local relief of the plains results from weakness of underlying Cretaceous/Tertiary rocks, the low relief is probably largely related to the process of denudation.  相似文献   

6.
Deposition and subsidence analysis, coupled with previous structural studies of the Sevier thrust belt, provide a means of reconstructing the detailed kinematic history of depositional response to episodic thrusting in the Cordilleran foreland basin of southern Wyoming, western interior USA. The Upper Cretaceous basin fill is divided into five megasequences bounded by unconformities. The Sevier thrust belt in northern Utah and southwestern Wyoming deformed in an eastward progression of episodic thrusting. Three major episodes of displacement on the Willard‐Meade, Crawford and ‘early’ Absaroka thrusts occurred from Aptian to early Campanian, and the thrust wedge gradually became supercritically tapered. The Frontier Formation conglomerate, Echo Canyon and Weber Canyon Conglomerates and Little Muddy Creek Conglomerate were deposited in response to these major thrusting events. Corresponding to these proximal conglomerates within the thrust belt, Megasequences 1, 2 and 3 were developed in the distal foreland of southern Wyoming. Two‐dimensional (2‐D) subsidence analyses show that the basin was divided into foredeep, forebulge and backbulge depozones. Foredeep subsidence in Megasequences 1, 2 and 3, resulting from Willard‐Meade, Crawford and ‘early’ Absaroka thrust loading, were confined to a narrow zone in the western part of the basin. Subsidence in the broad region east of the forebulge was dominantly controlled by sediment loading and inferred dynamic subsidence. Individual subsidence curves are characterized by three stages from rapid to slow. Controlled by relationships between accommodation and sediment supply, the basin was filled with retrogradational shales during periods of rapid subsidence, followed by progradational coarse clastic wedges during periods of slow subsidence. During middle Campanian time (ca. 78.5–73.4 Ma), the thrust wedge was stalled because of wedge‐top erosion and became subcritical, and the foredeep zone eroded and rebounded because of isostasy. The eroded sediments were transported far from the thrust belt, and constitute Megasequence 4 that was mostly composed of fluvial and coastal plain depositional systems. Subsidence rates were very slow, because of post‐thrusting rebound, and the resulting 2‐D subsidence was lenticular in an east–west direction. During late Campanian to early Maastrichtian time, widespread deposits of coarse sediment (the Hams Fork Conglomerate) aggraded the top of the thrust wedge after it stalled, prior to initiation of ‘late’ Absaroka thrusting. Meanwhile Megasequence 5 was deposited in the Wyoming foreland under the influence of both the intraforeland Wind River basement uplift and the Sevier thrust belt.  相似文献   

7.
Summary. LITHOPROBE has acquired nearly 270 km of crustal seismic reflection data across the eastern portion of the southern Canadian Cordillera, These reflection profiles, obtained during the Fall of 1985, extend from the Rocky Mountain thrust and fold belt, across the Rocky Mountain Trench, Purcell anticlinorium, Kootenay Arc, Nelson batholith and Valhalla gneiss complex. North American basement and its overlying foreshortened miogeoclinal rocks can be traced westward to the Kootenay Arc. The Purcell anticlinorium is carried by a series of west dipping thrust faults which emerge east of the anticlinorium and converge downward and merge with a detachment surface above autochthonous North American basement. Proterozoic supracrustal rocks, thickened by folding and thrusting, occupy the core of the anticlinorium. Steeply dipping surface structures of the western Purcell anticlinorium and Kootenay Arc appear to be truncated at 3 - 4 s (9-12 km) by a gently east-dipping reflection that may delineate the upper boundary of an allochthonous wedge inserted between the near surface rocks and autochthonous basement below. Beneath the Kootenay Arc, at a travel time of 9–10 s (27–30 km), the North American basement seems to be truncated by the major east-dipping Slocan Lake fault zone, which can be traced from its surface exposure at the east edge of the Valhalla gneiss complex eastward to near the base of the crust. A high amplitude, west-dipping reflection underlies the Valhalla complex and may be related to a major compressional shear zone.  相似文献   

8.
The Stara Planina is an E–W-trending range within the Balkan belt in central Bulgaria. This topographically high mountain range was the site of Mesozoic through early Cenozoic thrusting and convergence, and its high topography is generally thought to have resulted from crustal shortening associated with those events. However, uplift of this belt appears to be much younger than the age of thrusting and correlates instead with the age of Pliocene–Quaternary normal faulting along the southern side of the range. Flexural modelling indicates the morphology of the range is consistent with flexural uplift of footwall rocks during Pliocene–Quaternary displacement on S-dipping normal faults bounding the south side of the mountains, provided that the effective elastic plate thickness of 12  km under the Moesian platform is reduced to about 3  km under the Stara Planina. This small value of elastic plate thickness under the Stara Planina is similar to values observed in the Basin and Range Province of the western United States, and suggests that weakening of the lithosphere is due to heating of the lithosphere during extension, perhaps to the point that large-scale flow of material is possible within the lower crust. Because weakening is observed to affect the Moesian lithosphere for ≈10  km beyond (north of) the surface expression of extension, this study suggests that processes within the uppermost mantle, such as convection, play an active role in the extension process. The results of this study also suggest that much of the topographic relief in thrust belts where convergence is accompanied by coeval extension in the upper plate (or 'back arc'), such as in the Apennines, may be a flexural response to unloading during normal faulting, rather than a direct response to crustal shortening in the thrust belt.  相似文献   

9.
New multifold seismic-reflection and wide-angle reflection/refraction data across George VI Sound, Antarctic Peninsula, show the presence of graben and horst structures indicating an extensional origin. The data suggest that rocks of an accretionary complex and fore-arc basin underlie the Sound and are in faulted contact along its eastern boundary with volcanic and plutonic rocks of the associated Mesozoic arc of western Palmer Land. A cover of possible syn- and postglacial Cenozoic deposits drapes the structures. The combination of new seismic, synthetic-aperture radar and previously acquired data suggests subduction-related rifting in the Sound was segmented, with opening in the south predominately by normal extension whilst in the north, dextral transtension predominated.  相似文献   

10.
《Basin Research》2018,30(2):187-216
This study aims at understanding the origin and nature of syn‐orogenic fluid flow in the Jaca basin from the South Pyrenean fold and thrust‐belt, as recorded in calcite and quartz veins of the Sierras Interiores (Spain) and the turbiditic basin, which cover upper Cretaceous to Late Eocene syntectonic deposits. The fracture network consists of a classical pattern of transverse and longitudinal fractures related to Layer Parallel Shortening (LPS) and folding respectively. Veins filled equally about the third of fractures in the carbonate shelf and turbidites. Carbon and oxygen isotopes of calcite veins mostly indicate precipitation from isotopically buffered water, consistent with high water‐rock interaction. In the Sierras Interiores, petrographical observations and fluid inclusion microthermometry are consistent with two distinct stages of precipitation. The first stage is characterized by relatively low Th and low salinities (155–205 °C and 0.5–3.2 wt% eq. NaCl). The second stage, which was characterized both by the formation of mode‐I joints and by mode‐I reactivation of pre‐existing veins, shows higher Th and salinities (215–270 °C and 2.2–5.7 wt% eq. NaCl). Waters recorded in the second stage are interpreted to have interacted with underlying Triassic evaporites and flowed along major thrusts before vein precipitation, which are locally in thermal disequilibrium with host‐rocks. We suggest the transition from a rather closed hydrological system during the first stage of vein formation, interpreted to have occurred during Eaux‐chaudes thrusting (upper Lutetian‐Bartonian), to a more open hydrological system during the second stage, which likely occurred during Gavarnie thrusting (Priabonian‐early Rupelian). Finally, we also document the migration in space and time of hydrothermal pulses along the South Pyrenean Foreland Basin, related to the westward propagation of major thrusts during the Pyrenean orogeny.  相似文献   

11.
The Dzereg Basin is an actively evolving intracontinental basin in the Altai region of western Mongolia. The basin is sandwiched between two transpressional ranges, which occur at the termination zones of two regional‐scale dextral strike‐slip fault systems. The basin contains distinct Upper Mesozoic and Cenozoic stratigraphic sequences that are separated by an angular unconformity, which represents a regionally correlative peneplanation surface. Mesozoic strata are characterized by northwest and south–southeast‐derived thick clast‐supported conglomerates (Jurassic) overlain by fine‐grained lacustrine and alluvial deposits containing few fluvial channels (Cretaceous). Cenozoic deposits consist of dominantly alluvial fan and fluvial sediments shed from adjacent mountain ranges during the Oligocene–Holocene. The basin is still receiving sediment today, but is actively deforming and closing. Outwardly propagating thrust faults bound the ranges, whereas within the basin, active folding and thrusting occurs within two marginal deforming belts. Consequently, active fan deposition has shifted towards the basin centre with time, and previously deposited sediment has been uplifted, eroded and redeposited, leading to complex facies architecture. The geometry of folds and faults within the basin and the distribution of Mesozoic sediments suggest that the basin formed as a series of extensional half‐grabens in the Jurassic–Cretaceous which have been transpressionally reactivated by normal fault inversion in the Tertiary. Other clastic basins in the region may therefore also be inherited Mesozoic depocentres. The Dzereg Basin is a world class laboratory for studying competing processes of uplift, deformation, erosion, sedimentation and depocentre migration in an actively forming intracontinental transpressional basin.  相似文献   

12.
The stratigraphy of the Eocene-Miocene peripheral foreland basin in Switzerland consists of basal deposits of Nummulitic Limestones and Globigerina Marls representing a phase of deepening, followed by two shallowing-up megacycles culminating in fully continental sedimentation. The onset of sedimentation was diachronous and took place on an unconformity surface with increasing stratigraphic gap to the north and west. In the Ultrahelvetic units, which were derived from the south and have a provenance between the Helvetic shelf and the Penninic ocean, the stratigraphic gap is minimal. This restricts the initiation of erosion of the southern European margin due to emersion to post-Maastrichtian and pre-late Palaeocene. This coincides with the final closing of the Valais trough and may therefore be interpreted as the point at which continental flexure s. s. started. In the autochthon, the subcrop map of the unconformity surface shows that the regional pattern of subcropping units is oblique to both neo-Alpine tectonic structures and Helvetic (Mesozoic) passive margin structures. There are local zones of disruption to the broad regional pattern suggesting that the basal unconformity was corrugated. Both the paliaspastic restoration of the autochthon relative to the thrust front during the Palaeocene, and the regional pattern of erosion indicate that the basal unconformity may be due to erosion of a flexural forebulge. Following deposition of the shallow water Nummulitic Limestones and the deeper water Globigerina Marls, clastic sediments were shed from the orogenic wedge in the south. These turbidites, the Taveyannaz Sandstones, filled both ponded basins at the contemporaneous thrust front and the frontal trench or foredeep. Evidently, early thrusts drove at a shallow level into the embryonic basin as ‘front-runners’, whereas most shortening and uplift continued to take place within the main part of the orogenic wedge further to the south. Eventually, the frontal palaeohighs, together with the turbidite basins, were buried by the northward emplacement of surface mud-slides, and sediment depocentres were translated northwards onto the foreland. The most likely cause of the underfilled ‘Flysch’ stage is the rapid advance of a submarine thrust wedge over the flexed European plate which resulted in (i) low sediment fluxes and (ii) high subsidence rates associated with the rapid migration of the load and depocentre. Later, as the rate of advance slowed and the wedge became subaerially exposed, the basin rapidly filled with coarse-grained detritus representing the ‘Molasse’ stage.  相似文献   

13.
OLA EIKEN 《Polar research》1985,3(2):167-176
The status of seismic exploration work mapping the post-Caledonian strata in the Svalbard area is presented. Compressional wave velocities are very high throughout the area, around 4km/s in the Tertiary and Mesozoic layers. In the Permian section velocities exceed 5 km/s, with refraction velocities > 6 km/s in the calcareous rocks of the Gipsdalen Group (early Permian/Late Carboniferous). Apart from correlation with carbonate and chert lithology, high velocities reflect the high degree of consolidation and the low porosities of shales and sandstones in the post-Caledonian strata in Svalbard. In van Mijenfjorden seismic reflection events are observed down to 3–4 km depth and associated with Carboniferous and younger strata. The thickness of the Mesozoic layers in this part of the central Spitsbergen syncline seems to be greater than previously suggested, and there is an apparent eastward divergence between the Jurassic and the Triassic reflectors. In south-western Storfjorden, reflections interpreted to originate from Carboniferous and Permian strata might represent the seaward extension of the central Spitsbergen syncline. In the northern part of Storfjorden, carbonate layers within the Gipsdalen Group are interpreted to lie about one kilometre below the sea floor. A prominent fault zone in this area trends NNW-SSE, like the main structural elements on Spitsbergen. It shows block-faulting, presumably caused by extensional movement in late Devonian-Carboniferous time.  相似文献   

14.
The Billefjorden Fault Zone represents a major lineament on Spitsbergen with a history of tectonic activity going back into the Devonian and possibly earlier. Recent structural, sedimcntological and stratigraphical investigations indicate that most of the stratigraphic thickness variations within the Mesozoic strata along the Billefjorden Fault Zone south of Isfjordcn are due to Tertiary compressional tectonics related to the transpressive Eocene West-Spitsbergen Orogeny. No convincing evidence of distinct Mesozoic extensional events, as suggested by previous workers, has been recognized. Tertiary compressional tectonics are characterized by a combined thin-skinned/thick-skinned structural style. Decollement zones arc recognized in the Triassic Sassendalen Group (tower Décollement Zone) and in the Jurassic/Cretaceous Janusfjellet Subgroup (Upper Décollement Zone). East-vergent folding and reverse faulting associated with these decollement' zones have resulted in the development of compressional structures, of which the major arc the Skolten and Tronfjellct Anticlines and the Advcntelva Duplex. Movements on one or more high angle east-dipping reverse faults in the pre-Mesozoic basement have resulted in the development of the Juvdalskampcn Monocline, and are responsible for out-of-sequence thrusting and thinning of the Mesozoic sequence across the Billefjorden Fault Zone. Preliminary shortening calculations indicate an eastward displacement of minimum 3-4 km, possibly as much as 10 km for the Lower Cretaceous and younger rocks across the Billefjorden Fault Zone.  相似文献   

15.
Summary. Some 180 km of new VIBROSEIS profiles have been acquired in the southern Appalachian Inner Piedmont, Brevard fault zone and eastern Blue Ridge as part of the ADCOH Project site investigation. These data are of the highest quality yet obtained in a crystalline terrane in the US, perhaps in the world, and reveal several conclusions that should have a direct bearing upon the world-wide nature of composite crystalline thrust sheets and their modes of interaction with the platform rocks beneath. Strong reflections previously interpreted as the base of the crystalline sheet are clearly part of the platform sedimentary (clastic rocks) sequence resting upon the autochthonous basement and early Palaeozoic rift basins. This reflection package and related transparent zones are clearly repeated beneath the crystalline sheet indicating a complex of thrusts repeating units within the platform succession. Reflectors (granitoid-amplibolite contacts) in the crystalline sheet in the Inner Piedmont represent recumbent folds of similar wavelengths and amplitudes to folds mappable on the surface. Duplexing of platform rocks beneath the crystalline sheet appears to have resulted in doming of the crystalline sheet. Similarly, duplex formation in the platform was probably controlled by both the thickness of the crystalline sheet and the rheological properties of the platform succession.  相似文献   

16.
We propose and test a conceptual framework for evaluating the relative timing of different types of sedimentary indicators of tectonism in alluvial foreland basin settings. We take the first occurrence of a detrital grain from a newly exposed source‐area lithology to provide the best indicator of the onset of tectonic uplift in the source area. Source‐area unroofing may lag behind initial uplift because of the type, thickness and structure of rocks in the uplifted mountain block, drainage patterns and climate. However, once exposed, advective transport disperses grains quickly throughout fluvial systems. Because of increased subsidence rate from thrust belt loading, an increase in sedimentation rate begins coincident with tectonic load emplacement within the flexural half‐width of the basin. However, farther out into the basin increased sedimentation rates lag behind the composition signal because of time lags associated with propagation of the thrust load and attendant sediment loads into the basin. The progradation of syntectonic gravel lags behind all of these signals as a direct function of the relative proportion of gravel fraction within transported sediment and rates and geometry of subsidence, which selectively traps the coarsest grain‐size fractions in the most proximal parts of the basin. We demonstrate this signal attenuation in the syntectonic Horta–Gandesa alluvial system (late Eocene–Oligocene), exposed along the southeast margin of the Ebro Basin, Spain. The results demonstrate that: (1) the time spans between the compositional signal and the progradation of the gravel front can be geologically significant, on the order of more than a million years within as little as 20 km of the thrust front; and (2) time lags between the signals increase with distance away from the deformation front. No lag time was observed between the first appearance of a new clast composition and the arrival of gravel front when the thrust front was within a few tens of metres from the depositional site. In contrast, the time lag was 0.5–1 Myr when the thrust front was about 5–6 km away and it increased to >1 Myr when the deformation front was about 8 km away. At the most extreme position, when the thrust front was 15–20 km away, the gravel front never reached the study area.  相似文献   

17.
A central question in structural geology is whether, and by what mechanism, active faults (and the folds often associated with them) grow in length as they accumulate displacement. An obstacle in our understanding of these processes is the lack of examples in which the lateral growth of active structures can be demonstrated definitively, as geomorphic indicators of lateral propagation are often difficult, or even impossible to distinguish from the effects of varying lithology or non‐uniform displacement and slip histories. In this paper we examine, using the Zagros mountains of southern Iran as our example, the extent to which qualitative analysis of satellite imagery and digital topography can yield insight into the growth, lateral propagation, and interaction of individual fold segments in regions of active continental shortening. The Zagros fold‐and‐thrust belt contains spectacular whaleback anticlines that are well exposed in resistant Tertiary and Mesozoic limestone, are often >100 km in length, and which contain a large proportion of the global hydrocarbon reserves. In one example, Kuh‐e Handun, where an anticline is mantled by soft Miocene sediments, direct evidence of lateral fold propagation is recorded in remnants of consequent drainage patterns on the fold flanks that do not correspond to the present‐day topography. We suggest that in most other cases, the soft Miocene and Pliocene sediments that originally mantled the folds, and which would have recorded early stages in the growth histories, have been completely stripped away, thus removing any direct geomorphic evidence of lateral propagation. However, many of the long fold chains of the Zagros do appear to be formed from numerous segments that have coalesced. If our interpretations are correct, the merger of individual fold segments that have grown in length is a major control on the development of through‐going drainage and sedimentation patterns in the Zagros, and may be an important process in other regions of crustal shortening as well. Abundant earthquakes in the Zagros show that large seismogenic thrust faults must be present at depth, but these faults rarely reach the Earth's surface, and their relationship to the surface folding is not well constrained. The individual fold segments that we identify are typically 20–40 km in length, which correlates well with the maximum length of the seismogenic basement faults suggested from the largest observed thrusting earthquakes. This correlation between the lengths of individual fold segments and the lengths of seismogenic faults at depth suggest that it is possible, at least in some cases, that there may be a direct relationship between folding and faulting in the Zagros, with individual fold segments underlain by discrete thrusts.  相似文献   

18.
Recent field studies of Upper Proterozoic rocks in northern Wedel Jarlsberg Land, southwest Spitsbergen, have shed new light on the pre-Caledonian evolution of the region. A regional angular unconformity divides the greenschist-facies metasedimentary rocks into two distinct tectono-siratigraphic sequenees. The sub-unconformity (Nordbukta) sequence, exposed in the southwestern part of the study area, consists mainly of quartzites, phyllites and dolomites, and may be correlative with Proterozoic rocks exposed east of Recherchebreen (Magnethøgda sequence) and south of Torellbreen (Dcilegga sequence). The Nordbukta sequence was affected by large-scale recumbent folding during late (?) Proterozoic tectonism. Strata above the unconformity (Dunderbukta-Recherchefjorden sequence) include conglomerates, dolomites, green and black phyllites, meta-basalts and Vendian (?) diamictites, with laterally complex depositional relationships. The continuation of this sequence south of Torellbreen is the Sofiebogen Group in the Hornsund area. The apparent continuity of both sub- and supra-unconformity Proterozoic rocks across Recherchebreen and Torellbreen is not compatible with the hypothesis that a major late Devonian strike-slip terranc boundary lies beneath these glaciers.  相似文献   

19.
Scaled sandbox models simulated primary controls on the kinematics of the early structural evolution of salt‐detached, gravity‐driven thrust belts on passive margins. Models had a neutral‐density, brittle overburden overlying a viscous décollement layer. Deformation created linked extension–translation–shortening systems. The location of initial brittle failure of the overburden was sensitive to perturbations at the base of the salt. Salt pinch‐out determined the seaward limit of the thrust belt. The thrust belts were dominated by pop‐up structures or detachment folds cut by break thrusts. Pop‐ups were separated by flat‐bottomed synclines that were partially overthrust. Above a uniformly dipping basement, thrusts initiated at the salt pinch‐out then consistently broke landward. In contrast, thrust belts above a seaward‐flattening hinged basement nucleated above the hinge and then spread both seaward and landward. The seaward‐dipping taper of these thrust belts was much lower than typical, frictional, Coulomb‐wedge models. Towards the salt pinch‐out, frictional resistance increased, thrusts verged strongly seawards and the dip of the taper reversed as the leading thrust overrode this pinch‐out. We attribute the geometry of these thrust belts to several causes. (1) Low friction of the basal décollement favours near‐symmetric pop‐ups. (2) Mobile salt migrates away from local loads created by overthrusting, which reduces the seaward taper of the thrust belt. (3) In this gravity‐driven system, shortening quickly spreads to form wide thrust belts, in which most of the strain overlapped in time.  相似文献   

20.
The Permo‐Carboniferous to Eocene Sverdrup Basin in Canada's Arctic Archipelago is strongly influenced by evaporite diapirism. However, salt structures within the basin have not been extensively investigated recently due to their remote location. This study includes the interpretation of legacy seismic reflection and borehole data to characterize the geometry of selected evaporite domes, and 1D backstripping of wells to investigate tectonic and sedimentary influences on diapirism. Extensional rift‐structures appear to have played a significant role in the formation of evaporite domes by triggering and directing salt movement. Diapirism was initiated by at least the Middle Triassic and continued to develop during the Mesozoic. Differential loading of salt on opposing east–west dome margins led to their present day asymmetric geometries. Diapir growth rates in the Mesozoic were closely linked to the rate of sedimentation and influenced by regional tectonism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号