首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Phase equilibria in the join CaMgSi2O6-CaFeAlSiO6-CaTiAl2O6 have been determined in air at 1 atm by the ordinary quenching method. Clinopyroxeness, forsterite, perovskite, magnetitess, spinelss, hibonite and an unknown phase X are present at liquidus temperatures (ss: solid solution). At subsolidus temperatures the following phase assemblages were encountered; clinopyroxeness+perovskite, clinopyroxeness +perovskite+spinelss, clinopyroxeness +perovskite+melilite (+anorthite), clinopyroxeness +perovskite+melilite+spinelss+anorthite, clinopyroxeness +perovskite+anorthite+spinelss, and clinopyroxeness +perovskite+anorthite+hibonite. At subsolidus temperatures the single phase field of clinopyroxeness extends up to 19 wt.% CaTiAl2O6. Even in the field of clinopyroxeness+perovskite, the TiO2 content in clinopyroxeness continues to increase and attains 9.2 wt.% TiO2 with 24.8 wt.% Al2O3. An interesting fact is that unusual clinopyroxenes which contain more AlIV than SiIV are present in the CaFe-AlSiO6-rich region. The liquid coexisting with pyroxene is richer in Ti, Al, and Fe3+ than the coexisting pyroxene. The clinopyroxenesss coexisting with liquid contain less TiO2, Al2O3 and Fe2O3 than those crystallized at subsolidus temperatures. The petrological significance of the join and the crystallization of Ti- and Al-rich clinopyroxenes are discussed on the basis of the experimental results of the join.  相似文献   

2.
In the system CaO-MgO-Al2O3-SiO2, the tetrahedron CaMgSi2O6(di)-Mg2SiO4(fo)-SiO2-CaAl2 SiO6(CaTs) forms a simplified basalt tetrahedron, and within this tetrahedron, the plane di-fo-CaAl2Si2O8(an) separates simplified tholeiitic from alkalic basalts. Liquidus phase relations on this join have been studied at 1 atm and at 7, 10, 15, and 20 kbar. The temperature maximum on the 1 atm isobaric quaternary univariant line along which forsterite, diopside, anorthite, and liquid are in equilibrium lies to the SiO2-rich side of the join di-fo-an. The isobaric quaternary invariant point at which forsterite, diopside, anorthite, spinel, and liquid are in equilibrium passes, with increasing pressure, from the silica-poor to the silica-rich side of the join di-fo-an, which causes the piercing points on this join to change from forsterite+diopside+anorthite+liquid and forsterite +spinel+anorthite+liquid below 5 kbar to forsterite +diopside+spinel+liquid and diopside +spinel+anorthite+liquid above 5 kbar. As pressure increases, the forsterite and anorthite fields contract and the diopside and corundum fields expand. The anorthite primary phase field disappears entirely from the join di-fo-an between 15 and 20 kbar. Below about 4 kbar, the join di-fo-an represents, in simplified form, a thermal divide between alkalic and tholeiitic basalts. From about 4 to at least 12 kbar, alkalic basalts can produce tholeiitic basalts by fractional crystallization, and at pressures above about 12 kbar, it is possible for alkalic basalt to be produced from oceanite by crystallization of both olivine and orthopyroxene. If alkalic basalts are primary melts from a lherzolite mantle, they must be produced at high pressures, probably greater than about 12 kbar.Department of Geosciences, University of Texas at Dallas Contribution No. 327. Hawaii Institute of Geophysics Contribution No. 814.  相似文献   

3.
The enthalpies of solution of several synthetic garnets on the join Mg3Al2Si3O12-Ca3Al2Si3O12 (pyrope-grossular) and of several synthetic clinopyroxenes on the join CaMgSi2O6-CaAl2SiO6 (diopside-Ca-Tschermak's molecule) were measured in a melt of composition 2PbO · B2O3 at 970 K. The determinations were made with sufficient precision so that thermochemical characterizations of the solid solutions could be achieved.The pyrope-grossular solutions show positive enthalpies of mixing. The non-ideality in the range 0–30 mole % grossular is relatively the largest and is in good agreement with the predictions of Ganguly and Kennedy (1974) based largely on cation partitioning of natural high grade metamorphic garnets with biotite, and with the deductions of Hensenet al. (1975) based on measurement of the compositions of synthetic pyrope-rich garnets equilibrated with anorthite, Al2SiO5 and quartz. However, the garnets show smaller excess enthalpies at higher grossular contents. This would lead to an asymmetric solvus with a critical temperature lower than predicted by the symmetrical regular solution model of Ganguly and Kennedy (1974). The composition-dependent non-ideality can be understood by simple ionic size considerations in solid substitution and is analogous to the situations for the calcite-dolomite and enstatite-diopside solvi.The heats of solution of pyropes crystallized in the range 1000–1500°C were all the same, within the precision of measurement, and thus we have found no evidence for temperature-dependent cation disordering as a possible explanation of the high entropy of pyrope, as suggested by Charluet al. (1975). Positional disorder of dodecahedral Mg is a more probable reason.The diopside-CaTs join is also non-ideal, with the larger positive enthalpy deviations near the diopside end. The calorimetric data in the magnesian range are consistemt with the model for completely disordered tetrahedral Si and Al which results from the free energy derivations of wood (1975) based on syntheses of diopside-rich aluminous pyroxenes in the presence of anorthite and quartz. At higher Al concentrations the calorimetric data seem more consistent with the ‘local charge-balance’ model of Wood (1975).No evidence for temperature-dependent disorder was found for either the diopside or CaTs end-members.  相似文献   

4.
Kosmochlor (NaCrSi2O6) was synthesized by the flux method from melts along the join Na2O·2 SiO2-Na2O·Cr2O3·4 SiO2 at 1000° C in air, and isolated by dissolving the glassy matrix with hydrofluoric and perchloric acids. The join CaMgSi2O6-NaCrSi2O6 was studied at 1 atmosphere in air by the quenching technique at temperatures between 900° and 1450° C, using mixtures of kosmochlor and diopside crystals or diopside glass as starting materials. The phases are diopside solid solution, kosmochlor, spinel (Mg-chromite), eskolaite (Cr2O3) and glass. The maximum solubility of kosmochlor in diopside is 24 wt percent at 1140° C, while diopside is not soluble at all in kosmochlor, resulting in the existence of a wide range of immiscibility. Petrologic significance of the results is discussed.  相似文献   

5.
Mixtures of synthetic crystalline enstatite and diopside were reacted with small water contents in sealed capsules in piston-cylinder apparatus at 30 kb between 1000° C and 1700° C. The compositions of coexisting enstatite and diopside solid solutions were measured with an ARL-EMX electron microprobe between 1000° C and 1500° C. Between 1100° C and 1500° C the pyroxenes coexisted with H2O-undersaturated liquid which quenched to inhomogeneous pyroxene crystals. The presence of liquid facilitated growth of pyroxene crystals suitable for microprobe determinations. The solvus of Davis and Boyd (1966) is generally used in geothermometry; our enstatite solvus limb is a few mol-% richer in Mg2Si2O6 in the temperature range 1000–1400° C; our diopside solvus limb is a few mol-% richer in Mg2Si2O6 below 1100°C, in close agreement between 1100° C and 1200° C, but richer in CaMgSi2O6 between 1200° C and 1500° C. Estimated equilibration temperatures for a diopside with composition 78.7% Di is 1300° C according to our results compared with 1210° C for the Davis and Boyd solvus.  相似文献   

6.
Subsolidus and vapor-saturated liquidus phase relations for a portion of the system CaO-MgO-SiO2-H2O, as inferred from experimental data for the composition regions CaMgSi2O6-Mg2SiO4-SiO2-H2O and CaMgSi2O6-Mg2SiO4-Ca3MgSi2O8 (merwinite)-H2O, are presented in pressure-temperature projection. Sixteen invariant points and 39 univariant reactions are defined on the basis of the 1 atm and 10 kbar (vapor-saturated) liquidus diagrams. Lack of experimental control over many of the reactions makes the depicted relations schematic in part.An invariant point involving orthoenstatite, protoenstatite, pigeonite, and diopside (all solid solutions) occurs at low pressure (probably between 1 and 2 kbar). At pressures below this invariant point, orthoenstatite breaks down at high temperature to the assemblage diopside + protoenstatite; with increasing temperature, the latter assemblage reacts to form pigeonite. At pressures above the invariant point, pigeonite forms according to the reaction diopside + orthoenstatite = pigeonite, and the assemblage diopside + protoenstatite is not stable. At 1 atm, both pigeonite and protoenstatite occur as primary liquidus phases, but at pressures above 6–7 kbar orthoenstatite is the only Ca-poor pyroxene polymorph which appears on the vapor-saturated liquidus surface.At pressures above approximately 10.8 kbar, only diopside, forsterite, and merwinite occur as primary liquidus phases in the system CaMgSi2O6-Mg2SiO4-Ca3MgSi2O8-H2O, in the presence of an aqueous vapor phase. At pressures between 1 atm and 10.2 kbar, both akermanite and monticellite also occur as primary liquidus phases. Comparison of the 1 atm and 10 kbar vapor-saturated liquidus diagrams suggests that melilite basalt bears a low pressure, or shallow depth, relationship to monticellite-bearing ultrabasites.  相似文献   

7.
Amoeboid olivine aggregates (AOAs) in primitive (unmetamorphosed and unaltered) carbonaceous chondrites are uniformly 16O-enriched (Δ17O ∼ −20‰) and consist of forsterite (Fa<2), FeNi-metal, and a refractory component (individual CAIs and fine-grained minerals interspersed with forsterite grains) composed of Al-diopside, anorthite, ±spinel, and exceptionally rare melilite (Åk<15); some CAIs in AOAs have compact, igneous textures. Melilite in AOAs is replaced by a fine-grained mixture of spinel, Al-diopside, and anorthite. Spinel is corroded by anorthite or by Al-diopside. In ∼10% of > 500 AOAs studied in the CR, CV, CM, CO, CH, CB, and ungrouped carbonaceous chondrites Acfer 094, Adelaide, and LEW85332, forsterite is replaced to a various degree by low-Ca pyroxene. There are three major textural occurrences of low-Ca pyroxene in AOAs: (i) thin (<10 μm) discontinuous layers around forsterite grains or along forsterite grain boundaries in AOA peripheries; (ii) haloes and subhedral grains around FeNi-metal nodules in AOA peripheries, and (iii) thick (up to 70 μm) continuous layers with abundant tiny inclusions of FeNi-metal grains around AOAs. AOAs with low-Ca pyroxene appear to have experienced melting of various degrees. In the most extensively melted AOA in the CV chondrite Leoville, only spinel grains are relict; forsterite, anorthite and Al-diopside were melted. This AOA has an igneous rim of low-Ca pyroxene with abundant FeNi-metal nodules and is texturally similar to Type I chondrules.Based on these observations and thermodynamic analysis, we conclude that AOAs are aggregates of relatively low temperature solar nebular condensates originated in 16O-rich gaseous reservoir(s), probably CAI-forming region(s). Some of the CAIs were melted before aggregation into AOAs. Many AOAs must have also experienced melting, but of a much smaller degree than chondrules. Before and possibly after aggregation, melilite and spinel reacted with the gaseous SiO and Mg to form Ca-Tschermakite (CaAl2SiO6)-diopside (CaMgSi2O6) solid solution and anorthite. Solid or incipiently melted olivine in some AOAs reacted with gaseous SiO in the CAI- or chondrule-forming regions to form low-Ca pyroxene: Mg2SiO4 + SiO(g) + H2O(g) = Mg2Si2O6 + H2(g). Some low-Ca pyroxenes in AOAs may have formed by oxidation of Si-bearing FeNi-metal: Mg2SiO4 + Si(in FeNi) + 2H2O(g) = Mg2Si2O6 + 2H2(g) and by direct gas-solid condensation: Mg(g) + SiO(g) +H2O(g) = Mg2Si2O6(s) + H2(g) from fractionated (Mg/Si ratio < solar) nebular gas.Although bulk compositions of AOAs are rather similar to those of Type I chondrules, on the projection from spinel onto the plane Ca2SiO4-Mg2SiO4-Al2O3, these objects plot on different sides of the anorthite-forsterite thermal divide, suggesting that Type I chondrules cannot be produced from AOAs by an igneous fractionation. Formation of low-Ca pyroxene by reaction of AOAs with gaseous SiO and by melting of silica-rich dust accreted around AOAs moves bulk compositions of the AOAs towards chondrules, and provide possible mechanisms of transformation of refractory materials into chondrules or chondrule precursors. The rare occurrences of low-Ca pyroxene in AOAs may indicate that either AOAs were isolated from the hot nebular gas before condensation of low-Ca pyroxene or that condensation of low-Ca pyroxene by reaction between forsterite and gaseous SiO was kinetically inhibited. If the latter is correct, then the common occurrences of pyroxene-rich Type I chondrules may require either direct condensation of low-Ca pyroxenes or SiO2 from fractionated nebular gas or condensation of gaseous SiO into chondrule melts.  相似文献   

8.
Greyish-brown, irregularly-shaped aggregates composed predominantly of olivine make up ~2% of the Allende meteorite by volume. Many of the aggregates are constructed of subspherical lumps of micron-sized crystals of olivine, pyroxene, nepheline and sodalite surrounded by coarsergrained olivine. Rarely, anorthite, spinel and perovskite are also present. The olivine ranges in composition from Fo64 to Fo99. Pyroxenes range from aluminous diopside to hedenbergite to very Al-rich and Ti-Al-rich varieties. The nepheline contains 1.6–2.4% K2O and 1.6–5.2% CaO but the sodalite is significantly poorer in these elements. The spinel contains 2.1–13.4% FeO. Textural information and oxygen isotopic data suggest that the aggregates are composed of primary, solid condensates from the solar nebula. The perovskite. spinel and Ti-Al-rich pyroxenes are the remains of high-temperature condensates but the olivine compositions and the presence of feldspathoids indicate that some of the grains continued to react with the solar nebular vapor in the temperature range 500–900°K.  相似文献   

9.
Experiments using V2O5 as a high-temperature solvent have produced compositional reversals defining the miscibility gap between enstatite and diopside on the join Mg2Si2O6-CaMgSi2O6 between 925° and 1,175° C at atmospheric pressure. These experiments locate an equilibrium near 1,000° C among diopside, protoenstatite, and orthoenstatite; they verify the stable coexistence of diopside and protoenstatite above 1,000° C and disprove the hypothesis that orthoenstatite has a stability field which is continuous from temperatures below 1,000° C to the solidus. The phase relations suggest that the orthorhombic low-Ca pyroxene on the solidus in this system (formerly identified as orthoenstatite) is a phase distinct from the orthoenstatite stable with diopside at low subsolidus temperatures. Data locating the orthoenstatite-diopside miscibility gap validate the use at low pressures of symmetric orthopyroxene and asymmetric clinopyroxene solution models in this system.  相似文献   

10.
The effect of Cr on the silicate system has been studied in air at 1 atm by adding a small amount of MgCr2O4 (0.2–0.5 wt.%) to the join Mg2SiO4 (forsterite) — CaAl2Si2O8 (anorthite) — CaMgSi2O6 (diopside), which has been considered to form a thermal divide in the system CaO-MgO-Al2O3-SiO2. The spinel primary field is enlarged compared with that in the Cr-free join at the expense of the anorthite primary field. The piercing points forsterite+anorthite+diopside+liquid and forsterite+anorthite+spinel+liquid approach each other with increasing MgCr2O4, meet at the join with 0.25 wt.% MgCr2O4 (0.20 wt.% Cr2O3) to form the ‘isobaric quaternary invariant point’ forsterite+anorthite+diopside+spinel+liquid, and then separate again as new ‘piercing points’ of diopside+spinel+anorthite+liquid and forsterite+diopside+ spinel+liquid. This process indicates that the join Mg2SiO4-CaAl2Si2O8-CaMgSi2O6 containing more than 0.2 wt.% Cr2O3 cannot be a thermal divide in the basalt tetrahedron. The results of the present study show that the presence of a minor amount of Cr causes a significant effect on the phase relations and therefore, the role of Cr must be taken into account in the formulation of a petrologic model.  相似文献   

11.
The equilibrium crystallization sequence at 1 atmosphere in air of a melt corresponding in composition to the average composition of Type B Ca-Al-rich inclusions from the Allende meteorite is: spinel (1550°C) → melilite (1400°C; Åk22) → anorthite (1260°C) → Ti-Al-rich clinopyroxene (1230°C; “Ti-fassaite”). The melilite becomes increasingly åkermanitic with decreasing temperature. The pyroxene is similar in composition to fassaites from Type B inclusions. Preliminary results suggest that the crystallization sequence is similar at oxygen fugacities near the iron-wüstite buffer.The results of these experiments have been integrated with available phase equilibrium data in the system CaO-MgO-Al2O3-SiO2TiO2 and a phase diagram for predicting the crystallization sequences of liquids with compositions of coarse-grained Ca-Al-rich inclusions has been developed.Available bulk compositions of coarse-grained inclusions form a well-defined trend in terms of major elements, extending from Type A and Bl inclusions near the spinel-melilite join to more pyroxene-rich Type B2 inclusions. The trend deviates from the expected sequence of solid condensates from a nebular gas at P = 10?3 atm if pure diopside is assumed to be the clinopyroxene that condenses. The Type A-B1 end of the trend is similar in composition to calculated equilibrium condensates at 1202–1227°C and the trend as a whole parallels the sequence of condensates expected from diopside condensation at ~ 1170°C. The trend is consistent to first order with the condensation of solid Ti-rich fassaite in place of pure diopside at higher temperatures than those at which pure diopside is predicted to condense. Partially molten condensates may be likely in this case or if the nebular pressure is higher than 10?3 atm.  相似文献   

12.
Subsolidus phase relations in the system CaO-Al2O3-SiO2 (CAS) were experimentally determined with tight reversals of several univariant curves and with 14 equilibration experiments containing the assemblage pyroxene + anorthite, where pyroxene is a binary solid solution of Ca-Tschermak (CaTs-CaAl2SiO6) and Ca-Eskola (CaEs-Ca0.5AlSi2O6) endmembers.Reversals were obtained on the following reactions (bar, °C): 3An = Gr + 2Ky + Q (P = 22T ? 700), 3An + Cor = Gr + 3Ky (P = 21.8T ? 950), 3CaTs= Gr + 2Cor(P = 55T ? 53900), and 6CaTs(1 ? x)CaEsx = 2(1 ? 2x)Gr + 4(1 ? 2x)Cor + 9xAn. Observed slopes indicate 9.8 J/mol · K of Al-Si disorder in Ca-Tschermak pyroxene and 5.3 J/mol·K of Al-Si disorder in anorthite, at 1300°C. It is suggested that Al-Si disorder in anorthite increases by 1.9 J/mol · K from 700°C to 1300°C.Compositions of CaTs-CaEs pyroxene in equilibrium with anorthite and PbO-rich liquid were experimentally determined at 1400–1430°C and 22.7–30.8 kbar. Microprobe measurements gave compositions which are consistent with an ideal pyroxene solution and the following parameters for the reaction 3An = 2CaTs + 2CaEs (J, bar, K): 2RTln(XCaTs · XCaEs) + 60200 + 86.4T ? (5.06 + 13 × 10?7P)P = 0, resulting in ΔH0j = ?39.8 kJ/mol and S0 = 461.8 J/mol · K for the Ca-Eskola endmember at 1300°C. The obtained properties of the Ca-Eskola component are necessary for thermobarometry based on pyroxene bearing assemblages containing plagioclase, quartz, or kyanite.  相似文献   

13.
Green, salitic pyroxenes occur as megacrysts and as cores in diopsidic pyroxene phenocrysts and microphenocrysts in a wyomingite lava from Hatcher Mesa, Leucite Hills, Wyoming. Al-rich phlogopite (16–21% Al2O3), apatite, Fe-Ti-oxide, Mg-rich olivine (Fo93) and orthopyroxene (En61) also occur as megacrysts or as inclusions in diopside phenocrysts. All of these phases are found in ultramafic xenoliths in the host lava, and petrographic and chemical evidence is presented that the megacrysts originate by the disaggregation of the xenoliths. It is concluded that the latter are accidental fragments of the wall rocks traversed by the wyomingite magma and it is suggested that the clinopyroxene-rich xenoliths, from which the green pyroxenes are derived, formed in the upper mantle as a result of local metasomatism or by crystallization from magmas of unknown composition during an earlier igneous event. The precise role of the clinopyroxene-rich xenoliths (which also contain apatite, Fe-Ti-oxide and amphibole) in the genesis of the Leucite Hills magmas cannot be elucidated on the basis of the available data, but it is unlikely that they represent the source material from which these magmas are derived.  相似文献   

14.
The system CaMgSi2O6CaAl2SiO6CaFeAlSiO6 has been studied in air at 1 atm. The phase assemblage at subsolidus temperatures in the CaMgSi2O6-rich portion is Cpx + An + Mel and that in the CaMgSi2O6-poor portion Cpx + An + Mel + Sp. At subsolidus temperatures the sigle-phase field of clinopyroxene increases with an increase in the CaFeAlSiO6 component of the system. The Al2O3 content of clinopyroxene, however, continues to increase beyond the single-phase field and attains at least 16.04 wt.% Al2O3 with 3.9 wt.% Fe2O3. The stability field of fassaite in the system over a range of pressures and oxygen fugacities has been estimated from data in the literature as well as the present data. The CaFeAlSiO6 content of fassaite is dependent on oxygen fugacity, but is not influenced by pressure. The stability field is strongly influenced by oxygen fugacity at low and high pressure, and decreases with decreasing oxygen fugacity. Clinopyroxenes in both volcanic and metamorphic rocks from various localities, when plotted on the CaMgSi2O6CaAl2SiO6CaFeAlSiO6 triangle, show that there is no compositional gap between diopside and fassaitic pyroxene in metamorphic rocks, and that the fassaitic pyroxene in alkalic rocks becomes richer in both CaAl2SiO6 and CaFeAlSiO5 components as crystallization proceeds. These results agree with those obtained in the experimental study.  相似文献   

15.
Enthalpies of solution in 2PbO· B2O3 at 712°C have been measured for glasses in the systems albite anorthite diopside, NaAlO2-SiO2, Ca0.5AlO2-SiO2 and albite-anorthite-quartz. The systems albite-anorthite and diopside-anorthite show substantial negative enthalpies of mixing, albite-diopside shows significant positive heats of mixing. For compositions up to NaAlO2 = 0.42 (which includes the subsystem albite-silica) the system NaAlO2-SiO2 shows essentially zero heats of mixing. A negative ternary excess heat of mixing is found in the plagioclase-rich portion of the albite-anorthite-diopside system. The join Si4O8-CaAl2Si2O8 shows small but significant heats of mixing. In albite-anorthite-quartz. ternary glasses, the ternary excess enthalpy of mixing is positive.Based on available heat capacity data and appropriate consideration of the glass transition, the enthalpy of the crystal-glass transition (vitrification) is a serious underestimate of the enthalpy of the crystal-liquid transition (fusion) especially when the melting point, Tf, is many hundreds of degrees higher than the glass transition temperature, Tg. On the other hand, the same heat capacity data suggest that the enthalpies of mixing in albite-anorthite-diopside liquids are calculated to be quite similar to those in the glasses. The enthalpies of mixing observed in general support the structural models proposed by Taylor and Brown (1979a, b) and others for the structure of aluminosilicate glasses.  相似文献   

16.
The join diopside (CaMgSi2O6) — ureyite (NaCrSi2O6) was studied at pressures of 1 atm, 1 kb, 5 kb, and 20 kb using gel mixtures as starting materials. All runs except those at 1 atm were made under hydrous conditions. The data show that the solubility of ureyite in diopside decreases with increasing pressure. At 20 kb the maximum ureyite content of diopside is 13 weight percent (4.6% Cr2O3) as compared to 24 weight percent at 1 atm. It is predicted that pyroxenes that have equilibrated at depths >140 km will not contain a ureyite component; rather Cr will enter diopside in the form of a CaCr(CrSi)O6 component. Pyroxenes containing this component were found as metastable phases at 20 kb.  相似文献   

17.
The aluminous pyroxene, fassaite, occurs in two small tabularbodies within mafic plutonites of the Boulder Batholith nearits north-east margin twelve miles east of Helena, Montana.First described by Knopf & Lee (1957), the bodies are contact-metasomatizedlimestone septa, now magnesian-tactites, consisting chieflyof fassaite, spinel, garnet, vesuvianite, and clintonite. Lesscommon minerals include pargasite, diopside, wollastonite, sphene,perovskite, anorthite, forsterite, calcite and chlorite. Sometwenty-five microprobe analyses of the fassaite show it is variablein composition and largely consists of the components CaMgSi2O6(53–83 per cent), CaAl2SiO6 (7–25 per cent), CaFeAlSiO6(8–28 per cent), and CaTiAl2O6 (0–7 per cent). Thestoichiometry generally requires that most of the iron is ferric,consistent with Mössbauer data taken on a typical sample.If fassaite analyses from these and other contact metamorphicrocks are plotted on a triangular diagram with Ca(Mg,Fe)Si2O6,CaAl2SiO6 and CaFeAlSiO6 as end-members, the distribution ofpoints offers no positive evidence for a solvus gap betweenfassaite and diopside as proposed by Ginzburg (1969). The mostaluminous fassaites occur with spinel-clintonite ± grossularand have 25 per cent of the Si replaced by Al, making them truepolymorphs of a garnet (i.e. Gr42And23Pp35). No unusual cationordering is detected in these fassaites by single-crystal X-rayphotographs or Mössbauer measurements. Smede's (1966) estimate of 3–4 km of stratigraphic coverfor the Boulder Batholith indicates pressures of approximately1 kb, in agreement with the occurrence of andalusite + K-feldsparin a hornfels at the Kokaruda Ranch complex. The partial assemblagesof grossular, epidote, perovskite, anorthite-wollastonite, anorthite-calcite,and fassaite-calcite require XCO2 = 0·12 ± 0·08and T = 570 ± 10 °C at these pressures. These pressuresand temperatures place this occurrence in the upper portionsof the hornblende-hornfels facies after Turner (1968), althoughthe low pressures and water-rich fluids permit assemblages (wollastonite,calcite-forsterite-diopside) that Turner lists as characteristicof the pyroxene-hornfels facies.  相似文献   

18.
High temperature solution calorimetry of glasses in the system CaMgSi2O6 (Di)-CaAl2SiO6 (CaTs) show them to have negative enthalpies of mixing with a regular enthalpy parameter, WH, of -11.4 ± 0.7 kcal. Negative heats of mixing between alumina-rich and alumina-poor glasses seem to be a general phenomenon in aluminosilicates and are not confined only to glassy systems containing anorthite as a component. The thermodynamic behavior of glasses in the system SiO2-Ca0.5;AlO2-CaMgO2 appears to vary in a smooth fashion, with small positive heats of mixing near SiO2 and substantial negative heats of mixing for other compositions. The exothermic behavior with increasing A1(Al + Si) may be related to local charge balance of M2+ and Al3+. The negative heats of mixing in MgCaSi2O6-CaAl2SiO6, MgCaSi2O6-CaAl2Si2O8 and NaAlSi3O8-CaAl2Si2O8 glasses are in contrast to the positive heats of mixing found in MgCaSi2O6-CaAl2SiO6 (pyroxene) and NaAlSi3O8-CaAl2Si2O8 (high plagioclase) crystalline solid solutions.  相似文献   

19.
Clinopyroxene composition in mafic lavas from different tectonic settings   总被引:18,自引:0,他引:18  
Many metamorphosed and weathered basalts contain fresh clinopyroxene crystals set in an altered groundmass. Microprobe analysis of these relict grains can be used to identify the magma type of the host lava. Statistical discrimination of clinopyroxenes from known magma types provides a test of the effectiveness of this method, showing that any attempt to classify an unknown clinopyroxene as either an ocean-floor basalt, a volcanic arc basalt, a within plate tholeiite or a within plate alkali basalt magma type should have a 70% chance of success. Identification of within plate alkali basalts is most likely to be successful because their pyroxenes characteristically have high Na and Ti and low Si contents. Within plate tholeiites can usually be distinguished from volcanic arc basalts because their pyroxenes contain more Ti, Fe and Mn. However, neither of these last two magma types can be easily distinguished from ocean floor basalts on the basis of pyroxene analyses. Diagrams of pyroxene composition based on discriminant functions and on Na2O vs MnO vs TiO2, SiO2 vs TiO2 and SiO2 vs Al2O3 provide the basis for visual discrimination. The discrimination achieved is mainly due to differences in the bulk chemistry of the host magmas and in the partitioning of cations into the pyroxene lattice; differences in temperature and crystallization histroy of the magmas are of lesser, but nevertheless finite, importance. Application of this technique to pyroxenes in metabasalts from Othris, Greece gave results consistent with, but more ambiguous than, results obtained from immobile trace element studies.  相似文献   

20.
Based on the available experimental data on phase equilibria in the FeO -MgO -SiO2 system the mixing properties of the solid solutions (olivine, β- and γ-spinel, pyroxene, majorite, ilmenite and perovskite and magnesiowustite), the enthalpies of FeO and fictive FeSiO3 phases with ilmenite and majorite structures have been assessed. The entropies, temperature dependance of heat capacities for fictive FeSiO3 end-members were estimated from structural analogies. The calculated phase diagrams for Mg2SiO4-Fe2SiO4 and MgSiO3 — FeSiO3 systems at pressures up to 30 GPa and temperatures between 1000 and 2100 K are quite consistent with the available experimental determinations except for the fine features of the phase diagram at 2073 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号