首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A coincidence of the Beeswax galleon shipwreck (ca. A.D. 1650–1700) and the last Cascadia earthquake tsunami and coastal subsidence at ∼A.D. 1700 redistributed and buried wreck artifacts on the Nehalem Bay spit, Oregon, USA. Ground‐penetrating radar profiles (∼7 km total distance), sand auger probes, trenches, cutbank exposures (29 in number), and surface cobble counts (49 sites) were collected from the Nehalem spit (∼5 km2 area). The field data demonstrate (1) the latest prehistoric integrity of the spit, (2) tsunami spit overtopping, and (3) coseismic beach retreat since the A.D. 1700 great earthquake in the Cascadia subduction zone. Wreck debris was (1) initially scattered along the spit ocean beaches, (2) washed over the spit by nearfield tsunami (6–8 m elevation), and (3) remobilized in beach strandlines by catastrophic beach retreat. Historic recovery of the spit (150 m beach progradation) and modern foredune accretion (>5 m depth) have buried both the retreat scarp strandlines and associated wreck artifacts. The recent onshore sand transport might re‐expose heavy ship remains in the offshore area if the wreck grounded in shallow water (<20 m water depth of closure). © 2011 Wiley Periodicals, Inc.  相似文献   

2.
Late Quaternary landscape development along the Rancho Marino coastal range front in the central‐southern Pacific Coast Ranges of California has been documented using field mapping, surveying, sedimentary facies analysis and a luminescence age determination. Late Quaternary sediments along the base of the range front form a single composite marine terrace buried by alluvial fans. Marine terrace sediments overlie two palaeoshore platforms at 5 m and 0 m altitude. Correlation with the nearby Cayucos and San Simeon sites links platform and marine terrace development to the 125 ka and 105 ka sea‐level highstands. Uplift rate estimates based on the 125 ka shoreline angle are 0.01–0.09 m ka?1 (mean 0.04 m ka?1), and suggest an increase in regional uplift along the coast towards the NW where the San Simeon fault zone intersects the coastline. Furthermore, such low rates suggest that pre‐125 ka uplift was responsible for most of the relief generation at Rancho Marino. The coastal range front landscape development is, thus, primarily controlled by post 125 ka climatic and sea‐level changes. Post 125 ka sea‐level lowering expanded the range front piedmont area to a width of 7.5 km by the 18 ka Last Glacial Maximum lowstand. This sea‐level lowering created space for alluvial fan building along the range front. A 45 ± 3 ka optically stimulated luminescence (OSL) age provides a basal age for alluvial fan building or marks the time by which distal alluvial fan sedimentation has reached 300 m from the range front slope. Fan sedimentation is related to climatic change, with increased sediment supply to the range front occurring during (1) glacial period cold stage maxima and/or (2) the Late Pleistocene–Holocene transition, when respective increases in precipitation and/or storminess resulted in hillslope erosion. Sea‐level rise after the 18 ka lowstand resulted in range front erosion, with elevated localised erosion linked to the higher relief and steeper slopes in the SE. This study demonstrates that late Quaternary coastal range front landscape development is driven by interplay of tectonics, climatic and sea‐level change. In areas of low tectonic activity, climatic and sea‐level changes dominate coastal landscape development. When the sea‐level controlled shoreline is in close proximity to the coastal range front, localised patterns of sedimentation and erosion are passively influenced by the pre‐125 ka topography. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Environmental settings on the Ionian coastal plain and inner shelf seaward of Locri‐Epizephiri in Calabria, Italy, differed markedly before, during, and following settlement by the Greeks. Sediment core analyses and geophysical surveys in this study support recent archaeological findings and the hypothesis that the margin may once have served as a harbor and/or shipyard. The subsurface Holocene stratigraphy records that (1) the shoreline advanced to a maximum landward position before Greek settlement, then regressed offshore to what is now the inner shelf before once again migrating landward. These marked coastal shifts were triggered primarily by land uplift and probable subsidence offshore along this structurally active Calabrian Arc segment. Associated with this are: (2) a sediment fining‐upward sequence in Greek–Roman time that indicates only partial protection of the coastal area, and (3) possible presence of subsurface structures seaward of the city wall in a sector now positioned ∼200 m offshore. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
The stratigraphy and landscape evolution of the Lodbjerg coastal dune system record the interplay of environmental and cultural changes since the Late Neolithic. The modern dunefield forms part of a 40 km long belt of dunes and aeolian sand‐plains that stretches along the west coast of Thy, NW Jutland. The dunefield, which is now stabilized, forms the upper part of a 15–30 m thick aeolian succession. The aeolian deposits drape a glacial landscape or Middle Holocene lake sediments. The aeolian deposits were studied in coastal cliff exposures and their large‐scale stratigraphy was examined by ground‐penetrating radar mapping. The contact between the aeolian and underlying sediments is a well‐developed peaty palaeosol, the top of which yields dates between 2300 BC and 600 BC . Four main aeolian units are distinguished, but there is some lateral stratigraphic variation in relation to underlying topography. The three lower aeolian units are separated by peaty palaeosols and primarily developed as 1–4 m thick sand‐plain deposits; these are interpreted as trailing edge deposits of parabolic dunes that moved inland episodically. Local occurrence of large‐scale cross‐stratification may record the head section of a migrating parabolic dune. The upper unit is dominated by large‐scale cross‐stratification of various types and records cliff‐top dune deposition. The nature of the aeolian succession indicates that the aeolian landscape was characterized by alternating phases of activity and stabilization. Most sand transported inland was apparently preserved. Combined evidence from luminescence dating of aeolian sand and radiocarbon dating of palaeosols indicates that phases of aeolian sand movement were initiated at about 2200 BC , 700 BC and AD 1100. Episodes of inland sand movement were apparently initiated during marked climate shifts towards cooler, wetter and more stormy conditions; these episodes are thought to record increased coastal erosion and strong‐wind reworking of beach and foredune sediments. The intensity, duration and areal importance of these sand‐drift events increased with time, probably reflecting the increasing anthropogenic pressure on the landscape. The formation of the cliff‐top dunes after AD 1800 records the modern retreat of the coastal cliffs.  相似文献   

5.
A high‐resolution record, covering 9.3–0.2 ka BP, from the sub‐arctic Stjernsund (70°N) was studied for benthic foraminiferal faunas and stable isotopes, revealing three informally named main phases during the Holocene. The Early‐ to Mid‐Holocene (9.3–5.0 ka BP) was characterized by the strong influence of the North Atlantic Current (NAC), which prevented the reflection of the Holocene Climatic Optimum (HCO) in the bottom‐water temperature. During the Mid‐Holocene Transition (5.0–2.5 ka BP), a turnover of benthic foraminiferal faunas occurred, Atlantic Water species decreased while Arctic‐Polar species increased, and the oxygen isotope record showed larger fluctuations. Those variations correspond to a period of global climate change, to spatially more heterogeneous benthic foraminiferal faunas in the Nordic Seas region, and to regionally diverging terrestrial temperatures. The Cool Late Holocene (2.5–0.2 ka BP) was characterized by increased abundances of Arctic‐Polar species and a steady cooling trend reflected in the oxygen isotopes. In this period, our record differs considerably from those on the SW Barents Sea shelf and locations farther south. Therefore, we argue that regional atmospheric cooling triggered the late Holocene cooling trend. Several cold episodes centred at 8.3, 7.8, 6.5, 4.9, 3.9 and 3.3 ka BP were identified from the benthic foraminiferal faunas and the δ18O record, which correlated with marine and atmospherically driven proxy records. This suggests that short‐term cold events may result from reduced heat advection via the NAC or from colder air temperatures.  相似文献   

6.
This paper assesses variations in quantitative reconstructions of late Holocene relative sea‐level (RSL) change arising from using modern diatom datasets from different spatial scales, applied to case studies from Alaska. We investigate the implications of model choice in transfer functions using local‐, sub‐regional‐ and regional‐scale modern training sets, and produce recommendations on the creation and selection of modern datasets for reconstructing RSL change over Holocene timescales in tidal marsh environments comparable with those in Alaska. We show that regional modern training sets perform best in terms of providing fossil samples with good modern analogues, and in producing reconstructions that most closely match observations, where these are available. Local training sets are frequently insufficient to provide fossil samples with good modern analogues and may over‐estimate the precision of RSL reconstructions. This is particularly apparent when reconstructing RSL change for periods beyond the last century. For reconstructing RSL change we recommend using regional modern training sets enhanced by local samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Fossil ostracod assemblages were investigated in five AMS 14 C‐dated cores from various water depths of the Laptev and Kara seas ranging from the upper continental slope (270 m) to the present‐day shelf depth (40 m). Six fossil assemblages were distinguished. These represent the varying environmental conditions at the North Siberian continental margin since about 18 ka. In the cores from the shelf the ostracod assemblages reflect the gradual transition from an estuarine brackish‐water environment to modern marine conditions since 12.3 ka, as induced by the regional early Holocene transgression. The core from the upper continental slope dates back to c. 17.6 ka and contains assemblages that are absent in the shelf cores. The assemblage older than 10 ka stands out as a specific community dominated by relatively deep‐water Arctic and North Atlantic species that also contains euryhaline species. Such an assemblage provides evidence for past inflows of Atlantic‐derived waters from as early as c. 17.2 ka, probably facilitated by upwelling in coastal polynyas, and a considerable riverine freshwater influence with enhanced surface water stratification owing to the proximity of the palaeocoastline until early Holocene times. In all studied cores, relative increases in euryhaline species dominant in the inner‐shelf regions are recorded in the mid–late Holocene sediments (<7 ka), which otherwise already contain modern‐like ostracod assemblages with relatively deep‐water species. This observation suggests euryhaline species to be largely sea‐ice‐ and/or iceberg‐rafted and therefore may provide evidence for a climate cooling trend.  相似文献   

8.
Northumberland lies in the transition between Holocene emergence and submergence and is thus a critical zone for testing models of isostatic rebound. We have collected data from this area to reconstruct relative sea‐level changes and lateral coastline movements for the last 14000 y. These are deposits from tidal marsh, back‐barrier wetland and terrestrial environments producing 47 sea‐level index points from 12 sites. There is no unequivocal evidence for Late Devensian sea levels above present and the reliable sea‐level index points are restricted between −6 m and +2.5 m relative to present and 9.0–2.5 kyr cal. BP. Analysis of these quantifies differential responses to glacio‐ and hydroisostatic rebound, with the northern sites recording a mid‐Holocene sea‐level maximum ca. 2.5 m above present, whereas the southern sites show a maximum ca. 0.5 m above present. These observations show a reasonable fit with the predictions from quantitative models of glacio and hydroisostatic rebound, but there is currently no unique solution of Earth and ice model parameters that will explain all the sea‐level observations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
A pollen‐based study from Tiny Lake in the Seymour‐Belize Inlet Complex of central coastal British Columbia, Canada, permits an evaluation of the dynamic response of coastal temperate rainforests to postglacial climate change. Open Pinus parklands grew at the site during the early Lateglacial when the climate was cool and dry, but more humid conditions in the later phases of the Lateglacial permitted mesophytic conifers to colonise the region. Early Holocene conditions were warmer than present and a successional mosaic of Tsuga heterophylla and Alnus occurred at Tiny Lake. Climate cooling and moistening at 8740 ± 70 14C a BP initiated the development of closed, late successional T. heterophylla–Cupressaceae forests, which achieved modern character after 6860 ± 50 14C a BP, when a temperate and very wet climate became established. The onset of early Holocene climate cooling and moistening at Tiny Lake may have preceded change at more southern locations, including within the Seymour‐Belize Inlet Complex, on a meso‐ to synoptic scale. This would suggest that an early Holocene intensification of the Aleutian Low pressure system was an important influence on forest dynamics in the Seymour‐Belize Inlet Complex and that the study region was located near the southern extent of immediate influence of this semi‐permanent air mass. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Quantitative climate reconstructions from pollen typically rely on empirical relationships between pollen abundances or assemblages and climate, such as the modern analogue technique. However, these techniques may be problematic when applied to fossil sequences, as they cannot separate anthropogenic from climatic influence on pollen assemblages. Here, we reconstruct Mid‐ to Late Holocene summer aridity in the Middle Atlas, Morocco, using stable carbon isotope analysis of isolated fossil Cedrus pollen. This approach is based on well‐documented plant physiological responses to moisture stress and is therefore independent of vegetation composition. We find that there has been a general long‐term trend of increasing summer aridity in the region during the last 5000 years to the present day. The gradual decline of Cedrus atlantica forest in the Late Holocene follows this aridity trend. Additionally, we show how isolating a specific pollen type for carbon isotope analysis yields a robust climate signal, versus using pollen concentrates or bulk sediment. Our findings indicate that climate has become drier in the region and confirms the Mid‐ to Late Holocene aridification trend observed more widely in the western Mediterranean, using a novel proxy for this region with good potential for wider application in other environments.  相似文献   

11.
Winterfeld, M., Schirrmeister, L., Grigoriev, M. N., Kunitsky, V. V., Andreev, A., Murray, A. & Overduin, P. P. 2011: Coastal permafrost landscape development since the Late Pleistocene in the western Laptev Sea, Siberia. Boreas, 10.1111/j.1502‐3885.2011.00203.x. ISSN 0300‐9483. The palaeoenvironmental development of the western Laptev Sea is understood primarily from investigations of exposed cliffs and surface sediment cores from the shelf. In 2005, a core transect was drilled between the Taymyr Peninsula and the Lena Delta, an area that was part of the westernmost region of the non‐glaciated Beringian landmass during the late Quaternary. The transect of five cores, one terrestrial and four marine, taken near Cape Mamontov Klyk reached 12 km offshore and 77 m below sea level. A multiproxy approach combined cryolithological, sedimentological, geochronological (14C‐AMS, OSL on quartz, IR‐OSL on feldspars) and palaeoecological (pollen, diatoms) methods. Our interpretation of the proxies focuses on landscape history and the transition of terrestrial into subsea permafrost. Marine interglacial deposits overlain by relict terrestrial permafrost within the same offshore core were encountered in the western Laptev Sea. Moreover, the marine interglacial deposits lay unexpectedly deep at 64 m below modern sea level 12 km from the current coastline, while no marine deposits were encountered onshore. This implies that the position of the Eemian coastline presumably was similar to today's. The landscape reconstruction suggests Eemian coastal lagoons and thermokarst lakes, followed by Early to Middle Weichselian fluvially dominated terrestrial deposition. During the Late Weichselian, this fluvial landscape was transformed into a poorly drained accumulation plain, characterized by widespread and broad ice‐wedge polygons. Finally, the shelf plain was flooded by the sea during the Holocene, resulting in the inundation and degradation of terrestrial permafrost and its transformation into subsea permafrost.  相似文献   

12.
Thick bay‐fill sequences that often culminate in strandplain development serve as important sedimentary archives of land–ocean interaction, although distinguishing between internal and external forcings is an ongoing challenge. This study employs sediment cores, ground‐penetrating radar surveys, radiocarbon dates, palaeogeographic reconstructions and hydrodynamic modelling to explore the role of autogenic processes – notably a reduction in wave energy in response to coastal embayment infilling – in coastal evolution and shoreline morphodynamics. Following a regional 2 to 4 m highstand at ca 5·8 ka, the 75 km2 Tijucas Strandplain in southern Brazil built from fluvial sediments deposited into a semi‐enclosed bay. Holocene regressive deposits are underlain by fluvial sands and a Pleistocene transgressive–regressive sequence, and backed by a highstand barrier‐island. The strandplain is immediately underlain by 5 to 16 m of seaward‐thickening, fluvially derived, Holocene‐age, basin‐fill mud. Several trends are observed from the landward (oldest) to the seaward (youngest) sections of the strandplain: (i) the upper shoreface and foreshore become finer and thinner and shift from sand‐dominated to mud‐dominated; (ii) beachface slopes decrease from >11° to ca 7°; and (iii) progradation rates increase from 0·4 to 1·8 m yr?1. Hydrodynamic modelling demonstrates a correlation between progressive shoaling of Tijucas Bay driven by sea‐level fall and sediment infilling and a decrease in onshore wave‐energy transport from 18 to 4 kW m?1. The combination of allogenic (sediment supply, falling relative sea‐level and geology) and autogenic (decrease in wave energy due to bay shoaling) processes drove the development of a regressive system with characteristics that are rare, if not unique, in the Holocene and rock records. These findings demonstrate the complexities in architecture styles of highstand and regressive systems tracts. Furthermore, this article highlights the diverse internal and external processes and feedbacks responsible for the development of these intricate marginal marine sedimentary systems.  相似文献   

13.
Buried valleys are characteristic features of glaciated landscapes, and their deposits host important aquifers worldwide. Understanding the stratigraphic architecture of these deposits is essential for protecting groundwater and interpreting sedimentary processes in subglacial and ice‐marginal environments. The relationships between depositional architecture, topography and hydrostratigraphy in dissected, pre‐Illinoian till sheets is poorly understood. Boreholes alone are inadequate to characterize the complex geology of buried valleys, but airborne electromagnetic surveys have proven useful for this purpose. A key question is whether the sedimentary architecture of buried valleys can be interpreted from airborne electromagnetic profiles. This study employs airborne electromagnetic resistivity profiles to interpret the three‐dimensional sedimentary architecture of cross‐cutting buried valleys in a ca 400 km2 area along the western margin of Laurentide glaciation in North America. A progenitor bedrock valley is succeeded by at least five generations of tunnel valleys that become progressively younger northward. Tunnel‐valley infills are highly variable, reflecting under‐filled and over‐filled conditions. Under‐filled tunnel valleys are expressed on the modern landscape and contain fine sediments that act as hydraulic barriers. Over‐filled tunnel valleys are not recognized in the modern landscape, but where they are present they form hydraulic windows between deep aquifer units and the land surface. The interpretation of tunnel‐valley genesis herein provides evidence of the relationships between depositional processes and glacial landforms in a dissected, pre‐Illinoian till sheet, and contributes to the understanding of the complex physical hydrology of glacial aquifers in general.  相似文献   

14.
Geoarchaeological investigations in an area surrounding the confluence of the upper Colorado and Concho Rivers, Edwards Plateau of West Texas, have produced a detailed landscape evolution model which provides a framework for discussion of the influences of geomorphic processes on the development, preservation, and visibility of the archaeological record. Field mapping within the study area has differentiated six allostrati-graphic units of fluvial origin in both valleys, as well as extensive eolian sand sheets along the Colorado River. Early to middle Pleistocene terrace remnants cap many upland areas, whereas two distinct late Pleistocene terrace surfaces are widespread within the study area at somewhat lower elevations. Fluvial activity during the time period of human occupation is represented by an extensive Holocene terrace and underlying valley fill, which is up to 11 m in thickness. Valley fill sediments can be subdivided into allostratigraphic units of early to middle Holocene (ca. 10,000–5000 yr B.P.) and late Holocene age (ca. 4600–1000 yr B.P.), which are separated by a buried soil profile. The modern incised channels and very narrow floodplains represent the last millennium. Eolian sand sheets of early to middle Holocene age overlie limestone- and shale-dominated uplands, Pleistocene terraces, and in some cases the Holocene valley fill along the Colorado River. Pleistocene terraces have been stable features in the landscape and available for settlement through the time period of human occupation. Archaeological materials of all ages occur at the surface, and the record preserved in individual sites range from that associated with discrete periods of activity to longer-term palimpsests that represent repeated use over millennia. Sites within early to middle Holocene and late Holocene fills represent short-term utilization of constructional floodplains during the Paleoindian through early Archaic and middle to late Archaic time periods respectively. By contrast, those that occur along the buried soil profile developed in the early to middle Holocene fill record middle to late Archaic cultural activity on stable terrace surfaces, and represent relatively discrete periods of activity to longer-term palimpsests that represent repeated use over the 3000–4000 years of subaerial exposure. Late Prehistoric sites occur as palimpsests on soils developed in late Holocene alluvium or stratified within modern floodplain facies. Paleoindian through Late Prehistoric sites occur stratified within eolian sand sheets or along the unconformity with subjacent fluvial deposits. The landscape evolution model from the upper Colorado and Concho Rivers is similar to that developed for other major valley axes of the Edwards Plateau. This model may be regionally applicable, and can be used to interpret the geomorphic setting and natural formation processes for already known sites, as well as provide an organizational framework for systematic surface and subsurface survey for new archaeological records. 0 1992 John Wiley & Sons, Inc.  相似文献   

15.
Coastal lagoons and beach ridges are genetically independent, though non‐continuous, sedimentary archives. We here combine the results from two recently published studies in order to produce an 8000‐year‐long record of Holocene relative sea‐level changes on the island of Samsø, southern Kattegat, Denmark. The reconstruction of the initial mid‐Holocene sea‐level rise is based on the sedimentary infill from topography‐confined coastal lagoons (Sander et al., Boreas, 2015b). Sea‐level index points over the mid‐ to late Holocene period of sea‐level stability and fall are retrieved from the internal structures of a wide beach‐ridge system (Hede et al., The Holocene, 2015). Data from sediment coring, georadar and absolute dating are thus combined in an inter‐disciplinary approach that is highly reproducible in micro‐tidal environments characterised by high sediment supply. We show here that the commonly proximate occurrence of coastal lagoons and beach ridges allows us to produce seamless time series of relative sea‐level changes from field sites in SW Scandinavia and in similar coastal environments.  相似文献   

16.
Finnish Lapland is known as an area where numerous sites with sediments from Pleistocene glacial and interglacial periods occur. Recent sedimentological observations and dating call for reinterpretation of the record, which shows a complicated Mid‐Weichselian ice‐sheet evolution within the ice‐divide zone. Here, a large, previously unstudied section from a former Hannukainen iron mine was investigated sedimentologically and dated with optically stimulated luminescence (OSL). Ten sedimentary units were identified displaying a variety of depositional environments (glacial, glaciolacustrine, fluvial and aeolian). They are all – except for the lowermost, deeply weathered till – interpreted to be of Mid‐ or Late Weichselian/Holocene age. Five OSL samples from fluvial sediments give ages ranging from 55 to 35 ka, indicating two MIS 3 ice‐free intervals of unknown duration. The Mid‐Weichselian interstadial was interrupted by a re‐advance event, which occurred later than 35 ka and caused glaciotectonic deformation, folding and stacking of older sediments. This new evidence emphasizes the importance of the Kolari area when unravelling the complex Late Pleistocene glacial history of northern Finland and adjacent regions.  相似文献   

17.
Abundant organic inclusions are present in the Qinglong antimony deposit. However, the source rocks of these organic matters have not been reliably identified. Recently, a paleo–oil reservoir was found in the Qinglong antimony deposit. In view of similar components of gaseous hydrocarbon, we propose that the organic matters observed in inclusions in Qinglong antimony deposit would come from this paleo–oil reservoir. We used the Re–Os dating method to determine the age of the bitumen from this paleo–oil reservoir, and obtained an isochron age of 254.3±2.8 Ma. The age indicates that the oilgeneration from source rock occurred in the early Late Permian, earlier than the Sb mineralization age(~148±8.5 Ma) in the Qinglong antimony deposit area. After oil generation from Devonian source rock, first and secondary migration, the crude oil have probably entered into the fractures and pores of volcanic rocks and limestone and formed a paleo–oil reservoir in the western wing of Dachang anticline. As burial process deepened, the crude oil has turned into natural gas, migrates into the core of Dachang anticline and formed a paleo–gas reservoir. The hydrocarbons(including CH_4) in the reservoirs can serve as reducing agent to provide the sulfur required for Sb mineralization through thermal chemical reduction of sulfates. Therefore, the formation of oil–gas in the area is a prerequisite for the Sb mineralization in the Qinglong antimony deposit.  相似文献   

18.
The alternation of terrestrial and marine deposits is an indicator of past environmental and sea‐level changes. The age of deposition is usually dated by means of radiocarbon. However, radiocarbon dates of molluscan shells from coastal areas may be complicated by various sources of carbon, and problematic for deposits of 40–50 ka or older. Herein, we apply the Optically Stimulated Luminescence (OSL) dating method to date samples from terrestrial and marine/coastal sediments extracted from three cores in the south Bohai Sea, China. Multiple‐ and single‐aliquot regenerative‐dose procedures using OSL signals from fine‐silt (4–11 μm), coarse‐silt (38–63 μm) and fine‐sand (63–90 or 90–125 μm) quartz were employed to determine the equivalent dose (D e). The results showed that: (i) OSL ages from quartz of different grain sizes and different protocols are consistent with each other; (ii) for Holocene samples, most of the radiocarbon dates agree well with OSL ages; (iii) for pre‐Holocene samples, radiocarbon dates cluster at 40–50 14 C ka BP, whereas OSL ages are in stratigraphic order from 11 ka to 176 ka. Because of the self‐consistency of the quartz OSL ages, the stratigraphic agreement in the three cores, and the clustering of the radiocarbon dates, we suggest that the quartz OSL ages are more reliable with respect to dating the samples from the south Bohai Sea. Finally, the four marine strata identified in the south Bohai Sea are likely to have formed during the Holocene, Marine Isotopic Stage (MIS) 3–5, MIS 6 and probably MIS 7, respectively.  相似文献   

19.
The Pliocene and Pleistocene sediments of the Gippsland shelf are dominated by mixed carbonates and siliciclastics. From a detailed stratigraphic study that combines conventional marine geology techniques with magnetic imagery, the Late Neogene tectonic and eustatic history can be interpreted and correlated to the onshore section. Stratigraphic analyses of eight oil and gasfield foundation bores drilled to 150 m below the seabed revealed three principal facies types: (i) Facies A is fine‐grained limestone and limey marl deeper than 50 m below the seabed, of Late Pliocene age (nannofossil zones CN11–12); (ii) Facies B is a fine‐coarse pebble quartz‐carbonate sand that occurs 10–50 m below the seabed in the inner shelf, grading down into Facies A in wells in the outer shelf, and is of Early‐Middle Pleistocene age (nannofossil subzones CN13a-14b: ca 1.95–0.26 Ma); and (iii) discontinuous horizons of Facies C composed of carbonate‐poor carbonaceous and micaceous fine quartz sand occurring 10–50 m below the seabed. The sparse benthic foraminifers in Facies C are inner shelf or Gippsland (euryhaline) Lakes forms. Holocene sands dominate the upper 1.5–2.5 m of the Gippsland shelf and disconformably overlie cemented limestones with aragonite dissolution, indicating previous exposure to meteoric water. Nannofossil dating of the limestones indicates ages within subzone CN14b (dated between ca 0.26 and 0.47 Ma). Airborne magnetic imaging across the Gippsland shelf and onshore provides details of buried magnetic palaeoriver channels and barrier systems. The river systems trend south‐southeast from the Snowy, Tambo, Mitchell, Avon, Macalister and Latrobe Rivers across the shelf. Sparker seismic surveys show the magnetic palaeochannels as seismic ‘smudges’ 20–40 m below the seabed. They appear to correspond to Facies C lenses (i.e. are Early to Middle Pleistocene features). Magnetic palaeobarrier systems trending south‐southwest in the inner shelf and onshore beneath the Gippsland Lakes are orientated 15° different to the modern Ninety Mile Beach barrier trend. Offshore, they correlate stratigraphically to progradation packages of Facies B. Analysis of bore data in the adjacent onshore Gippsland Lakes suggests that a Pliocene barrier sequence 100–120 m below surface is overlain by fluvial sand‐gravel and lacustrine mud facies. The ferruginous sandstone beds resemble offshore Facies C, and are located where magnetic palaeoriver channel systems occur, implying Early to Middle Pleistocene ages. Presence of the estuarine bivalve Anadara trapezia in the upper lacustrine mud facies suggests that the Gippsland Lakes/Ninety Mile Beach‐type barriers developed over the past 0.2 million years. Further inland, magnetic river channels that cut across present‐day uplifted structures, such as the Baragwanath Anticline, suggest that onshore Gippsland uplift continued into the Middle Pleistocene.  相似文献   

20.
Western Ireland, located adjacent to the North Atlantic, and with a strongly oceanic climate, is potentially sensitive to rapid and extreme climate change. We present the first high‐resolution chironomid‐inferred mean July temperature reconstruction for Ireland, spanning the late‐glacial and early Holocene (LGIT, 15–10 ka BP). The reconstruction suggests an initial rapid warming followed by a short cool phase early in the interstadial. During the interstadial there are oscillations in the inferred temperatures which may relate to Greenland Interstadial events GI‐1a–e. The temperature decrease into the stadial occurs in two stages. This two‐stage drop can also be seen in other late‐glacial chironomid‐inferred temperature records from the British Isles. A stepped rise in temperatures into the Holocene, consistent with present‐day temperatures in Donegal, is inferred. The results show strong similarities with previously published LGIT chironomid‐inferred temperature reconstructions, and with the NGRIP oxygen‐isotope curve, which indicates that the oscillations observed in the NGRIP record are of hemispherical significance. The results also highlight the influence of the North Atlantic on the Irish climate throughout the LGIT. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号