首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Burren region in western Ireland contains an almost continuous record of Viséan (Middle Mississippian) carbonate deposition extending from Chadian to Brigantian times, represented by three formations: the Chadian to Holkerian Tubber Formation, the Asbian Burren Formation and the Brigantian Slievenaglasha Formation. The upper Viséan (Holkerian–Brigantian) platform carbonate succession of the Burren can be subdivided into six distinct depositional units outlined below. (1) An Holkerian to lower Asbian unit of skeletal peloidal and bryozoan bedded limestone. (2) Lower Asbian unit of massive light grey Koninckopora‐rich limestone, representing a shallower marine facies. (3) Upper Asbian terraced limestone unit with minor shallowing‐upward cycles of poorly bedded Kamaenella‐rich limestone with shell bands and palaeokarst features. This unit is very similar to other cyclic sequences of late Asbian age in southern Ireland and western Europe, suggesting a glacio‐eustatic origin for this fourth‐order cyclicity. (4) Lower Brigantian unit with cyclic alternations of crinoidal/bryozoan limestone and peloidal limestone with coral thickets. These cycles lack evidence of subaerial exposure. (5) Lower Brigantian bedded cherty dark grey limestone unit, deposited during the maximum transgressive phase of the Brigantian. (6) Lower to upper Brigantian unit mostly comprising cyclic bryozoan/crinoidal cherty limestone. In most areas this youngest unit is truncated and unconformably overlain by Serpukhovian siliciclastic rocks. Deepening enhanced by platform‐wide subsidence strongly influenced later Brigantian cycle development in Ireland, but localized rapid shallowing led to emergence at the end of the Brigantian. A Cf5 Zone (Holkerian) assemblage of microfossils is recorded from the Tubber Formation at Black Head, but in the Ballard Bridge section the top of the formation has Cf6 Zone (Asbian) foraminiferans. A typical upper Asbian Rugose Coral Assemblage G near the top of the Burren Formation is replaced by a lower Brigantian Rugose Coral Assemblage H in the Slievenaglasha Formation. A similar change in the foraminiferans and calcareous algae at this Asbian–Brigantian formation boundary is recognized by the presence of upper Asbian Cf6γ Subzone taxa in the Burren Formation including Cribrostomum lecomptei, Koskinobigenerina sp., Bradyina rotula and Howchinia bradyana, and in the Slievenaglasha Formation abundant Asteroarchaediscus spp., Neoarchaediscus spp. and Fasciella crustosa of the Brigantian Cf6δ Subzone. The uppermost beds of the Slievenaglasha Formation contain a rare and unusual foraminiferal assemblage containing evolved archaediscids close to tenuis stage indicating a late Brigantian age. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Logging of 55 recent boreholes, together with remapping, has resulted in a fundamental reassessment of the stratigraphy and sedimentology of the Dinantian Kingscourt Outlier. Despite the present isolated position of the outlier within the Longford-Down Massif, the Kingscourt rocks are an integral part of the Dublin Basin succession. The newly defined Ardagh Platform marks the most northerly limit to basinal sedimentation in the Dinantian Dublin Basin. The Courceyan is a typical but thinner, north Dublin Basin succession with two new formal units: the Rockfield Sandstone Member and the Kilbride Formation. The latter, a coarse-grained, well washed limestone of latest Courceyan to early Chadian (late Tournaisian) age is the shallow water equivalent of the Feltrim Formation (Waulsortian facies), which is absent in the outlier. The Courceyan interval in the north of the outlier is markedly attenuated. In the succeeding Chadian-Brigantian interval basinal facies predominate in the south, but on the Ardagh Platform an almost complete coeval Viséan shallow water sequence is found. A new platform unit (Deer Park Formation) of latest Asbian to Brigantian age is defined in the Ardagh area. The Dee Member (Chadian) is newly defined for the lower part of the basinal Tober Colleen Formation and the Altmush Shale Member is formally defined for the upper part of the Loughshinny Formation. Two major structures dominate the Kingscourt Outlier: the NE-SW trending Moynalty Syncline in the south and the N-S trending Kingscourt Fault. Both are Hercynian structures, but probably represent reactivated Caledonide basement-controlled structures. Dinantian syn-depositional faulting is indicated in both the Courceyan (‘Kingscourt Sag’) and Chadian-Asbian. The latter period of faulting in the Ardagh area separates platform facies in the north from basinal facies to the south. In the late Asbian, platform facies with carbonate build-ups prograded south into the basin as far south as Nobber, but in the latest Asbian to Brigantian, basinal facies extended northwards over the collapsed platform margin.  相似文献   

3.
The Bowland Basin (northern England) contains a series of carbonates and terrigenous mudstones deposited during the Ivorian to early Brigantian. Two regional depositional environments are indicated by facies and facies associations. Wackestone/packstone and calcarenite facies indicate deposition in a carbonate ramp environment, while lime mudstone/wackestone, calcarenite and limestone breccia/conglomerate facies, often extensively slumped, represent a carbonate slope environment. Stratigraphic relations suggest that the depositional environment evolved from a ramp into a slope through the Dinantian. Two main sediment sources are indicated by the sequence; an extra-basinal terrigenous mud source and a supply of carbonate from the margins of the basin. Deposition from suspension and from sediment gravity flows, in situ production and remobilization of sediment during sedimentary sliding were important processes operating within the basin. Periods of enhanced tectonic activity in the late Chadian to early Arundian and late Asbian to early Brigantian are indicated by basin-wide horizons of sedimentary slide and mass flow deposits. Both intervals were marked by a decline in carbonate production resulting from inundation and uplift/emergence. The first of these intervals separates deposition on a seafloor with gentle topography (carbonate ramp) from a situation where major lateral thickness and facies variations were present and deposition took place in a carbonate slope environment. The second interval marks the end of major carbonate deposition within the Bowland Basin and the onset of regional terrigenous sedimentation.  相似文献   

4.
The microbiota of the upper Viséan (Asbian–Brigantian) rocks in the Lough Allen Basin in northwest Ireland is analysed. The Middle Mississippian sequence studied extends from the upper part of the Dartry Limestone/Bricklieve Limestone formations of the Tyrone Group to the Carraun Shale Formation of the Leitrim Group. The rocks have been traditionally dated by ammonoid faunas representing the B2a to P2c subzones. The Meenymore Formation (base of the Leitrim Group) also contains conodont faunas of the informal partial‐range Mestognathus bipluti zone. The upper Brigantian Lochriea nodosa Conodont Zone was recognized by previous authors in the middle of the Carraun Shale Formation (Ardvarney Limestone Member), where it coincides with upper Brigantian ammonoids of the Lusitanoceras granosus Subzone (P2a). Foraminifera and algae in the top of the Dartry Limestone Formation are assigned to the upper Cf6γ Foraminifera Subzone (highest Asbian), whereas those in the Meenymore Formation belong to the lower Cf6δ Foraminifera Subzone (lower Brigantian). The Dartry Limestone Formation–Meenymore Formation boundary is thus correlated with the Asbian–Brigantian boundary in northwest Ireland. For the first time, based on new data, a correlation between the ammonoid, miospore, foraminiferan and conodont zonal schemes is demonstrated. The foraminiferans and algae, conodonts and ammonoids are compared with those from other basins in Ireland, northern England, and the German Rhenish Massif. Historically, the Asbian–Brigantian boundary has been correlated with several levels within the P1a Ammonoid Subzone. However, the new integrated biostratigraphical data indicate that the Asbian–Brigantian boundary in northwest Ireland is probably located within the B2a Ammonoid Subzone and the NM Miospore Zone, but the scarcity of ammonoids in the Tyrone Group precludes an accurate placement of that boundary within this subzone. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
A thick sequence of late Dinantian (Asbian–Brigantian) carbonates crop out in the Buttevant area, North Co. Cork, Ireland. A mud-mound unit of early Asbian age (the Hazelwood Formation) is the oldest unit described in this work. This formation is partly laterally equivalent to, and is overlain by, over 500 m of bedded platform carbonates which belong to the Ballyclogh and Liscarroll Limestone Formations. Four new lithostratigraphic units are described within the platform carbonates: (i) the early Asbian Cecilstown Member and (ii) the late Asbian Dromdowney Member in the Ballyclogh Limestone Formation; (iii) the Brigantian Templemary Member and (iv) the Coolbane Member in the Liscarroll Limestone Formation. The Cecilstown Member consists of cherty packstones and wackestones that are inferred to have been deposited below fair-weather wavebase. This unit overlies and is laterally equivalent to the mud-mound build-up facies of the Hazelwood Formation. The Dromdowney Member is typified by cyclic-bedded kamaenid-rich limestones possessing shell bands, capped by palaeokarst surfaces, with alveolar textures below and shales above these surfaces. The carbonates of this unit were deposited at or just below fair-weather wavebase, the top of each cycle culminated in subaerial emergence. The Templemary Member consists of cyclic alternations of subtidal crinoidal limestones capped by subtidal lagoonal crinoid-poor, peloidal limestones possessing coral thickets. Intraclastic cherty packstones and wackestones characterize the Coolbane Member, which is inferred to have been deposited below fair-weather wavebase but above storm wavebase. The early Asbian Cecilstown Member has a relatively sparse micro- and macrofauna, typified by scattered Siphonodendron thickets, archaediscids at angulatus stage and common Vissariotaxis. Conversely, macro- and microfauna is abundant in the late Asbian Dromdowney Member. Typical late Asbian macrofossils include the coral Dibunophyllum bipartitum and the brachiopod Davidsonina septosa. The base of the late Asbian (Cf6γ Subzone) is recognized by the first appearance of the foraminifers Cribrostomum lecompteii, Koskinobigenerina and the alga Ungdarella. The Cf6γ Subzone can be subdivided into two biostratigraphic divisions, Cf6γ1 and Cf6γ2, that can be correlated throughout Ireland. Relatively common gigantoproductid brachiopods and the coral Lonsdaleia duplicata occur in the Brigantian units. The base of the Brigantian stage (Cf6δ Subzone) is marked by an increase in the abundance of stellate archaediscids, the presence of Saccamminopsis-rich horizons, Loeblichia paraammonoides, Howchinia bradyana and the rarity of Koninckopora species. Changes in facies at the Cecilstown/Dromdowney Member and the Ballyclogh/Liscarroll Formation boundaries coincide closely with the changes in fossil assemblages that correspond to the early/late Asbian and the Asbian/Brigantian boundaries. These facies changes are believed to reflect major changes in relative sea-level on the Irish platforms. The sea-level variations that are inferred to have caused the facies changes at lithostratigraphic boundaries also brought in the new taxa that define biostratigraphic boundaries. Moreover, many of the Dinantian stage boundaries that are defined biostratigraphically in Great Britain, Belgium and the Russian Platform also coincide with major facies boundaries caused by regressive and transgressive episodes. The integration of detailed biostratigraphic analyses with facies studies will lead to better stratigraphic correlations of Dinantian rocks in northwest Europe. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
The stratigraphy of the upper Viséan (Asbian to Brigantian) carbonate succession in southeast Ireland is revised on the basis of seven quarry and two borehole sections. Six lithological units have been distinguished, two units (units 1 and 2) in the upper Asbian Ballyadams Formation, and four units (units 4 to 6) in the Brigantian Clogrenan Formation (both formations are dated precisely using foraminiferans, calcareous algae and rugose corals). The boundary between the Ballyadams and Clogrenan formations is redefined 19 m below the horizon proposed by the Geological Survey of Ireland, and thus, lithological characteristics of both formations are redescribed. The upper part of the Ballyadams Formation is characterized by well‐developed large‐scale cyclicity, with common subaerial exposure surfaces. Fine‐ to medium‐grained thin‐bedded limestones with thin shales occur in the lower part of cycles, passing up into medium‐grained pale grey massive limestones in the upper part. The Clogrenan Formation is composed mainly of medium‐ to coarse‐grained thick limestone beds with variable presence of shales; but no large‐scale cyclicity. There is a decrease in the number of subaerial exposure surfaces towards the top of the formation and common chert nodules; macrofauna occurs mostly concentrated in bands. The six units recognized in the Carlow area are comparable with other units described for the same time interval (Asbian–Brigantian) from south and southwest Ireland, demonstrating the existence of a stable platform for most parts of southern Ireland, controlled principally by glacioeustatics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
New palaeocurrent data from the country northeast and southwest of Corris (central Wales) indicate that Telychian sandstones in the Devil's Bridge Formation hereabouts were transported from both the northeast and northwest, consistent with topographical control by down‐to‐southeast movement on the Bala Lineament. This conclusion is supported by considerations of thickness variation and by evidence for listric detachment faulting in the formation at Bwlch y Groes. Towards Plynlimon, flow is broadly southerly and suggests confinement by the northward extension of the Bronnant Fault. A facies and palaeocurrent map is presented for the utilis sub‐Biozone of the Telychian which links with work by the British Geological Survey between Aberyswyth and Rhayader where, by contrast, palaeoflow is to the NNW. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The Carboniferous succession in the Tindouf Basin of southern Morocco, North Africa, displays Mississippian to Early Pennsylvanian marine beds, followed by Pennsylvanian continental deposits. The marine beds comprise a shallow water cyclic platform sequence, dominated by shales and fine‐grained sandstones with thin but laterally persistent limestone/dolostone beds. Foraminiferal assemblages have been studied in the limestone beds in several sections from the Djebel Ouarkziz range in the northern limb of the Tindouf Syncline; they indicate that the age of the limestones range from late Asbian (late Viséan) to Krasnopolyanian (early Bashkirian). The foraminiferal assemblages are abundant and diverse, and much richer in diversity than those suggested by previous studies in the region, as well as for other areas of the western Palaeotethys. The richest assemblages are recorded in the Serpukhovian but, unusually, they contain several taxa which appear much earlier in Western European basins (in the latest Viséan). In contrast, conodont assemblages are scarce due to the shallow‐water facies, although some important taxa are recorded in the youngest limestones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Rocks of Courceyan to Brigantian age are exposed in the Limerick Syncline. However, a complete Courceyan succession is known only from two boreholes which correlate closely, both faunally and lithologically, with a standard Limerick Province succession in the Pallaskenry Borehole on the Shannon estuary. This is followed by a thick Waulsortian sequence (the newly defined Limerick Limestone Formation) of late Courceyan to early Chadian age and overlying cherty micrites (the newly defined Lough Gur Formation) of early to late Chadian age, whose top is younger to the east. The Lough Gur Formation is succeeded by lavas and tuffs of the Knockroe Volcanic Formation whose upper part is interbedded with and overlain by shallow water oolites and algal-rich bioclastic limestones of the Herbertstown Limestone Formation. The higher part of the latter is in turn interbedded with lavas and tuffs of the Knockseefin Volcanic Formation. The Herbertstown Limestone has rich and diverse coral/brachiopod and foraminiferal assemblages of late Chadian to Asbian age. Its base is markedly diachronous: late Chadian in the west of the syncline and Holkerian in the east. Both the base and top of the Knockroe Volcanic Formation are thus shown to be markedly diachronous and volcanism extends from the Chadian to early Asbian. The Knockseefin Volcanic Formation is entirely of Asbian age. The highest limestones (Dromkeen Limestone Formation) have a diagnostic late Asbian–early Brigantian fauna and are overstepped by mid-Namurian shales.  相似文献   

10.
《Sedimentary Geology》2006,183(3-4):269-295
The Peñas Rubias Syncline (southwestern Spain) exposes a well-preserved shallow-water platform succession containing a spectrum of facies corresponding to inner platform intertidal to supratidal environments, across to deeper-water middle to outer platform environments. Nineteen microfacies are recognized, which are grouped into seven facies association corresponding to: siliciclastic deltaic bars, mixed carbonate/siliciclastic shoals, carbonate mud mound boundstones, background platform carbonates, background platform siliciclastics, mixed tempestites and deep-water siliciclastic shales and sandstones. The age of the succession was determined mainly by foraminiferans and calcareous algae, which permit the succession to be assigned to the late Brigantian (latest Viséan). This upper Brigantian platform is the only record of sedimentation of this age in the region, and thus is key for interpreting the sedimentary and tectonic evolution of the Carboniferous rocks in Sierra Morena. Biotic and sedimentological features were analyzed in order to assess the controls on the sedimentation. Several factors have influenced sedimentological changes: turbidity, subsidence, siliciclastic discharges, storms and bioturbation. The siliciclastic discharges exerted a considerable control on the basal deposits, mostly in their percentage of quartz sand grains and as microconglomerates. However, they did not develop as large deltaic deposits, and their influence can be considered as virtually negligible in regards to the remaining part of the succession. Turbidity, as a result of higher percentage of silt and mud in suspension, seems to be the main factor controlling the change between the older intertidal deposits in the inner platform to the younger subtidal deposits of the middle and outer platform. As a result of the increase of the mud and silt in suspension, facies changed first to marlstones and nodular argillaceous limestones, and second, to predominantly calcimicrobial boundstones and shales in the uppermost part of the carbonate succession, as well as showing a marked change from photic-controlled benthic faunal and microfloral assemblages to assemblages more tolerant or better adapted to muddier dysphotic substrates. Bioturbation is also interpreted as one of the main controls influencing the different type of boundstones in the middle platform, permitting the vertical growth of dome-shaped mud-mounds or as sheet-like deposits. Storm influences seem to have exerted some control on the positive relief of the dome-shaped boundstones, which are usually capped by tempestites. The differential subsidence observed in the northwestern sector of the platform allowed the accumulation of many stacked dome-shaped mounds, a feature not recognized in southeastern parts. The general stratigraphical sequence seems to be controlled by eustasy and synsedimentary tectonics. The overall succession exhibits a pronounced deepening-upwards transgressive sequence from siliciclastic delta bars, mixed shoals, carbonates and shales of the middle platform with the growth of calcimicrobial boundstones and dark green shales, passing up into black shales at the top of the sequence, in the outer platform and, possibly, submarine slope settings. Although this transgressive sequence is in harmony with the 3rd-order glacioeustatic cycle defined for the late Brigantian in the western Palaeotethys, all these Brigantian rocks accumulated in a synsedimentary extensional regime, which is related to the initiation of a sinistral strike–slip regime, previously recognized as affecting only Serpukhovian and younger rocks in Sierra Morena. These synsedimentary faults allow us to recognize significant lateral variations in thickness over short distances.  相似文献   

11.
The ‘Calcaires à Productus’ of the Montagne Noire are microbial build-ups. Two formations are defined and dated respectively as Uppermost Visean (Upper Warnantian–Brigantian) and Serpukhovian on the basis on corals. That makes these limestones out to be younger than previously stated (Lower and base of Upper Warnantian–Asbian and base of Brigantian) and indicates that the development of the olistoliths and thrusts including them, due to the Variscan orogeny, was at least as young as the Upper Serpukhovian. The Serpukhovian limestones of the Montagne Noire are correlated with the Lanet Limestone (Mouthoumet Massif, Corbières) and Ardengost Limestone (central Pyrenees). To cite this article: É. Poty et al., C. R. Geoscience 334 (2002) 843–848.  相似文献   

12.
Three Upper Viséan to Serpukhovian limestone formations from the Adarouch region (central Morocco), North Africa, have been dated precisely using foraminiferans and calcareous algae. The lower and middle part of the oldest formation, the Tizra Formation (Fm), is assigned to the latest Asbian (upper Cf6γ Subzone), and its upper part to the Early Brigantian (lower Cf6δ Subzone). The topmost beds of this formation are assigned to the Late Brigantian (upper Cf6δ Subzone). The lower part of the succeeding Mouarhaz Fm is also assigned to the Late Brigantian (upper Cf6δ Subzone). The Akerchi Fm is younger than the other formations within the region, ranging from the latest Brigantian (uppermost Cf6δ Subzone) up to the Serpukhovian (E1–E2). The base of the Serpukhovian (Pendleian Substage, E1) is repositioned, to coincide with the appearance of a suite of foraminiferans including Archaediscus at tenuis stage, Endothyranopsis plana, Eostaffella pseudostruvei, Loeblichia ukrainica, Loeblichia aff. minima and Biseriella? sp. 1. The upper Serpukhovian (Arnsbergian Substage, E2) is marked by the first appearance of Eostaffellina ex. gr. paraprotvae and Globoomphalotis aff. pseudosamarica. The biostratigraphical scheme used for the reassessment of the foraminiferal zones and subzones in the Adarouch area closely compares with that for the British succession in northern England (Pennine Region), where the stratotypes of the Upper Viséan (Asbian and Brigantian) and Early Serpukhovian (Pendleian) substages are located. Thus, a succession equivalent to an interval from the Melmerby Scar Limestone to the Great (or Little) Limestone is recognized. These assemblages are also compared to other foraminiferal zones proposed in other regions of Morocco. Several foraminiferans have been identified that are proposed as potential Serpukhovian markers for other basins in Western Europe, and compared to sequences in Russia and the Donets Basin, Ukraine. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
浙江江山寒武纪为一套深色海相碳酸盐沉积,包含了湖相和台地相组成的海进相序。本文在江山一带沉积相研究的基础上,结合区域地质资料,探讨了浙皖海盆东南缘的区域古地理格局的演变规律及其构造意义  相似文献   

14.
Shallow water platform limestones of the Chadian–Asbian Milverton Group are restricted to the north-eastern part of the Lower Carboniferous (Dinantian) Dublin Basin. Here, they are confined to two granite-cored fault blocks, the Kentstown and Balbriggan Blocks, known to have been active during the late Dinantian. Three areas of platform sedimentation are delimited (the Kentstown, Drogheda and Milverton areas), although in reality they probably formed part of a single carbonate platform. Resedimented submarine breccias and calciturbidites (Fingal Group) composed of shallow water allochems and intraclasts sourced from the platform accumulated, along with terrigenous muds, in the surrounding basinal areas. Sedimentological evidence suggests that the Kentstown and Balbriggan Blocks possessed tilt-block geometries and developed during an episode of basin-wide extensional faulting in late Chadian time. Rotation of the blocks during extension resulted in the erosion of previously deposited sequences in footwall areas and concomitant drowning of distal hangingwall sequences. Antithetic faults on the northern part of the Balbriggan Block aided the preferential subsidence of the Drogheda area and accounts for the anomously thick sequence of late Chadian platform sediments present there. Continued subsidence and/or sea-level rise in the late Chadian–early Arundian resulted in transgression of the Kentstown and Balbriggan Blocks; carbonate ramps developed on the hangingwall dip slopes and transgressed southward with time. Subsequent progradation and aggradation of shallow water sediments throughout the Arundian to Asbian led to the development of carbonate shelves. Several coarse conglomeratic intervals within the contemporaneous basinal sequences of the Fingal Group attest to periodic increases of sediment influx associated with the development of the shelves. Sedimentological processes controlled the development of the carbonate platforms on the hangingwall dip slopes of the Kentstown and Balbriggan Blocks, though periodic increases of sediment flux into the basinal areas may have been triggered by eustatic falls in sea level. In contrast, differential subsidence along the bounding faults of these blocks exerted a strong control on the margins of the late Dinantian shelves, maintaining relatively steep slopes and inhibiting the progradation of the shelves into the adjacent basins. Tectonically induced collapse and retreat of the platform margins occurred in the late Asbian–early Brigantian. Platform sediments are overlain by coarse-grained proximal basinal facies which fine upwards before passing into a thick shale sequence, indicating that by the late Brigantian carbonate production had almost stopped as the platforms were drowned.  相似文献   

15.
In the Late Cambrian, the North China Platform was a typical carbonate ramp platform. The Upper Cambrian of the northern part of the North China Platform is famous for the development of bioherm limestones and storm calcirudites and can be divided from bottom to top into the Gushan, Changshan and Fengshan formations. In this set of strata, the deep-ramp mudstone and marls and the shallow-ramp packstones and grainstones constitute many carbonate meter-scale cycles of subtidal type. More tidal-flat dolomites axe developed in the Upper Cambrian of the southern margin of the North China platform, in which limestone and dolomite beds also constitute many carbonate meter-scale cycles of the peritidal type. These cycles are marked by a variety of litho-facies successions. There are regularly vertical stacking patterns of meter-scale cycles in long-term third-order sequences, which is the key to discerning such sequences. Third-order sequence is marked by a particular sedimentary-facies succession that is the result of the environment-changing process of deepening and shoaling, which is genetically related to third-order sea level changes. Furthermore, four third-order sequences can be grouped in the Upper Cambrian of the North China Platform. The main features of these four third-order sequences in the northern part of the platform can be summarized as follows: firstly, sequence-boundaries are characterized by drowning unconformities; secondly, the sedimentary-facies succession is generally constituted by one from deep-ramp facies to shallow-ramp facies; thirdly, a succession of “CS (?) HST” (i.e., “condensed section and highstand system”) forms these four third-order sequences. The chief features for the third-order sequences in the southern part of the North China Platform comprises: more dolomites are developed in the HSTs of third-order sequences and also developed more carbonate meter-scale cycles of peritidal types; the sedimentary-facies succession of the third-order sequences is marked by “shallow ramp-tidal flat”; the sequence boundaries are characterized by exposure punctuated surfaces. According to the changes for the third-order sequences from the north to the south, a regular sequence-stratigraphic framework can be established. From cycles to sequences, the study of sequence stratigraphy from litho-facies successions to sedimentary-facies successions exposes that as follows: meter-scale cycles that are used as the basic working unit actually are litho-facies successions formed by the mechanism of a punctuated aggradational cycle, and third-order sequences that are constituted by regularly vertical stacking patterns of meter-scale cycles are marked by sedimentary-facies successions. On the basis of the changing curve of water depth at each section, the curve of the relative third-order sea level changes in the late Cambrian of the North China Platform can be integrated qualitatively from changing curve of water depth. The correlation of Late Cambrian long-term sea level changes between North China and North America demonstrates that there are not only similarities but also differences, reflecting control of long-term sea level changes both by global eustacy and by regional factors.  相似文献   

16.
Stratigraphic units are defined and described for the Lower Carboniferous succession in the Walterstown-Kentstown area of Co. Meath, Ireland. A complete (unexposed) Courceyan succession from the terrestrial red bed facies of the Baronstown Formation to the Moathill Formation of the Navan Group has been penetrated in several boreholes. Although the lower part of the sequence is comparable with the Courceyan succession at Navan and Slane, the middle part of the sequence differs markedly in the Walterstown-Kentstown area and two new members, the Proudstown and Walterstown Members, are defined in the upper part of the Meath Formation. Syndepositional faulting was initiated during the Courceyan, probably in latest Pseudopolygnathus multistriatus or early Polygnathus mehli latus time. Movement on the ENE trending St. Patrick's Well Fault influenced the deposition of the Walterstown Member and the overlying Moathill Formation and was probably associated with the development of the East Midlands depocentre to the south of the area. A second episode of tectonism in the latest Courceyan or early Chadian resulted in uplift and erosion and the development of ‘block and basin’ sedimentation. Subsequent transgression of the uplifted block led to the establishment of the Kentstown Platform, bounded to the north, west and south by rocks of basinal facies. The Milverton Group (Chadian-Asbian), confined to this platform, unconformably overlies Courceyan or Lower Palaeozoic strata and is subdivided into three formations: Crufty Formation (late Chadian), Holmpatrick Formation (late Chadian-Arundian) and Mullaghfin Formation (late Arundian-Asbian). The Walterstown Fault controlled the western margin of the Kentstown Platform at this time. Contemporaneous basinal sediments of the Fingal Group (Lucan and Naul Formations) accumulated to the west of the Walterstown Fault and are much thicker than age-equivalent platform facies. Platform sedimentation ceased in latest Asbian to early Brigantian time with tectonically induced collapse and drowning of the platform; platform carbonates of the Mullaghfin Formation are onlapped northwards by coarse proximal basinal facies of the Loughshinny Formation. A distinct gravity anomaly in the Kentstown area suggests the presence of a granitoid body within the basement. The Kentstown Platform is therefore considered to have formed on a buoyant, granite-cored, footwall high analogous to the Askrigg and Alston Blocks of northern England.  相似文献   

17.
The Maggol Limestone of Ordovician age was deposited in the Taebaeksan (Taebacksan) Basin which occupies the northeastern flank of the Okcheon (Ogcheon) Belt of South Korea. Carbonate facies analysis in conjunction with conodont biostratigraphy suggests that an overall regression toward the top of the Maggol Limestone probably culminated in subaerial exposure of platform carbonates in the early Middle Ordovician (earliest Darriwilian). Elsewhere this subaerial exposure event is manifested as a major paleokarst unconformity at the Sauk-Tippecanoe sequence boundary beneath the Middle Ordovician succession and its equivalents, most in notably North America and North China. Due to its global extent, this paleokarst unconformity has been viewed as a product of second- or third-order eustatic sea level fall during the early Middle Ordovician. The Sauk-Tippecanoe sequence boundary in South Korea, however, appears to be a discrete marine-flooding surface in the upper Maggol Limestone. Strata beneath this surface represent by a thinning-upward stack of exposure-capped tidal flat-dominated cycles that are closely associated with multiple occurrences of paleokarst-related solution-collapse breccias. This marine-flooding surface is onlapped by a thick succession of thin-bedded micritic limestone that is eventually overlain by a Middle Ordovician condensed section. This physical stratigraphic relationship suggest that second- and third-order eustatic sea level fall may have been significantly tempered by regional tectonic subsidence near the end of Maggol deposition. The tectonic subsidence is also evidenced by the occurrence of coeval off-platform lowstand siliciclastic quartzite lenses as well as debris flow carbonate breccias (i.e., the Yemi Breccia) in the basin. With continued tectonic subsidence, a subsequent rise in the eustatic cycle caused drowning and deep flooding of the carbonate platform, forming a discrete marine-flooding surface that may be referred to as a drowning unconformity. This tectonic interpretation contrasts notably with the slowly subsiding carbonate platform model for the basin as has been previously suggested. Thus, it is proposed that the Taebaeksan Basin in the northeastern flank on the Okcheon Belt evolved from a slowly subsiding carbonate platform to a rapidly subsiding intracontinental rift basin during the early Middle Ordovician.  相似文献   

18.
《Gondwana Research》2006,9(4):511-528
The Maggol Limestone of Ordovician age was deposited in the Taebaeksan (Taebacksan) Basin which occupies the northeastern flank of the Okcheon (Ogcheon) Belt of South Korea. Carbonate facies analysis in conjunction with conodont biostratigraphy suggests that an overall regression toward the top of the Maggol Limestone probably culminated in subaerial exposure of platform carbonates in the early Middle Ordovician (earliest Darriwilian). Elsewhere this subaerial exposure event is manifested as a major paleokarst unconformity at the Sauk-Tippecanoe sequence boundary beneath the Middle Ordovician succession and its equivalents, most in notably North America and North China. Due to its global extent, this paleokarst unconformity has been viewed as a product of second- or third-order eustatic sea level fall during the early Middle Ordovician. The Sauk-Tippecanoe sequence boundary in South Korea, however, appears to be a discrete marine-flooding surface in the upper Maggol Limestone. Strata beneath this surface represent by a thinning-upward stack of exposure-capped tidal flat-dominated cycles that are closely associated with multiple occurrences of paleokarst-related solution-collapse breccias. This marine-flooding surface is onlapped by a thick succession of thin-bedded micritic limestone that is eventually overlain by a Middle Ordovician condensed section. This physical stratigraphic relationship suggest that second- and third-order eustatic sea level fall may have been significantly tempered by regional tectonic subsidence near the end of Maggol deposition. The tectonic subsidence is also evidenced by the occurrence of coeval off-platform lowstand siliciclastic quartzite lenses as well as debris flow carbonate breccias (i.e., the Yemi Breccia) in the basin. With continued tectonic subsidence, a subsequent rise in the eustatic cycle caused drowning and deep flooding of the carbonate platform, forming a discrete marine-flooding surface that may be referred to as a drowning unconformity. This tectonic interpretation contrasts notably with the slowly subsiding carbonate platform model for the basin as has been previously suggested. Thus, it is proposed that the Taebaeksan Basin in the northeastern flank on the Okcheon Belt evolved from a slowly subsiding carbonate platform to a rapidly subsiding intracontinental rift basin during the early Middle Ordovician.  相似文献   

19.
摘 要  报导了中国西北晚中新世—第四纪陆相咸化湖泊介形类群中发现的有孔虫和钙质超 微化石组合‚并从生态和古地理的角度论证了它们属于非海侵来源‚图示了这些生物化石的 地理分布。认为由于主要受到干燥气候下咸化湖泊环境的控制‚中新世以来‚喜盐水生生物 群介形类、有孔虫和钙质超微生物等随干旱气候控制的咸化湖泊不断向东扩展。因此‚不能 笼统地把这些生物化石作为海侵证据。根据地质学现实主义类比原则‚提出中国东部早第三 纪没有大规模的海侵沉积‚丰富的石油天然气资源来自陆相咸化湖泊和深水湖泊沉积。  相似文献   

20.
During early Carboniferous times a major sea-level rise led to the development of an extensive carbonate ramp over what is now South Wales. Differential subsidence and sea-level changes resulted in distinctive facies sequences in the ramp succession and a model is offered which recognizes three distinct geomorpho-tectonic settings; inner, mid- and outer ramp. The inner ramp zone occurs in the more landward part of the province and was an area undergoing little or no subsidence. The sequence is dominated by oolitic grainstones and peritidal limestones representing shoal and back shoal environments. The peritidal units are transgressive deposits consisting of stacked asymmetrical shallowing-up cycles. The sequence contains many subaerial breaks and tectonic uplift resulted in base-level changes and fluvial incision. The mid-ramp zone sequence is intermediate in thickness between the inner and outer ramp successions and consists mainly of bioclastic limestones deposited below fairweather wave base. Sedimentation periodically exceeded sea-level rise and subsidence, and regressive (progradational) oolitic sand bodies developed, the thickest of which are stacked units with up to four individual sand bodies. Storm processes were of major importance in this setting. The outer ramp zone is represented by a thick sequence of muddy bioclastic limestones deposited below storm wave base and major Waulsortian reef-mounds also developed. None of the shallowing phases seen in the other ramp zones can be detected in this sequence. Subsidence and eustatic sea-level rise seem to have been the major controls on deposition but the recognition of eustatic sea-level falls is difficult. The detailed facies model for ramp carbonates presented here may be applicable elsewhere in the geological record.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号