首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R. T. Stewart 《Solar physics》1987,109(1):139-147
Synoptic plots of solar radio noise storms in the interval 1973 to 1984 are described. The dividing line between opposite noise storm polarities appears to be a good representation of the heliospheric current sheet out to displacements in latitude of ~ ± 50° from the solar equator. This result is surprising, because noise storms are closely associated with closed magnetic field regions near sunspots. The possibility that noise storm polarity is determined by mode coupling high in the corona, where field lines are open, can be ruled out by the available evidence. This leads us to conclude that it is the clustering in longitude of active region complexes which determines the sector structure of the interplanetary magnetic field.  相似文献   

2.
Detailed comparisons of Culgoora 160 MHz radioheliograms of solar noise storms and Skylab EUV spectroheliograms of coronal loop structures are presented. It is concluded that: (1) there is a close association between changes in large-scale magnetic fields in the corona and the onset or cessation of noise storms; (2) these coronal changes result from the emergence of new magnetic flux at the photospheric level; (3) although new magnetic flux at the photospheric level is often accompanied by an increase in flare activity the latter is not directly responsible for noise storm activity; rather the new magnetic flux diffuses slowly outwards through the corona at rates 1–2 km s–1 and produces noise storms at 160 MHz 1–2 days later; (4) the coronal density above or in large-scale EUV loop systems is sufficiently dense to account for noise storm emission at the fundamental plasma frequency; (5) the scatter in noise storm positions can be accounted for by the appearance and disappearance of individual loops in a system.  相似文献   

3.
A synoptic study of the occurrence and polarization of 160 MHz noise storms recorded at Culgoora during the current solar cycle shows that the storm sources occur in large unipolar cells extending >90° in solar longitude and 60° in latitude, with lifetimes of 1 yr. From solar maximum onwards these large cells stretch across the solar equator to form a longitudinal sector pattern reminiscent of that observed in the interplanetary magnetic field. Comparisons with published heliospheric current sheet simulations support this conclusion. The noise storms occur in the strong magnetic fields above large, complex, flare-active sunspots. Unlike most active regions, those associated with noise storms do not always have dominant sunspots as leaders. Rather, about one-third have the dominant sunspot as a follower. The dominant sunspot polarities tend to agree with the long-lived sector structure, implying that emerging magnetic flux occurs at preferred longtitudes on the solar surface.  相似文献   

4.
Radio noise continuum emissions observed in metric and deca-metric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. It is known that these continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources.It is shown that the S-component emission in microwave frequencies generally precedes by several days the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important with the increase of the average magnetic field intensity and area of these groups. In particular, the types of these groups such as and are very important on the generation of noise continuum storm sources and sharp increase of the flux of these continuum emissions. This fact suggests that sunspot magnetic configuration and its variation, both space and time, are very effective on the growth of the sources for these noise continuum emissions.Although we have not known yet the true mechanism of these emissions, it is very likely that energetic electrons, 10 to 100 keV, accelerated in association with the variation of sunspot magnetic fields, are responsible as the sources of those radio emissions. Furthermore it seems that these electrons are contributing to the emission of type III burst storms, which are associated with the noise continuum storm sources. In explaining the origin of these storms, some plasma processes must be taken into consideration. Furthermore, it should be remarked that the storage mechanism of the electrons mentioned above plays an important role in generating both the noise continuum emissions and type III burst storms, because on-fringe type III bursts are all generated above these noise continuum storms sources. After reviewing the theories of these noise continuum storm emissions, a model is briefly considered to explain the relation between these continuums and type III bursts, and a discussion is given on the role of energetic electrons on these two emissions. It is pointed out that instabilities associated with these electrons and their relation to their own stabilizing effects are important in interpreting both of these storm emissions.Astrophysics and Space Science Review Paper.  相似文献   

5.
A log-periodic array, 3 km long in the E-W direction is in operation at the Clark Lake Radio Observatory. The solar brightness distribution is swept once per second in the 65-20 MHz frequency range. The analysis of the interferometer records allows the determination of one dimensional solar burst positions, to an accuracy of 0.1 R at 60 MHz and 0.3 R at 30 MHz, approximately.Six long duration noise storms have been observed over an eight month period, extending from January to September, 1971. The storms are described and their relation to chromospheric active regions and flares is discussed. Decametric storms are found to be related to complexes of interacting active regions. The interaction is studied in terms of the number of simultaneous flares observed to occur in the various active regions. On the average, twice as many simultaneous flares are observed than would be expected if flares occurred at random. An analysis of coronal magnetic field maps computed from longitudinal photospheric fields shows magnetic arcades and some divergent field lines at the site of storm regions. Decimeter and meter wavelength sources are found to be associated with all decameter storms. At decimeter wavelengths double or multiple sources are often seen above individual active regions forming part of the chromospheric complex.  相似文献   

6.
Solar radio and microwave sources were observed with the Very Large Array (VLA) and the RATAN-600, providing high spatial resolution at 91 cm (VLA) and detailed spectral and polarization data at microwave wavelengths (1.7 to 20 cm - RATAN). The radio observations have been compared with images from the Soft X-ray Telescope (SXT) aboard theYohkoh satellite and with full-disk phoptospheric magnetic field data from the Kislovodsk Station of the Pulkovo Observatory. The VLA observations at 91 cm show fluctuating nonthermal noise storm sources in the middle corona. The active regions that were responsible for the noise storms generally had weaker microwave emission, fainter thermal soft X-ray emission, as well as less intense coronal magnetic fields than those associated with other active regions on the solar disk. The noise storms did, however, originate in active regions whose magnetic fields and radiation properties were evolving on timescales of days or less. We interpret these noise storms in terms of accelerated particles trapped in radiation belts above or near active regions, forming a decimetric coronal halo. The particles trapped in the radiation belts may be the source of other forms of nonthermal radio emission, while also providing a reservoir from which energetic particles may drain down into lower-lying magnetic structures.Presented at the CESRA-Workshop on Coronal Magnetic Energy Release at Caputh near Potsdam in May 1994.  相似文献   

7.
The spatial fine structure of the solar corona as observed in the EUV line Fexv is compared with the occurrence of major type I metric noise storms. In all cases, strong changes in the loop structure of the corona are observed. On the disk, these coronal changes are correlated to the emergence of new magnetic flux in the vicinity of existing large active regions. The reverse is demonstrated: during noise storm free periods no coronal changes can be observed. Noise storms at the limb seem to originate in open field configurations over active regions. In all cases, reconnection of coronal magnetic fields over large distances are the cause of noise storms rather than changes of magnetic fields within an active region. Noise storms disappear or are weak at the limb because of foreground absorption in chains of active regions. The observed intensities of active region loops at the limb show that a density of 1.3 × 109 cm?3 which corresponds to a plasma frequency of 100 MHz can occur over a wide variety of altitudes because active region loops are not in hydrostatic equilibrium.  相似文献   

8.
To better understand geomagnetic storm generations by ICMEs, we consider the effect of substructures (magnetic cloud, MC, and sheath) and geometries (impact location of flux-rope at the Earth) of the ICMEs. We apply the toroidal magnetic flux-rope model to 59 CDAW CME–ICME pairs to identify their substructures and geometries, and select 20 MC-associated and five sheath-associated storm events. We investigate the relationship between the storm strength indicated by minimum Dst index \((\mathrm{Dst}_{\mathrm{min}})\) and solar wind conditions related to a southward magnetic field. We find that all slopes of linear regression lines for sheath-storm events are steeper (\({\geq}\,1.4\)) than those of the MC-storm events in the relationship between \(\mathrm{Dst}_{\mathrm{min}}\) and solar wind conditions, implying that the efficiency of sheath for the process of geomagnetic storm generations is higher than that of MC. These results suggest that different general solar wind conditions (sheaths have a higher density, dynamic and thermal pressures with a higher fluctuation of the parameters and higher magnetic fields than MCs) have different impact on storm generation. Regarding the geometric encounter of ICMEs, 100% (2/2) of major storms (\(\mathrm{Dst}_{\mathrm{min}} \leq -100~\mbox{nT}\)) occur in the regions at negative \(P_{Y}\) (relative position of the Earth trajectory from the ICME axis in the \(Y\) component of the GSE coordinate) when the eastern flanks of ICMEs encounter the Earth. We find similar statistical trends in solar wind conditions, suggesting that the dependence of geomagnetic storms on 3D ICME–Earth impact geometries is caused by asymmetric distributions of the geoeffective solar wind conditions. For western flank events, 80% (4/5) of the major storms occur in positive \(P_{Y}\) regions, while intense geoeffective solar wind conditions are not located in the positive \(P_{Y}\). These results suggest that the strength of geomagnetic storms depends on ICME–Earth impact geometries as they determine the solar wind conditions at Earth.  相似文献   

9.
EUV and Magnetic Activities Associated with Type-I Solar Radio Bursts   总被引:1,自引:0,他引:1  
Type-I bursts (i.e. noise storms) are the earliest-known type of solar radio emission at the meter wavelength. They are believed to be excited by non-thermal energetic electrons accelerated in the corona. The underlying dynamic process and exact emission mechanism still remain unresolved. Here, with a combined analysis of extreme ultraviolet (EUV), radio and photospheric magnetic field data of unprecedented quality recorded during a type-I storm on 30 July 2011, we identify a good correlation between the radio bursts and the co-spatial EUV and magnetic activities. The EUV activities manifest themselves as three major brightening stripes above a region adjacent to a compact sunspot, while the magnetic field there presents multiple moving magnetic features (MMFs) with persistent coalescence or cancelation and a morphologically similar three-part distribution. We find that the type-I intensities are correlated with those of the EUV emissions at various wavelengths with a correlation coefficient of 0.7?–?0.8. In addition, in the region between the brightening EUV stripes and the radio sources there appear consistent dynamic motions with a series of bi-directional flows, suggesting ongoing small-scale reconnection there. Mainly based on the induced connection between the magnetic motion at the photosphere and the EUV and radio activities in the corona, we suggest that the observed type-I noise storms and the EUV brightening activities are the consequence of small-scale magnetic reconnection driven by MMFs. This is in support of the original proposal made by Bentley et al. (Solar Phys. 193, 227, 2000).  相似文献   

10.
Using Nancay Radioheliograph (NRH) imaging observations, combined with SOHO/Michelson Doppler Imager (MDI) magnetogram observations and coronal magnetic field extrapolation, we studied the magnetic nature of metric noise storms that are associated with coronal mass ejections (CMEs). Four events are selected: the events of 2000 July 14, 2001 April 26, 2002 August 16 and 2001 March 28. The identified noise storm sources cover or partially cover the active regions (ARs), but the centers of storm sources are offset from the ARs. Using extrapolated magnetic field lines, we find that the noise storm sources trace the boundary between the open and closed field lines. We demonstrate that the disappearance of noise storm source is followed by the appearance of the burst source. The burst sources spread on the solar disk and their distributions correspond to the extent of the CME in LASCO C2 field of view. All the SOHO/Extreme Ultraviolet Imaging Telescope (EIT) dimmings associ- ated with noise storm sources are located at the periphery of noise storms where the magnetic lines of force were previously closed and low-lying. When the closed field becomes partially or fully open, the basic configurations of noise storm sources are changed, then the noise storm sources are no longer observed. These observations provide the information that the variations of noise storms manifest the restructuring or reconfiguring of the coronal magnetic field.  相似文献   

11.
The results of an experimental study of the variations in the intensity of the fluxes of the Earth radiation belt (ERB) particles in 0.3–6 and 1–50 MeV energy intervals for electrons and protons, respectively, are reported. ERBs were studied during strong magnetic storms from August 2001 through November 2003. The results of the CORONAS-F mission obtained during the magnetic storms of November 6 (D st = ?257 nT) and November 24, 2001 (D st = ?221 nT), October 29–30 (D st = ?400 nT) and November 20, 2003 (D st = ?465 nT) are analyzed. The electron flux is found to decrease abruptly in the outer radiation belt during the main phase of the magnetic storms under consideration. During the recovery phase, the outer radiation belt is found to recover much closer to Earth, near the boundary of the penetration of solar electrons during the main phase of the magnetic storm. We associate the decrease in the electron flux with the abrupt decrease of the size of the magnetosphere during the main phase of the storm. Note that, in all cases studied, the Earth radiation belts exhibited rather long (several days) variations. In those cases where solar cosmic-ray fluxes were observed during the storm, protons with energies 1–5 MeV could be trapped to form an additional maximum of protons with such energies at L >2.  相似文献   

12.
Extreme ultraviolet observations of coronal holes   总被引:2,自引:0,他引:2  
Extreme-ultraviolet Skylab and ground-based solar magnetic field data have been combined to study the origin and evolution of coronal holes. It is shown that holes exist only within the large-scale unipolar magnetic cells into which the solar surface is divided at any given time. A well-defined boundary zone usually exists between the edge of a hole and the neutral line which marks the edge of its magnetic cell. This boundary zone is the region across which a cell is connected by magnetic arcades with adjacent cells of opposite polarity. Three pieces of observational evidence are offered to support the hypothesis that the magnetic lines of force from a hole are open. Kitt Peak magnetograms are used to show that, at least on a relative scale, the average field strengths within holes are quite variable, but indistinguishable from the field strengths in other quiet parts of the Sun's surface.Finally it is shown that the large, equatorial holes characteristic of the declining phase of the last solar cycle during Skylab (1973–74) were all formed as a result of the mergence of bipolar magnetic regions (BMR's), confirming an earlier hypothesis by Timothy et al. (1975). Systematic application of this model to the different aspects of the solar cycle correctly predicts the occurrence of both large, equatorial coronal holes (the M-regions which cause recurrent geomagnetic storms) and the polar cap holes.  相似文献   

13.
A comparison of flux and polarization of solar radio noise storms with photospheric source position and magnetic field configuration for six year observations is reported. Three independent results pointing to a predominance of plus magnetic structures as regards noise-storm generation are outlined. A rather strong proof towards a cause-effect connection of photospheric magnetic structure development and noise-storm evolution is stressed.  相似文献   

14.
To locate two-dimensional positions of the solar decametric radio bursts a heliograph was developed on the basis of the UTR-2 radiotelescope (Khar'kov) operated in the range 10–26 MHz. The beamwidth of the heliograph rapid-scanning pencil-beam is 25 arc min at 25 MHz, and its field of view is about 3.5° (E-W) × 2.0° (N-S). The instrument yields rapidly forty records of the radio brightness of all (8 × 5) elementary parts (each 25 arc min in diameter) of the investigated sky area during every period of 1/4 s. Both coordinates of a burst center are measured with an accuracy 5 arc min. The bandwidth of the receiving system is 10 kHz. The heliograph operates in conjunction with a radiospectrograph connected to the output of a N-S arm of the UTR-2 array. The data observations with the UTR-2 correspond only to one linear polarized component.The ionospheric distortion of the test records of the radio source Cassiopeia-A that occurred sometimes is illustrated.First results of 25 MHz observations of the solar radio storm in August, 1976 with the heliograph are presented here. This storm is accompanied by the compact sunspot group travelling all over the optical disk. The type III and stria bursts were predominant during the storm. On the given day the scattering regions of their apparent centers were overlapped and the sizes of these regions were usually not more than 5 arc min. On some days there occurred additional burst sources displaced in position from the persistent storm region. It was found out that, as a rule, 25 MHz stria-bursts from the type IIIb chain coincided in position with the following type III burst at the same frequency. The difference of the daily averaged coordinates of both stria and type III bursts was considerably smaller than the mean diameter of their sources.The radial distance of the 25 MHz storm region from the solar center was calculated by using the three methods. The storm height was estimated as 1.8R from the rotation rate close to the central meridian of the storm center. Definite association of the spots with the storm near the limb allowed to determine the average value 2.1R for the height. The limb measurements give the mean height of 2.3R .The center-to-limb variation of the storm source height is a known fact in the meter-wavelength range. This is the evidence of the propagation effects in the solar corona being essential to interpret the results of the radio source location.  相似文献   

15.
In this paper, we analyze the interplanetary causes of eight great geomagnetic storms during the solar maximum (2000-2001). The result shows that the interplanetary causes were the intense southward magnetic field and the notable characteristic among the causal mechanism is compression. Six of eight great geomagnetic storms were associated with the compression of southward magnetic field, which can be classified into (1) the compression between ICMEs (2) the compression between ICMEs and interplanetary medium. It suggests that the compressed magnetic field would be more geoeffective. At the same time, we also find that half of all great storms were related to successive halo CMEs, most of which originated from the same active region. The interactions between successive halo CMEs usually can lead to greater geoeffectiveness by enhancing their southward field Bs interval either in the sheath region of the ejecta or within magnetic clouds (MCs). The types of them included: the compression between the fast speed transient flow and the slow speed background flow, the multiple MCs, besides shock compression. Further, the linear fit of the Dst versus gives the weights of and Δt as α=2.51 and β=0.75, respectively. This may suggest that the compression mechanism, with associated intense Bs, rather than duration, is the main factor in causing a great geomagnetic storm.  相似文献   

16.
The trajectories of 38 type III storms in the interplanetary medium have been deduced from ISEE-3 radio observations and extrapolated back to the Sun to determine the Carrington coordinates of their footpoints. The analysis assumes radial motion of the solar wind, and the trajectories are projected radially back toward the surface for the last few solar radii. To identify the storm sources, the footpoints were compared to a variety of solar features: to the large-scale neutral line at the base of the current sheet, to active regions, to the small-scale neutral lines and H filaments which trace out active regions, and to coronal holes. Most of the footpoints were found to lie near active regions, in agreement with metric storm locations. There is a weak correlation with H filaments, no apparent association with the current sheet, and an anticorrelation with coronal holes. There is a small excess of storms in the leading half of magnetic sectors.  相似文献   

17.
We survey 14 super-active regions (SARs) in the 22nd cycle and 15 SARs in the 23rd cycle. Each produced major flares and major solar storms. Among them, the 25 most violent super active regions (VSARs) are selected based on five parameters: the largest area of sunspots, X-ray flare index (XRI), 10.7 cm radio flux, proton flux and geomagnetic A p index. In order to understand the VSARs, we have investigated a few key magnetic properties of those regions, i.e., net magnetic flux, tilt angle and force-free parameter best. The following results are found: (1) Most VSARs (84%) in our samples have net magnetic flux greater than 1021 Mx, implying that those are seriously unbalanced flux regions. Unbalanced flux active regions probably provide a nest to relate the small-scale to the large-scale magnetic field. (2) Most of the VSARs (68%) are of abnormal magnetic structure, violating the Hale–Nicholson Law. For most of the normal VSARs, the tilt angles are larger than 40°. 84% of the VSARs follow the hemispheric helicity rule. Generally, they have large magnetic twist and writhe helicity. (3) We also enlarge our samples to study the locations of VSARs by adding the top 10 of the major flares, proton events and severe magnetic storms from 1976 to 2001. It is found that 77% in our 30 samples of VSARs were preferentially located in 4 longitude bands, i.e., l c=80°±15° l c=170°±15° l c=260°±15° and l c=350°±15°. The interval of those longitude bands is roughly 90°. From the above results, we suggest that there probably is a special magnetic environment in the sub-photosphere of the four longitude bands where it is preferred to produce abnormal and complex active regions which easily produce major flares and major solar storms. Area, magnetic class, net magnetic flux, Carrington longitude and tilt angle of an active region may serve to predict likelihood of the active region producing hazarded space weather.  相似文献   

18.
Coronal Faraday rotation of the linearly polarized carrier signals of the HELIOS spacecraft was recorded during the regularly occurring solar occultations over almost a complete solar cycle from 1975 to 1984. These measurements are used to determine the average strength and radial variation of the coronal magnetic field at solar minimum at solar distances from 3–10 solar radii, i.e., the range over which the complex fields at the coronal base are transformed into the interplanetary spiral. The mean coronal magnetic field in 1975–1976 was found to decrease with radial distance according to r , where = 2.7 ± 0.2. The mean field magnitude was 1.0 ± 0.5 × 10 –5 tesla at a nominal solar distance of 5 solar radii. Possibly higher magnetic field strengths were indicated at solar maximum, but a lack of data prevented a statistical determination of the mean coronal field during this epoch.  相似文献   

19.
Photospheric motion shears or twists solar magnetic fields to increase magnetic energy in the corona, because this process may change a current-free state of a coronal field to force-free states which carry electric current. This paper analyzes both linear and nonlinear two-dimensional force-free magnetic field models and derives relations of magnetic energy buildup with photospheric velocity field. When realistic data of solar magnetic field (B 0 103 G) and photospheric velocity field (v max 1 km s–1) are used, it is found that 3–4 hours are needed to create an amount of free magnetic energy which is of the order of the current-free field energy. Furthermore, the paper studies situations in which finite magnetic diffusivities in photospheric plasma are introduced. The shearing motion increases coronal magnetic energy, while the photospheric diffusion reduces the energy. The variation of magnetic energy in the coronal region, then, depends on which process dominates.  相似文献   

20.
The analysis of a storm of type III solar radio bursts observed in August 1968 between 5 and 0.2 MHz by the RAE-1 satellite has yielded the storm morphology, a possible relation to meter and decameter storms, and an average exciter speed of 0.37 c between 10 and 40 R (Fainberg and Stone, 1970a, b). A continuation of the analysis, based on the apparent dependence of burst drift rate on heliographic longitude of the associated active region, now provides a distance scale between plasma levels in the streamer, an upper limit to the scale size of coronal streamer density inhomogeneities, and an estimate of the solar wind speed. By fixing one level the distance scale is utilized to determine the electron density distribution along the streamer between 10 and 40 R . The streamer density is found to be 16 times that expected for the solar minimum quiet solar wind. An upper limit to the scale size of streamer density inhomogeneities is estimated to be of the order of 1 or 2 solar radii over the same height range. From the progressive delay of the central meridian passage (CMP) of the lower frequency emission, a streamer curvature is inferred which in turn implies an average solar wind speed of 380 km/sec between 14 and 36 R within the streamer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号